Add directML support to RVC for AMD & Intel GPU supported (#707)
This commit is contained in:
parent
3dbba6ae74
commit
211e13b80a
186
environment_dml.yaml
Normal file
186
environment_dml.yaml
Normal file
@ -0,0 +1,186 @@
|
||||
name: pydml
|
||||
channels:
|
||||
- pytorch
|
||||
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
|
||||
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
|
||||
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
|
||||
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/
|
||||
- defaults
|
||||
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/fastai/
|
||||
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
|
||||
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/bioconda/
|
||||
dependencies:
|
||||
- abseil-cpp=20211102.0=hd77b12b_0
|
||||
- absl-py=1.3.0=py310haa95532_0
|
||||
- aiohttp=3.8.3=py310h2bbff1b_0
|
||||
- aiosignal=1.2.0=pyhd3eb1b0_0
|
||||
- async-timeout=4.0.2=py310haa95532_0
|
||||
- attrs=22.1.0=py310haa95532_0
|
||||
- blas=1.0=mkl
|
||||
- blinker=1.4=py310haa95532_0
|
||||
- bottleneck=1.3.5=py310h9128911_0
|
||||
- brotli=1.0.9=h2bbff1b_7
|
||||
- brotli-bin=1.0.9=h2bbff1b_7
|
||||
- brotlipy=0.7.0=py310h2bbff1b_1002
|
||||
- bzip2=1.0.8=he774522_0
|
||||
- c-ares=1.19.0=h2bbff1b_0
|
||||
- ca-certificates=2023.05.30=haa95532_0
|
||||
- cachetools=4.2.2=pyhd3eb1b0_0
|
||||
- certifi=2023.5.7=py310haa95532_0
|
||||
- cffi=1.15.1=py310h2bbff1b_3
|
||||
- charset-normalizer=2.0.4=pyhd3eb1b0_0
|
||||
- click=8.0.4=py310haa95532_0
|
||||
- colorama=0.4.6=py310haa95532_0
|
||||
- contourpy=1.0.5=py310h59b6b97_0
|
||||
- cryptography=39.0.1=py310h21b164f_0
|
||||
- cycler=0.11.0=pyhd3eb1b0_0
|
||||
- fonttools=4.25.0=pyhd3eb1b0_0
|
||||
- freetype=2.12.1=ha860e81_0
|
||||
- frozenlist=1.3.3=py310h2bbff1b_0
|
||||
- giflib=5.2.1=h8cc25b3_3
|
||||
- glib=2.69.1=h5dc1a3c_2
|
||||
- google-auth=2.6.0=pyhd3eb1b0_0
|
||||
- google-auth-oauthlib=0.4.4=pyhd3eb1b0_0
|
||||
- grpc-cpp=1.48.2=hf108199_0
|
||||
- grpcio=1.48.2=py310hf108199_0
|
||||
- gst-plugins-base=1.18.5=h9e645db_0
|
||||
- gstreamer=1.18.5=hd78058f_0
|
||||
- icu=58.2=ha925a31_3
|
||||
- idna=3.4=py310haa95532_0
|
||||
- intel-openmp=2023.1.0=h59b6b97_46319
|
||||
- jpeg=9e=h2bbff1b_1
|
||||
- kiwisolver=1.4.4=py310hd77b12b_0
|
||||
- krb5=1.19.4=h5b6d351_0
|
||||
- lerc=3.0=hd77b12b_0
|
||||
- libbrotlicommon=1.0.9=h2bbff1b_7
|
||||
- libbrotlidec=1.0.9=h2bbff1b_7
|
||||
- libbrotlienc=1.0.9=h2bbff1b_7
|
||||
- libclang=14.0.6=default_hb5a9fac_1
|
||||
- libclang13=14.0.6=default_h8e68704_1
|
||||
- libdeflate=1.17=h2bbff1b_0
|
||||
- libffi=3.4.4=hd77b12b_0
|
||||
- libiconv=1.16=h2bbff1b_2
|
||||
- libogg=1.3.5=h2bbff1b_1
|
||||
- libpng=1.6.39=h8cc25b3_0
|
||||
- libprotobuf=3.20.3=h23ce68f_0
|
||||
- libtiff=4.5.0=h6c2663c_2
|
||||
- libuv=1.44.2=h2bbff1b_0
|
||||
- libvorbis=1.3.7=he774522_0
|
||||
- libwebp=1.2.4=hbc33d0d_1
|
||||
- libwebp-base=1.2.4=h2bbff1b_1
|
||||
- libxml2=2.10.3=h0ad7f3c_0
|
||||
- libxslt=1.1.37=h2bbff1b_0
|
||||
- lz4-c=1.9.4=h2bbff1b_0
|
||||
- markdown=3.4.1=py310haa95532_0
|
||||
- markupsafe=2.1.1=py310h2bbff1b_0
|
||||
- matplotlib=3.7.1=py310haa95532_1
|
||||
- matplotlib-base=3.7.1=py310h4ed8f06_1
|
||||
- mkl=2023.1.0=h8bd8f75_46356
|
||||
- mkl-service=2.4.0=py310h2bbff1b_1
|
||||
- mkl_fft=1.3.6=py310h4ed8f06_1
|
||||
- mkl_random=1.2.2=py310h4ed8f06_1
