Add files via upload
This commit is contained in:
parent
4af6630792
commit
1279e1dcc4
@ -1,2 +1,2 @@
|
|||||||
runtime\python.exe gui.py
|
runtime\python.exe gui_v1.py
|
||||||
pause
|
pause
|
||||||
|
498
gui_v1.py
Normal file
498
gui_v1.py
Normal file
@ -0,0 +1,498 @@
|
|||||||
|
import os,sys
|
||||||
|
now_dir = os.getcwd()
|
||||||
|
sys.path.append(now_dir)
|
||||||
|
import multiprocessing
|
||||||
|
class Harvest(multiprocessing.Process):
|
||||||
|
def __init__(self,inp_q,opt_q):
|
||||||
|
multiprocessing.Process.__init__(self)
|
||||||
|
self.inp_q=inp_q
|
||||||
|
self.opt_q=opt_q
|
||||||
|
|
||||||
|
def run(self):
|
||||||
|
import numpy as np, pyworld
|
||||||
|
while(1):
|
||||||
|
idx, x, res_f0,n_cpu,ts=self.inp_q.get()
|
||||||
|
f0,t=pyworld.harvest(
|
||||||
|
x.astype(np.double),
|
||||||
|
fs=16000,
|
||||||
|
f0_ceil=1100,
|
||||||
|
f0_floor=50,
|
||||||
|
frame_period=10,
|
||||||
|
)
|
||||||
|
res_f0[idx]=f0
|
||||||
|
if(len(res_f0.keys())>=n_cpu):
|
||||||
|
self.opt_q.put(ts)
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
from multiprocessing import Queue
|
||||||
|
from queue import Empty
|
||||||
|
import numpy as np
|
||||||
|
import multiprocessing
|
||||||
|
import traceback, re
|
||||||
|
import json
|
||||||
|
import PySimpleGUI as sg
|
||||||
|
import sounddevice as sd
|
||||||
|
import noisereduce as nr
|
||||||
|
from multiprocessing import cpu_count
|
||||||
|
import librosa, torch, time, threading
|
||||||
|
import torch.nn.functional as F
|
||||||
|
import torchaudio.transforms as tat
|
||||||
|
from i18n import I18nAuto
|
||||||
|
|
||||||
|
i18n = I18nAuto()
|
||||||
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||||
|
current_dir = os.getcwd()
|
||||||
|
inp_q = Queue()
|
||||||
|
opt_q=Queue()
|
||||||
|
n_cpu=min(cpu_count(),8)
|
||||||
|
for _ in range(n_cpu):
|
||||||
|
Harvest(inp_q,opt_q).start()
|
||||||
|
from rvc_for_realtime import RVC
|
||||||
|
class GUIConfig:
|
||||||
|
def __init__(self) -> None:
|
||||||
|
self.pth_path: str = ""
|
||||||
|
self.index_path: str = ""
|
||||||
|
self.pitch: int = 12
|
||||||
|
self.samplerate: int = 40000
|
||||||
|
self.block_time: float = 1.0 # s
|
||||||
|
self.buffer_num: int = 1
|
||||||
|
self.threhold: int = -30
|
||||||
|
self.crossfade_time: float = 0.08
|
||||||
|
self.extra_time: float = 0.04
|
||||||
|
self.I_noise_reduce = False
|
||||||
|
self.O_noise_reduce = False
|
||||||
|
self.index_rate = 0.3
|
||||||
|
self.n_cpu=min(n_cpu,8)
|
||||||
|
self.f0method="harvest"
|
||||||
|
|
||||||
|
|
||||||
|
class GUI:
|
||||||
|
def __init__(self) -> None:
|
||||||
|
self.config = GUIConfig()
|
||||||
|
self.flag_vc = False
|
||||||
|
|
||||||
|
self.launcher()
|
||||||
|
|
||||||
|
def load(self):
|
||||||
|
input_devices, output_devices, _, _ = self.get_devices()
|
||||||
|
try:
|
||||||
|
with open("values1.json", "r") as j:
|
||||||
|
data = json.load(j)
|
||||||
|
data["pm"]=data["f0method"]=="pm"
|
||||||
|
data["harvest"]=data["f0method"]=="harvest"
|
||||||
|
data["crepe"]=data["f0method"]=="crepe"
|
||||||
|
except:
|
||||||
|
with open("values1.json", "w") as j:
|
||||||
|
data = {
|
||||||
|
"pth_path": " ",
|
||||||
|
"index_path": " ",
|
||||||
|
"sg_input_device": input_devices[sd.default.device[0]],
|
||||||
|
