1
0
mirror of synced 2024-11-30 18:24:32 +01:00

Create calc_rvc_model_similarity.py

This commit is contained in:
RVC-Boss 2023-08-02 21:20:46 +08:00 committed by GitHub
parent 176417e78e
commit 064fecbd5d
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -0,0 +1,78 @@
# This code references https://huggingface.co/JosephusCheung/ASimilarityCalculatior/blob/main/qwerty.py
# Fill in the path of the model to be queried and the root directory of the reference models, and this script will return the similarity between the model to be queried and all reference models.
import sys,os
import torch
import torch.nn as nn
import torch.nn.functional as F
def cal_cross_attn(to_q, to_k, to_v, rand_input):
hidden_dim, embed_dim = to_q.shape
attn_to_q = nn.Linear(hidden_dim, embed_dim, bias=False)
attn_to_k = nn.Linear(hidden_dim, embed_dim, bias=False)
attn_to_v = nn.Linear(hidden_dim, embed_dim, bias=False)
attn_to_q.load_state_dict({"weight": to_q})
attn_to_k.load_state_dict({"weight": to_k})
attn_to_v.load_state_dict({"weight": to_v})
return torch.einsum(
"ik, jk -> ik",
F.softmax(torch.einsum("ij, kj -> ik", attn_to_q(rand_input), attn_to_k(rand_input)), dim=-1),
attn_to_v(rand_input)
)
def model_hash(filename):
try:
with open(filename, "rb") as file:
import hashlib
m = hashlib.sha256()
file.seek(0x100000)
m.update(file.read(0x10000))
return m.hexdigest()[0:8]
except FileNotFoundError:
return 'NOFILE'
def eval(model, n, input):
qk = f"enc_p.encoder.attn_layers.{n}.conv_q.weight"
uk = f"enc_p.encoder.attn_layers.{n}.conv_k.weight"
vk = f"enc_p.encoder.attn_layers.{n}.conv_v.weight"
atoq, atok, atov = model[qk][:,:,0], model[uk][:,:,0], model[vk][:,:,0]
attn = cal_cross_attn(atoq, atok, atov, input)
return attn
def main(path,root):
torch.manual_seed(114514)
model_a = torch.load(path, map_location="cpu")["weight"]
print("query:\t\t%s\t%s"%(path,model_hash(path)))
map_attn_a = {}
map_rand_input = {}
for n in range(6):
hidden_dim, embed_dim,_ = model_a[f"enc_p.encoder.attn_layers.{n}.conv_v.weight"].shape
rand_input = torch.randn([embed_dim, hidden_dim])
map_attn_a[n] = eval(model_a, n, rand_input)
map_rand_input[n] = rand_input
del model_a
for name in sorted(list(os.listdir(root))):
path="%s/%s"%(root,name)
model_b = torch.load(path, map_location="cpu")["weight"]
sims = []
for n in range(6):
attn_a = map_attn_a[n]
attn_b = eval(model_b, n, map_rand_input[n])
sim = torch.mean(torch.cosine_similarity(attn_a, attn_b))
sims.append(sim)
print("reference:\t%s\t%s\t%s"%(path,model_hash(path),f"{torch.mean(torch.stack(sims)) * 1e2:.2f}%"))
if __name__ == "__main__":
query_path=r"weights\mi v3.pth"
reference_root=r"weights"
main(query_path,reference_root)