Add files via upload
This commit is contained in:
parent
5bcaa171ea
commit
0719b4aa5e
2
go-realtime-gui.bat
Normal file
2
go-realtime-gui.bat
Normal file
@ -0,0 +1,2 @@
|
|||||||
|
runtime\python.exe gui.py
|
||||||
|
pause
|
5
gui.py
5
gui.py
@ -1,3 +1,6 @@
|
|||||||
|
import os,sys
|
||||||
|
now_dir = os.getcwd()
|
||||||
|
sys.path.append(now_dir)
|
||||||
import PySimpleGUI as sg
|
import PySimpleGUI as sg
|
||||||
import sounddevice as sd
|
import sounddevice as sd
|
||||||
import noisereduce as nr
|
import noisereduce as nr
|
||||||
@ -12,7 +15,7 @@ from infer_pack.models import SynthesizerTrnMs256NSFsid, SynthesizerTrnMs256NSFs
|
|||||||
from i18n import I18nAuto
|
from i18n import I18nAuto
|
||||||
|
|
||||||
i18n = I18nAuto()
|
i18n = I18nAuto()
|
||||||
|
print(i18n.language_map)
|
||||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||||
|
|
||||||
|
|
||||||
|
@ -139,6 +139,8 @@ def vc_single(
|
|||||||
if hubert_model == None:
|
if hubert_model == None:
|
||||||
load_hubert()
|
load_hubert()
|
||||||
if_f0 = cpt.get("f0", 1)
|
if_f0 = cpt.get("f0", 1)
|
||||||
|
file_index = file_index.strip(" ").strip('"').strip("\n").strip('"').strip(" ").replace("trained","added")#防止小白写错,自动帮他替换掉
|
||||||
|
file_big_npy = file_big_npy.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
|
||||||
audio_opt = vc.pipeline(
|
audio_opt = vc.pipeline(
|
||||||
hubert_model,
|
hubert_model,
|
||||||
net_g,
|
net_g,
|
||||||
@ -936,7 +938,7 @@ with gr.Blocks() as app:
|
|||||||
minimum=0,
|
minimum=0,
|
||||||
maximum=1,
|
maximum=1,
|
||||||
label="检索特征占比",
|
label="检索特征占比",
|
||||||
value=1,
|
value=0.6,
|
||||||
interactive=True,
|
interactive=True,
|
||||||
)
|
)
|
||||||
f0_file = gr.File(label=i18n("F0曲线文件, 可选, 一行一个音高, 代替默认F0及升降调"))
|
f0_file = gr.File(label=i18n("F0曲线文件, 可选, 一行一个音高, 代替默认F0及升降调"))
|
||||||
|
@ -21,7 +21,7 @@ import torch.distributed as dist
|
|||||||
from torch.nn.parallel import DistributedDataParallel as DDP
|
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||||
from torch.cuda.amp import autocast, GradScaler
|
from torch.cuda.amp import autocast, GradScaler
|
||||||
from infer_pack import commons
|
from infer_pack import commons
|
||||||
|
from time import sleep
|
||||||
from time import time as ttime
|
from time import time as ttime
|
||||||
from data_utils import (
|
from data_utils import (
|
||||||
TextAudioLoaderMultiNSFsid,
|
TextAudioLoaderMultiNSFsid,
|
||||||
@ -45,7 +45,7 @@ global_step = 0
|
|||||||
def main():
|
def main():
|
||||||
# n_gpus = torch.cuda.device_count()
|
# n_gpus = torch.cuda.device_count()
|
||||||
os.environ["MASTER_ADDR"] = "localhost"
|
os.environ["MASTER_ADDR"] = "localhost"
|
||||||
os.environ["MASTER_PORT"] = "5555"
|
os.environ["MASTER_PORT"] = "51515"
|
||||||
|
|
||||||
mp.spawn(
|
mp.spawn(
|
||||||
run,
|
run,
|
||||||
@ -676,6 +676,7 @@ def train_and_evaluate(
|
|||||||
"saving final ckpt:%s"
|
"saving final ckpt:%s"
|
||||||
% (savee(ckpt, hps.sample_rate, hps.if_f0, hps.name, epoch))
|
% (savee(ckpt, hps.sample_rate, hps.if_f0, hps.name, epoch))
|
||||||
)
|
)
|
||||||
|
sleep(1)
|
||||||
os._exit(2333333)
|
os._exit(2333333)
|
||||||
|
|
||||||
|
|
||||||
|
@ -1,4 +1,5 @@
|
|||||||
import sys, os, multiprocessing
|
import sys, os, multiprocessing
|
||||||
|
from scipy import signal
|
||||||
|
|
||||||
now_dir = os.getcwd()
|
now_dir = os.getcwd()
|
||||||
sys.path.append(now_dir)
|
sys.path.append(now_dir)
|
||||||
@ -38,6 +39,7 @@ class PreProcess:
|
|||||||
max_sil_kept=150,
|
max_sil_kept=150,
|
||||||
)
|
)
|
||||||
self.sr = sr
|
self.sr = sr
|
||||||
|
self.bh, self.ah = signal.butter(N=5, Wn=48, btype='high', fs=self.sr)
|
||||||
self.per = 3.7
|
self.per = 3.7
|
||||||
self.overlap = 0.3
|
self.overlap = 0.3
|
||||||
self.tail = self.per + self.overlap
|
self.tail = self.per + self.overlap
|
||||||
@ -69,6 +71,7 @@ class PreProcess:
|
|||||||
def pipeline(self, path, idx0):
|
def pipeline(self, path, idx0):
|
||||||
try:
|
try:
|
||||||
audio = load_audio(path, self.sr)
|
audio = load_audio(path, self.sr)
|
||||||
|
audio = signal.filtfilt(self.bh, self.ah, audio)
|
||||||
idx1 = 0
|
idx1 = 0
|
||||||
for audio in self.slicer.slice(audio):
|
for audio in self.slicer.slice(audio):
|
||||||
i = 0
|
i = 0
|
||||||
|
@ -4,7 +4,8 @@ import torch.nn.functional as F
|
|||||||
from config import x_pad, x_query, x_center, x_max
|
from config import x_pad, x_query, x_center, x_max
|
||||||
import scipy.signal as signal
|
import scipy.signal as signal
|
||||||
import pyworld, os, traceback, faiss
|
import pyworld, os, traceback, faiss
|
||||||
|
from scipy import signal
|
||||||
|
bh, ah = signal.butter(N=5, Wn=48, btype='high', fs=16000)
|
||||||
|
|
||||||
class VC(object):
|
class VC(object):
|
||||||
def __init__(self, tgt_sr, device, is_half):
|
def __init__(self, tgt_sr, device, is_half):
|
||||||
@ -189,6 +190,7 @@ class VC(object):
|
|||||||
index = big_npy = None
|
index = big_npy = None
|
||||||
else:
|
else:
|
||||||
index = big_npy = None
|
index = big_npy = None
|
||||||
|
audio = signal.filtfilt(bh, ah, audio)
|
||||||
audio_pad = np.pad(audio, (self.window // 2, self.window // 2), mode="reflect")
|
audio_pad = np.pad(audio, (self.window // 2, self.window // 2), mode="reflect")
|
||||||
opt_ts = []
|
opt_ts = []
|
||||||
if audio_pad.shape[0] > self.t_max:
|
if audio_pad.shape[0] > self.t_max:
|
||||||
|
Loading…
Reference in New Issue
Block a user