"sg_output_device": output_devices[sd.default.device[1]],
|
||||||
|
"threhold": "-45",
|
||||||
|
"pitch": "0",
|
||||||
|
"index_rate": "0",
|
||||||
|
"block_time": "1",
|
||||||
|
"crossfade_length": "0.04",
|
||||||
|
"extra_time": "1",
|
||||||
|
"f0method": "harvest",
|
||||||
|
}
|
||||||
|
return data
|
||||||
|
|
||||||
|
def launcher(self):
|
||||||
|
data = self.load()
|
||||||
|
sg.theme("LightBlue3")
|
||||||
|
input_devices, output_devices, _, _ = self.get_devices()
|
||||||
|
layout = [
|
||||||
|
[
|
||||||
|
sg.Frame(
|
||||||
|
title=i18n("加载模型"),
|
||||||
|
layout=[
|
||||||
|
[
|
||||||
|
sg.Input(
|
||||||
|
default_text=data.get("pth_path", ""),
|
||||||
|
key="pth_path",
|
||||||
|
),
|
||||||
|
sg.FileBrowse(
|
||||||
|
i18n("选择.pth文件"),
|
||||||
|
initial_folder=os.path.join(os.getcwd(), "weights"),
|
||||||
|
file_types=((". pth"),),
|
||||||
|
),
|
||||||
|
],
|
||||||
|
[
|
||||||
|
sg.Input(
|
||||||
|
default_text=data.get("index_path", ""),
|
||||||
|
key="index_path",
|
||||||
|
),
|
||||||
|
sg.FileBrowse(
|
||||||
|
i18n("选择.index文件"),
|
||||||
|
initial_folder=os.path.join(os.getcwd(), "logs"),
|
||||||
|
file_types=((". index"),),
|
||||||
|
),
|
||||||
|
],
|
||||||
|
],
|
||||||
|
)
|
||||||
|
],
|
||||||
|
[
|
||||||
|
sg.Frame(
|
||||||
|
layout=[
|
||||||
|
[
|
||||||
|
sg.Text(i18n("输入设备")),
|
||||||
|
sg.Combo(
|
||||||
|
input_devices,
|
||||||
|
key="sg_input_device",
|
||||||
|
default_value=data.get("sg_input_device", ""),
|
||||||
|
),
|
||||||
|
],
|
||||||
|
[
|
||||||
|
sg.Text(i18n("输出设备")),
|
||||||
|
sg.Combo(
|
||||||
|
output_devices,
|
||||||
|
key="sg_output_device",
|
||||||
|
default_value=data.get("sg_output_device", ""),
|
||||||
|
),
|
||||||
|
],
|
||||||
|
],
|
||||||
|
title=i18n("音频设备(请使用同种类驱动)"),
|
||||||
|
)
|
||||||
|
],
|
||||||
|
[
|
||||||
|
sg.Frame(
|
||||||
|
layout=[
|
||||||
|
[
|
||||||
|
sg.Text(i18n("响应阈值")),
|
||||||
|
sg.Slider(
|
||||||
|
range=(-60, 0),
|
||||||
|
key="threhold",
|
||||||
|
resolution=1,
|
||||||
|
orientation="h",
|
||||||
|
default_value=data.get("threhold", ""),
|
||||||
|
),
|
||||||
|
],
|
||||||
|
[
|
||||||
|
sg.Text(i18n("音调设置")),
|
||||||
|
sg.Slider(
|
||||||
|
range=(-24, 24),
|
||||||
|
key="pitch",
|
||||||
|
resolution=1,
|
||||||
|
orientation="h",
|
||||||
|
default_value=data.get("pitch", ""),
|
||||||
|
),
|
||||||
|
],
|
||||||
|
[
|
||||||
|
sg.Text(i18n("Index Rate")),
|
||||||
|
sg.Slider(
|
||||||
|
range=(0.0, 1.0),
|
||||||
|
key="index_rate",
|
||||||
|
resolution=0.01,
|
||||||
|
orientation="h",
|
||||||
|
default_value=data.get("index_rate", ""),
|
||||||
|
),
|
||||||
|
],
|
||||||
|
[
|
||||||
|
sg.Text(i18n("音高算法")),
|
||||||
|
sg.Radio("pm","f0method",key="pm",default=data.get("pm","")==True),
|
||||||
|
sg.Radio("harvest","f0method",key="harvest",default=data.get("harvest","")==True),
|
||||||
|
sg.Radio("crepe","f0method",key="crepe",default=data.get("crepe","")==True),
|
||||||
|
],
|
||||||
|
],
|
||||||
|
title=i18n("常规设置"),
|
||||||
|
),
|
||||||
|
sg.Frame(
|
||||||
|
layout=[
|
||||||
|
[
|
||||||
|
sg.Text(i18n("采样长度")),
|
||||||
|
sg.Slider(
|
||||||
|
range=(0.12, 2.4),
|
||||||
|
key="block_time",
|
||||||
|
resolution=0.03,
|
||||||
|
orientation="h",
|
||||||
|
default_value=data.get("block_time", ""),
|
||||||
|
),
|
||||||
|
],
|
||||||
|
[
|
||||||
|
sg.Text(i18n("harvest进程数")),
|
||||||
|
sg.Slider(
|
||||||
|
range=(1, n_cpu),
|
||||||
|
key="n_cpu",
|
||||||
|
resolution=1,
|
||||||
|
orientation="h",
|
||||||
|
default_value=data.get("n_cpu", min(self.config.n_cpu,n_cpu)),
|
||||||
|
),
|
||||||
|
],
|
||||||
|
[
|
||||||
|
sg.Text(i18n("淡入淡出长度")),
|
||||||
|
sg.Slider(
|
||||||
|
range=(0.01, 0.15),
|
||||||
|
key="crossfade_length",
|
||||||
|
resolution=0.01,
|
||||||
|
orientation="h",
|
||||||
|
default_value=data.get("crossfade_length", ""),
|
||||||
|
),
|
||||||
|
],
|
||||||
|
[
|
||||||
|
sg.Text(i18n("额外推理时长")),
|
||||||
|
sg.Slider(
|
||||||
|
range=(0.05, 3.00),
|
||||||
|
key="extra_time",
|
||||||
|
resolution=0.01,
|
||||||
|
orientation="h",
|
||||||
|
default_value=data.get("extra_time", ""),
|
||||||
|
),
|
||||||
|
],
|
||||||
|
[
|
||||||
|
sg.Checkbox(i18n("输入降噪"), key="I_noise_reduce"),
|
||||||
|
sg.Checkbox(i18n("输出降噪"), key="O_noise_reduce"),
|
||||||
|
],
|
||||||
|
],
|
||||||
|
title=i18n("性能设置"),
|
||||||
|
),
|
||||||
|
],
|
||||||
|
[
|
||||||
|
sg.Button(i18n("开始音频转换"), key="start_vc"),
|
||||||
|
sg.Button(i18n("停止音频转换"), key="stop_vc"),
|
||||||
|
sg.Text(i18n("推理时间(ms):")),
|
||||||
|
sg.Text("0", key="infer_time"),
|
||||||
|
],
|
||||||
|
]
|
||||||
|
self.window = sg.Window("RVC - GUI", layout=layout)
|
||||||
|
self.event_handler()
|
||||||
|
|
||||||
|
def event_handler(self):
|
||||||
|
while True:
|
||||||
|
event, values = self.window.read()
|
||||||
|
if event == sg.WINDOW_CLOSED:
|
||||||
|
self.flag_vc = False
|
||||||
|
exit()
|
||||||
|
if event == "start_vc" and self.flag_vc == False:
|
||||||
|
if self.set_values(values) == True:
|
||||||
|
print("using_cuda:" + str(torch.cuda.is_available()))
|
||||||
|
self.start_vc()
|
||||||
|
settings = {
|
||||||
|
"pth_path": values["pth_path"],
|
||||||
|
"index_path": values["index_path"],
|
||||||
|
"sg_input_device": values["sg_input_device"],
|
||||||
|
"sg_output_device": values["sg_output_device"],
|
||||||
|
"threhold": values["threhold"],
|
||||||
|
"pitch": values["pitch"],
|
||||||
|
"index_rate": values["index_rate"],
|
||||||
|
"block_time": values["block_time"],
|
||||||
|
"crossfade_length": values["crossfade_length"],
|
||||||
|
"extra_time": values["extra_time"],
|
||||||
|
"n_cpu": values["n_cpu"],
|
||||||
|
"f0method": ["pm","harvest","crepe"][[values["pm"],values["harvest"],values["crepe"]].index(True)],
|
||||||
|
}
|
||||||
|
with open("values1.json", "w") as j:
|
||||||
|
json.dump(settings, j)
|
||||||
|
if event == "stop_vc" and self.flag_vc == True:
|
||||||
|
self.flag_vc = False
|
||||||
|
|
||||||
|
def set_values(self, values):
|
||||||
|
if len(values["pth_path"].strip()) == 0:
|
||||||
|
sg.popup(i18n("请选择pth文件"))
|
||||||
|
return False
|
||||||
|
if len(values["index_path"].strip()) == 0:
|
||||||
|
sg.popup(i18n("请选择index文件"))
|
||||||
|
return False
|
||||||
|
pattern = re.compile("[^\x00-\x7F]+")
|
||||||
|
if pattern.findall(values["pth_path"]):
|
||||||
|
sg.popup(i18n("pth文件路径不可包含中文"))
|
||||||
|
return False
|
||||||
|
if pattern.findall(values["index_path"]):
|
||||||
|
sg.popup(i18n("index文件路径不可包含中文"))
|
||||||
|
return False
|
||||||
|
self.set_devices(values["sg_input_device"], values["sg_output_device"])
|
||||||
|
self.config.pth_path = values["pth_path"]
|
||||||
|
self.config.index_path = values["index_path"]
|
||||||
|
self.config.threhold = values["threhold"]
|
||||||
|
self.config.pitch = values["pitch"]
|
||||||
|
self.config.block_time = values["block_time"]
|
||||||
|
self.config.crossfade_time = values["crossfade_length"]
|
||||||
|
self.config.extra_time = values["extra_time"]
|
||||||
|
self.config.I_noise_reduce = values["I_noise_reduce"]
|
||||||
|
self.config.O_noise_reduce = values["O_noise_reduce"]
|
||||||
|
self.config.index_rate = values["index_rate"]
|
||||||
|
self.config.n_cpu = values["n_cpu"]
|
||||||
|
self.config.f0method = ["pm","harvest","crepe"][[values["pm"],values["harvest"],values["crepe"]].index(True)]
|
||||||
|
return True
|
||||||
|
|
||||||
|
def start_vc(self):
|
||||||
|
torch.cuda.empty_cache()
|
||||||
|
self.flag_vc = True
|
||||||
|
self.rvc = RVC(
|
||||||
|
self.config.pitch,
|
||||||
|
self.config.pth_path,
|
||||||
|
self.config.index_path,
|
||||||
|
self.config.index_rate,
|
||||||
|
self.config.n_cpu,inp_q,opt_q,device
|
||||||
|
)
|
||||||
|
self.config.samplerate=self.rvc.tgt_sr
|
||||||
|
self.config.crossfade_time=min(self.config.crossfade_time,self.config.block_time)
|
||||||
|
self.block_frame = int(self.config.block_time * self.config.samplerate)
|
||||||
|
self.crossfade_frame = int(self.config.crossfade_time * self.config.samplerate)
|
||||||
|
self.sola_search_frame = int(0.01 * self.config.samplerate)
|
||||||
|
self.extra_frame = int(self.config.extra_time * self.config.samplerate)
|
||||||
|
self.zc=self.rvc.tgt_sr//100
|
||||||
|
self.input_wav: np.ndarray = np.zeros(int(np.ceil((self.extra_frame+ self.crossfade_frame+ self.sola_search_frame+ self.block_frame)/self.zc)*self.zc),dtype="float32",)
|
||||||
|
self.output_wav_cache: torch.Tensor = torch.zeros(int(np.ceil((self.extra_frame+ self.crossfade_frame+ self.sola_search_frame+ self.block_frame)/self.zc)*self.zc), device=device,dtype=torch.float32)
|
||||||
|
self.pitch: np.ndarray = np.zeros(self.input_wav.shape[0]//self.zc,dtype="int32",)
|
||||||
|
self.pitchf: np.ndarray = np.zeros(self.input_wav.shape[0]//self.zc,dtype="float64",)
|
||||||
|
self.output_wav: torch.Tensor = torch.zeros(self.block_frame, device=device, dtype=torch.float32)
|
||||||
|
self.sola_buffer: torch.Tensor = torch.zeros(
|
||||||
|
self.crossfade_frame, device=device, dtype=torch.float32
|
||||||
|
)
|
||||||
|
self.fade_in_window: torch.Tensor = torch.linspace(
|
||||||
|
0.0, 1.0, steps=self.crossfade_frame, device=device, dtype=torch.float32
|
||||||
|
)
|
||||||
|
self.fade_out_window: torch.Tensor = 1 - self.fade_in_window
|
||||||
|
self.resampler = tat.Resample(
|
||||||
|
orig_freq=self.config.samplerate, new_freq=16000, dtype=torch.float32
|
||||||
|
)
|
||||||
|
thread_vc = threading.Thread(target=self.soundinput)
|
||||||
|
thread_vc.start()
|
||||||
|
|
||||||
|
def soundinput(self):
|
||||||
|
"""
|
||||||
|
接受音频输入
|
||||||
|
"""
|
||||||
|
with sd.Stream(
|
||||||
|
channels=2,
|
||||||
|
callback=self.audio_callback,
|
||||||
|
blocksize=self.block_frame,
|
||||||
|
samplerate=self.config.samplerate,
|
||||||
|
dtype="float32",
|
||||||
|
):
|
||||||
|
while self.flag_vc:
|
||||||
|
time.sleep(self.config.block_time)
|
||||||
|
print("Audio block passed.")
|
||||||
|
print("ENDing VC")
|
||||||
|
|
||||||
|
def audio_callback(
|
||||||
|
self, indata: np.ndarray, outdata: np.ndarray, frames, times, status
|
||||||
|
):
|
||||||
|
"""
|
||||||
|
音频处理
|
||||||
|
"""
|
||||||
|
start_time = time.perf_counter()
|
||||||
|
indata = librosa.to_mono(indata.T)
|
||||||
|
if self.config.I_noise_reduce:
|
||||||
|
indata[:] = nr.reduce_noise(y=indata, sr=self.config.samplerate)
|
||||||
|
"""noise gate"""
|
||||||
|
frame_length = 2048
|
||||||
|
hop_length = 1024
|
||||||
|
rms = librosa.feature.rms(
|
||||||
|
y=indata, frame_length=frame_length, hop_length=hop_length
|
||||||
|
)
|
||||||
|
if(self.config.threhold>-60):
|
||||||
|
db_threhold = librosa.amplitude_to_db(rms, ref=1.0)[0] < self.config.threhold
|
||||||
|
for i in range(db_threhold.shape[0]):
|
||||||
|
if db_threhold[i]:
|
||||||
|
indata[i * hop_length : (i + 1) * hop_length] = 0
|
||||||
|
self.input_wav[:] = np.append(self.input_wav[self.block_frame :], indata)
|
||||||
|
# infer
|
||||||
|
inp=torch.from_numpy(self.input_wav)
|
||||||
|
res1=self.resampler(inp)
|
||||||
|
rate1=self.block_frame/(self.extra_frame+ self.crossfade_frame+ self.sola_search_frame+ self.block_frame)
|
||||||
|
rate2=(self.crossfade_frame + self.sola_search_frame + self.block_frame)/(self.extra_frame+ self.crossfade_frame+ self.sola_search_frame+ self.block_frame)
|
||||||
|
res2=self.rvc.infer(res1,res1[-self.block_frame:].numpy(),rate1,rate2,self.pitch,self.pitchf,self.config.f0method)
|
||||||
|
self.output_wav_cache[-res2.shape[0]:]=res2
|
||||||
|
infer_wav = self.output_wav_cache[-self.crossfade_frame - self.sola_search_frame - self.block_frame :].to(device)
|
||||||
|
# SOLA algorithm from https://github.com/yxlllc/DDSP-SVC
|
||||||
|
cor_nom = F.conv1d(
|
||||||
|
infer_wav[None, None, : self.crossfade_frame + self.sola_search_frame],
|
||||||
|
self.sola_buffer[None, None, :],
|
||||||
|
)
|
||||||
|
cor_den = torch.sqrt(
|
||||||
|
F.conv1d(
|
||||||
|
infer_wav[None, None, : self.crossfade_frame + self.sola_search_frame]
|
||||||
|
** 2,
|
||||||
|
torch.ones(1, 1, self.crossfade_frame, device=device),
|
||||||
|
)
|
||||||
|
+ 1e-8
|
||||||
|
)
|
||||||
|
sola_offset = torch.argmax(cor_nom[0, 0] / cor_den[0, 0])
|
||||||
|
print("sola offset: " + str(int(sola_offset)))
|
||||||
|
self.output_wav[:] = infer_wav[sola_offset : sola_offset + self.block_frame]
|
||||||
|
self.output_wav[: self.crossfade_frame] *= self.fade_in_window
|
||||||
|
self.output_wav[: self.crossfade_frame] += self.sola_buffer[:]
|
||||||
|
# crossfade
|
||||||
|
if sola_offset < self.sola_search_frame:
|
||||||
|
self.sola_buffer[:] = (
|
||||||
|
infer_wav[
|
||||||
|
-self.sola_search_frame
|
||||||
|
- self.crossfade_frame
|
||||||
|
+ sola_offset : -self.sola_search_frame
|
||||||
|
+ sola_offset
|
||||||
|
]
|
||||||
|
* self.fade_out_window
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
self.sola_buffer[:] = (
|
||||||
|
infer_wav[-self.crossfade_frame :] * self.fade_out_window
|
||||||
|
)
|
||||||
|
if self.config.O_noise_reduce:
|
||||||
|
outdata[:] = np.tile(
|
||||||
|
nr.reduce_noise(
|
||||||
|
y=self.output_wav[:].cpu().numpy(), sr=self.config.samplerate
|
||||||
|
),
|
||||||
|
(2, 1),
|
||||||
|
).T
|
||||||
|
else:
|
||||||
|
outdata[:] = self.output_wav[:].repeat(2, 1).t().cpu().numpy()
|
||||||
|
total_time = time.perf_counter() - start_time
|
||||||
|
self.window["infer_time"].update(int(total_time * 1000))
|
||||||
|
print("infer time:" + str(total_time))
|
||||||
|
|
||||||
|
def get_devices(self, update: bool = True):
|
||||||
|
"""获取设备列表"""
|
||||||
|
if update:
|
||||||
|
sd._terminate()
|
||||||
|
sd._initialize()
|
||||||
|
devices = sd.query_devices()
|
||||||
|
hostapis = sd.query_hostapis()
|
||||||
|
for hostapi in hostapis:
|
||||||
|
for device_idx in hostapi["devices"]:
|
||||||
|
devices[device_idx]["hostapi_name"] = hostapi["name"]
|
||||||
|
input_devices = [
|
||||||
|
f"{d['name']} ({d['hostapi_name']})"
|
||||||
|
for d in devices
|
||||||
|
if d["max_input_channels"] > 0
|
||||||
|
]
|
||||||
|
output_devices = [
|
||||||
|
f"{d['name']} ({d['hostapi_name']})"
|
||||||
|
for d in devices
|
||||||
|
if d["max_output_channels"] > 0
|
||||||
|
]
|
||||||
|
input_devices_indices = [
|
||||||
|
d["index"] if "index" in d else d["name"]
|
||||||
|
for d in devices
|
||||||
|
if d["max_input_channels"] > 0
|
||||||
|
]
|
||||||
|
output_devices_indices = [
|
||||||
|
d["index"] if "index" in d else d["name"]
|
||||||
|
for d in devices
|
||||||
|
if d["max_output_channels"] > 0
|
||||||
|
]
|
||||||
|
return (
|
||||||
|
input_devices,
|
||||||
|
output_devices,
|
||||||
|
input_devices_indices,
|
||||||
|
output_devices_indices,
|
||||||
|
)
|
||||||
|
|
||||||
|
def set_devices(self, input_device, output_device):
|
||||||
|
"""设置输出设备"""
|
||||||
|
(
|
||||||
|
input_devices,
|
||||||
|
output_devices,
|
||||||
|
input_device_indices,
|
||||||
|
output_device_indices,
|
||||||
|
) = self.get_devices()
|
||||||
|
sd.default.device[0] = input_device_indices[input_devices.index(input_device)]
|
||||||
|
sd.default.device[1] = output_device_indices[
|
||||||
|
output_devices.index(output_device)
|
||||||
|
]
|
||||||
|
print("input device:" + str(sd.default.device[0]) + ":" + str(input_device))
|
||||||
|
print("output device:" + str(sd.default.device[1]) + ":" + str(output_device))
|
||||||
|
|
||||||
|
|
||||||
|
gui = GUI()
|
257
rvc_for_realtime.py
Normal file
257
rvc_for_realtime.py
Normal file
@ -0,0 +1,257 @@
|
|||||||
|
import faiss,torch,traceback,parselmouth,numpy as np,torchcrepe,torch.nn as nn,pyworld
|
||||||
|
from fairseq import checkpoint_utils
|
||||||
|
from lib.infer_pack.models import (
|
||||||
|
SynthesizerTrnMs256NSFsid,
|
||||||
|
SynthesizerTrnMs256NSFsid_nono,
|
||||||
|
SynthesizerTrnMs768NSFsid,
|
||||||
|
SynthesizerTrnMs768NSFsid_nono,
|
||||||
|
)
|
||||||
|
import os,sys
|
||||||
|
from time import time as ttime
|
||||||
|
import torch.nn.functional as F
|
||||||
|
import scipy.signal as signal
|
||||||
|
now_dir = os.getcwd()
|
||||||
|
sys.path.append(now_dir)
|
||||||
|
from config import Config
|
||||||
|
from multiprocessing import Manager as M
|
||||||
|
mm = M()
|
||||||
|
config = Config()
|
||||||
|
|
||||||
|
class RVC:
|
||||||
|
def __init__(
|
||||||
|
self, key, pth_path, index_path, index_rate, n_cpu,inp_q,opt_q,device
|
||||||
|
) -> None:
|
||||||
|
"""
|
||||||
|
初始化
|
||||||
|
"""
|
||||||
|
try:
|
||||||
|
global config
|
||||||
|
self.inp_q=inp_q
|
||||||
|
self.opt_q=opt_q
|
||||||
|
self.device=device
|
||||||
|
self.f0_up_key = key
|
||||||
|
self.time_step = 160 / 16000 * 1000
|
||||||
|
self.f0_min = 50
|
||||||
|
self.f0_max = 1100
|
||||||
|
self.f0_mel_min = 1127 * np.log(1 + self.f0_min / 700)
|
||||||
|
self.f0_mel_max = 1127 * np.log(1 + self.f0_max / 700)
|
||||||
|
self.sr = 16000
|
||||||
|
self.window = 160
|
||||||
|
self.n_cpu = n_cpu
|
||||||
|
if index_rate != 0:
|
||||||
|
self.index = faiss.read_index(index_path)
|
||||||
|
self.big_npy = self.index.reconstruct_n(0, self.index.ntotal)
|
||||||
|
print("index search enabled")
|
||||||
|
self.index_rate = index_rate
|
||||||
|
models, _, _ = checkpoint_utils.load_model_ensemble_and_task(
|
||||||
|
["hubert_base.pt"],
|
||||||
|
suffix="",
|
||||||
|
)
|
||||||
|
hubert_model = models[0]
|
||||||
|
hubert_model = hubert_model.to(config.device)
|
||||||
|
if config.is_half:
|
||||||
|
hubert_model = hubert_model.half()
|
||||||
|
else:
|
||||||
|
hubert_model = hubert_model.float()
|
||||||
|
hubert_model.eval()
|
||||||
|
self.model = hubert_model
|
||||||
|
cpt = torch.load(pth_path, map_location="cpu")
|
||||||
|
self.tgt_sr = cpt["config"][-1]
|
||||||
|
cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0]
|
||||||
|
self.if_f0 = cpt.get("f0", 1)
|
||||||
|
self.version = cpt.get("version", "v1")
|
||||||
|
if self.version == "v1":
|
||||||
|
if self.if_f0 == 1:
|
||||||
|
self.net_g = SynthesizerTrnMs256NSFsid(
|
||||||
|
*cpt["config"], is_half=config.is_half
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
self.net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
|
||||||
|
elif self.version == "v2":
|
||||||
|
if self.if_f0 == 1:
|
||||||
|
self.net_g = SynthesizerTrnMs768NSFsid(
|
||||||
|
*cpt["config"], is_half=config.is_half
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
self.net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"])
|
||||||
|
del self.net_g.enc_q
|
||||||
|
print(self.net_g.load_state_dict(cpt["weight"], strict=False))
|
||||||
|
self.net_g.eval().to(device)
|
||||||
|
if config.is_half:
|
||||||
|
self.net_g = self.net_g.half()
|
||||||
|
else:
|
||||||
|
self.net_g = self.net_g.float()
|
||||||
|
except:
|
||||||
|
print(traceback.format_exc())
|
||||||
|
|
||||||
|
def get_f0_post(self, f0):
|
||||||
|
f0_min = self.f0_min
|
||||||
|
f0_max = self.f0_max
|
||||||
|
f0_mel_min = 1127 * np.log(1 + f0_min / 700)
|
||||||
|
f0_mel_max = 1127 * np.log(1 + f0_max / 700)
|
||||||
|
f0bak = f0.copy()
|
||||||
|
f0_mel = 1127 * np.log(1 + f0 / 700)
|
||||||
|
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / (
|
||||||
|
f0_mel_max - f0_mel_min
|
||||||
|
) + 1
|
||||||
|
f0_mel[f0_mel <= 1] = 1
|
||||||
|
f0_mel[f0_mel > 255] = 255
|
||||||
|
f0_coarse = np.rint(f0_mel).astype(np.int)
|
||||||
|
return f0_coarse, f0bak
|
||||||
|
|
||||||
|
def get_f0(self, x, f0_up_key, n_cpu, method="harvest"):
|
||||||
|
n_cpu = int(n_cpu)
|
||||||
|
if (method == "crepe"): return self.get_f0_crepe(x, f0_up_key)
|
||||||
|
if (method == "pm"):
|
||||||
|
p_len = x.shape[0] // 160
|
||||||
|
f0 = (
|
||||||
|
parselmouth.Sound(x, 16000)
|
||||||
|
.to_pitch_ac(
|
||||||
|
time_step=0.01,
|
||||||
|
voicing_threshold=0.6,
|
||||||
|
pitch_floor=50,
|
||||||
|
pitch_ceiling=1100,
|
||||||
|
)
|
||||||
|
.selected_array["frequency"]
|
||||||
|
)
|
||||||
|
|
||||||
|
pad_size = (p_len - len(f0) + 1) // 2
|
||||||
|
if pad_size > 0 or p_len - len(f0) - pad_size > 0:
|
||||||
|
print(pad_size, p_len - len(f0) - pad_size)
|
||||||
|
f0 = np.pad(f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant")
|
||||||
|
|
||||||
|
f0 *= pow(2, f0_up_key / 12)
|
||||||
|
return self.get_f0_post(f0)
|
||||||
|
if (n_cpu == 1):
|
||||||
|
f0, t = pyworld.harvest(
|
||||||
|
x.astype(np.double),
|
||||||
|
fs=16000,
|
||||||
|
f0_ceil=1100,
|
||||||
|
f0_floor=50,
|
||||||
|
frame_period=10,
|
||||||
|
)
|
||||||
|
f0 = signal.medfilt(f0, 3)
|
||||||
|
f0 *= pow(2, f0_up_key / 12)
|
||||||
|
return self.get_f0_post(f0)
|
||||||
|
f0bak = np.zeros(x.shape[0] // 160, dtype=np.float64)
|
||||||
|
length = len(x)
|
||||||
|
part_length = int(length / n_cpu / 160) * 160
|
||||||
|
ts = ttime()
|
||||||
|
res_f0 = mm.dict()
|
||||||
|
for idx in range(n_cpu):
|
||||||
|
tail = part_length * (idx + 1) + 320
|
||||||
|
if (idx == 0):
|
||||||
|
self.inp_q.put((idx, x[:tail], res_f0, n_cpu, ts))
|
||||||
|
else:
|
||||||
|
self.inp_q.put((idx, x[part_length * idx - 320:tail], res_f0, n_cpu, ts))
|
||||||
|
while (1):
|
||||||
|
res_ts = self.opt_q.get()
|
||||||
|
if (res_ts == ts):
|
||||||
|
break
|
||||||
|
f0s = [i[1] for i in sorted(res_f0.items(), key=lambda x: x[0])]
|
||||||
|
for idx, f0 in enumerate(f0s):
|
||||||
|
if (idx == 0):
|
||||||
|
f0 = f0[:-3]
|
||||||
|
elif (idx != n_cpu - 1):
|
||||||
|
f0 = f0[2:-3]
|
||||||
|
else:
|
||||||
|
f0 = f0[2:-1]
|
||||||
|
f0bak[part_length * idx // 160:part_length * idx // 160 + f0.shape[0]] = f0
|
||||||
|
f0bak = signal.medfilt(f0bak, 3)
|
||||||
|
f0bak *= pow(2, f0_up_key / 12)
|
||||||
|
return self.get_f0_post(f0bak)
|
||||||
|
|
||||||
|
def get_f0_crepe(self, x, f0_up_key):
|
||||||
|
audio = torch.tensor(np.copy(x))[None].float()
|
||||||
|
f0, pd = torchcrepe.predict(
|
||||||
|
audio,
|
||||||
|
self.sr,
|
||||||
|
160,
|
||||||
|
self.f0_min,
|
||||||
|
self.f0_max,
|
||||||
|
"full",
|
||||||
|
batch_size=512,
|
||||||
|
device=self.device,
|
||||||
|
return_periodicity=True,
|
||||||
|
)
|
||||||
|
pd = torchcrepe.filter.median(pd, 3)
|
||||||
|
f0 = torchcrepe.filter.mean(f0, 3)
|
||||||
|
f0[pd < 0.1] = 0
|
||||||
|
f0 = f0[0].cpu().numpy()
|
||||||
|
f0 *= pow(2, f0_up_key / 12)
|
||||||
|
return self.get_f0_post(f0)
|
||||||
|
|
||||||
|
def infer(self, feats: torch.Tensor, indata: np.ndarray, rate1, rate2, cache_pitch, cache_pitchf, f0method) -> np.ndarray:
|
||||||
|
feats = feats.view(1, -1)
|
||||||
|
if config.is_half:
|
||||||
|
feats = feats.half()
|
||||||
|
else:
|
||||||
|
feats = feats.float()
|
||||||
|
feats = feats.to(self.device)
|
||||||
|
t1 = ttime()
|
||||||
|
with torch.no_grad():
|
||||||
|
padding_mask = torch.BoolTensor(feats.shape).to(self.device).fill_(False)
|
||||||
|
inputs = {
|
||||||
|
"source": feats,
|
||||||
|
"padding_mask": padding_mask,
|
||||||
|
"output_layer": 9 if self.version == "v1" else 12,
|
||||||
|
}
|
||||||
|
logits = self.model.extract_features(**inputs)
|
||||||
|
feats = self.model.final_proj(logits[0]) if self.version == "v1" else logits[0]
|
||||||
|
t2 = ttime()
|
||||||
|
try:
|
||||||
|
if (
|
||||||
|
hasattr(self, "index")
|
||||||
|
and self.index_rate != 0
|
||||||
|
):
|
||||||
|
leng_replace_head = int(rate1 * feats[0].shape[0])
|
||||||
|
npy = feats[0][-leng_replace_head:].cpu().numpy().astype("float32")
|
||||||
|
score, ix = self.index.search(npy, k=8)
|
||||||
|
weight = np.square(1 / score)
|
||||||
|
weight /= weight.sum(axis=1, keepdims=True)
|
||||||
|
npy = np.sum(self.big_npy[ix] * np.expand_dims(weight, axis=2), axis=1)
|
||||||
|
if config.is_half:
|
||||||
|
npy = npy.astype("float16")
|
||||||
|
feats[0][-leng_replace_head:] = (
|
||||||
|
torch.from_numpy(npy).unsqueeze(0).to(self.device) * self.index_rate
|
||||||
|
+ (1 - self.index_rate) * feats[0][-leng_replace_head:]
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
print("index search FAIL or disabled")
|
||||||
|
except:
|
||||||
|
traceback.print_exc()
|
||||||
|
print("index search FAIL")
|
||||||
|
feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1)
|
||||||
|
t3 = ttime()
|
||||||
|
if self.if_f0 == 1:
|
||||||
|
pitch, pitchf = self.get_f0(indata, self.f0_up_key, self.n_cpu, f0method)
|
||||||
|
cache_pitch[:] = np.append(cache_pitch[pitch[:-1].shape[0]:], pitch[:-1])
|
||||||
|
cache_pitchf[:] = np.append(cache_pitchf[pitchf[:-1].shape[0]:], pitchf[:-1])
|
||||||
|
p_len = min(feats.shape[1], 13000, cache_pitch.shape[0])
|
||||||
|
else:
|
||||||
|
cache_pitch, cache_pitchf = None, None
|
||||||
|
p_len = min(feats.shape[1], 13000)
|
||||||
|
t4 = ttime()
|
||||||
|
feats = feats[:, :p_len, :]
|
||||||
|
if self.if_f0 == 1:
|
||||||
|
cache_pitch = cache_pitch[:p_len]
|
||||||
|
cache_pitchf = cache_pitchf[:p_len]
|
||||||
|
cache_pitch = torch.LongTensor(cache_pitch).unsqueeze(0).to(self.device)
|
||||||
|
cache_pitchf = torch.FloatTensor(cache_pitchf).unsqueeze(0).to(self.device)
|
||||||
|
p_len = torch.LongTensor([p_len]).to(self.device)
|
||||||
|
ii = 0 # sid
|
||||||
|
sid = torch.LongTensor([ii]).to(self.device)
|
||||||
|
with torch.no_grad():
|
||||||
|
if self.if_f0 == 1:
|
||||||
|
infered_audio = (
|
||||||
|
self.net_g.infer(feats, p_len, cache_pitch, cache_pitchf, sid, rate2)[0][0, 0]
|
||||||
|
.data.cpu()
|
||||||
|
.float()
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
infered_audio = (
|
||||||
|
self.net_g.infer(feats, p_len, sid, rate2)[0][0, 0].data.cpu().float()
|
||||||
|
)
|
||||||
|
t5 = ttime()
|
||||||
|
print("time->fea-index-f0-model:", t2 - t1, t3 - t2, t4 - t3, t5 - t4)
|
||||||
|
return infered_audio
|
Loading…
Reference in New Issue
Block a user