|
||||
- multidict=6.0.2=py310h2bbff1b_0
|
||||
- munkres=1.1.4=py_0
|
||||
- numexpr=2.8.4=py310h2cd9be0_1
|
||||
- numpy=1.24.3=py310h055cbcc_1
|
||||
- numpy-base=1.24.3=py310h65a83cf_1
|
||||
- oauthlib=3.2.2=py310haa95532_0
|
||||
- openssl=1.1.1t=h2bbff1b_0
|
||||
- packaging=23.0=py310haa95532_0
|
||||
- pandas=1.5.3=py310h4ed8f06_0
|
||||
- pcre=8.45=hd77b12b_0
|
||||
- pillow=9.4.0=py310hd77b12b_0
|
||||
- pip=23.0.1=py310haa95532_0
|
||||
- ply=3.11=py310haa95532_0
|
||||
- protobuf=3.20.3=py310hd77b12b_0
|
||||
- pyasn1=0.4.8=pyhd3eb1b0_0
|
||||
- pyasn1-modules=0.2.8=py_0
|
||||
- pycparser=2.21=pyhd3eb1b0_0
|
||||
- pyjwt=2.4.0=py310haa95532_0
|
||||
- pyopenssl=23.0.0=py310haa95532_0
|
||||
- pyparsing=3.0.9=py310haa95532_0
|
||||
- pyqt=5.15.7=py310hd77b12b_0
|
||||
- pyqt5-sip=12.11.0=py310hd77b12b_0
|
||||
- pysocks=1.7.1=py310haa95532_0
|
||||
- python=3.10.11=h966fe2a_2
|
||||
- python-dateutil=2.8.2=pyhd3eb1b0_0
|
||||
- pytorch-mutex=1.0=cpu
|
||||
- pytz=2022.7=py310haa95532_0
|
||||
- pyyaml=6.0=py310h2bbff1b_1
|
||||
- qt-main=5.15.2=he8e5bd7_8
|
||||
- qt-webengine=5.15.9=hb9a9bb5_5
|
||||
- qtwebkit=5.212=h2bbfb41_5
|
||||
- re2=2022.04.01=hd77b12b_0
|
||||
- requests=2.29.0=py310haa95532_0
|
||||
- requests-oauthlib=1.3.0=py_0
|
||||
- rsa=4.7.2=pyhd3eb1b0_1
|
||||
- setuptools=67.8.0=py310haa95532_0
|
||||
- sip=6.6.2=py310hd77b12b_0
|
||||
- six=1.16.0=pyhd3eb1b0_1
|
||||
- sqlite=3.41.2=h2bbff1b_0
|
||||
- tbb=2021.8.0=h59b6b97_0
|
||||
- tensorboard=2.10.0=py310haa95532_0
|
||||
- tensorboard-data-server=0.6.1=py310haa95532_0
|
||||
- tensorboard-plugin-wit=1.8.1=py310haa95532_0
|
||||
- tk=8.6.12=h2bbff1b_0
|
||||
- toml=0.10.2=pyhd3eb1b0_0
|
||||
- tornado=6.2=py310h2bbff1b_0
|
||||
- tqdm=4.65.0=py310h9909e9c_0
|
||||
- typing_extensions=4.5.0=py310haa95532_0
|
||||
- tzdata=2023c=h04d1e81_0
|
||||
- urllib3=1.26.16=py310haa95532_0
|
||||
- vc=14.2=h21ff451_1
|
||||
- vs2015_runtime=14.27.29016=h5e58377_2
|
||||
- werkzeug=2.2.3=py310haa95532_0
|
||||
- wheel=0.38.4=py310haa95532_0
|
||||
- win_inet_pton=1.1.0=py310haa95532_0
|
||||
- xz=5.4.2=h8cc25b3_0
|
||||
- yaml=0.2.5=he774522_0
|
||||
- yarl=1.8.1=py310h2bbff1b_0
|
||||
- zlib=1.2.13=h8cc25b3_0
|
||||
- zstd=1.5.5=hd43e919_0
|
||||
- pip:
|
||||
- antlr4-python3-runtime==4.8
|
||||
- appdirs==1.4.4
|
||||
- audioread==3.0.0
|
||||
- bitarray==2.7.4
|
||||
- cython==0.29.35
|
||||
- decorator==5.1.1
|
||||
- fairseq==0.12.2
|
||||
- faiss-cpu==1.7.4
|
||||
- filelock==3.12.0
|
||||
- hydra-core==1.0.7
|
||||
- jinja2==3.1.2
|
||||
- joblib==1.2.0
|
||||
- lazy-loader==0.2
|
||||
- librosa==0.10.0.post2
|
||||
- llvmlite==0.40.0
|
||||
- lxml==4.9.2
|
||||
- mpmath==1.3.0
|
||||
- msgpack==1.0.5
|
||||
- networkx==3.1
|
||||
- noisereduce==2.0.1
|
||||
- numba==0.57.0
|
||||
- omegaconf==2.0.6
|
||||
- opencv-python==4.7.0.72
|
||||
- pooch==1.6.0
|
||||
- portalocker==2.7.0
|
||||
- pysimplegui==4.60.5
|
||||
- pywin32==306
|
||||
- pyworld==0.3.3
|
||||
- regex==2023.5.5
|
||||
- sacrebleu==2.3.1
|
||||
- scikit-learn==1.2.2
|
||||
- scipy==1.10.1
|
||||
- sounddevice==0.4.6
|
||||
- soundfile==0.12.1
|
||||
- soxr==0.3.5
|
||||
- sympy==1.12
|
||||
- tabulate==0.9.0
|
||||
- threadpoolctl==3.1.0
|
||||
- torch==2.0.0
|
||||
- torch-directml==0.2.0.dev230426
|
||||
- torchaudio==2.0.1
|
||||
- torchvision==0.15.1
|
||||
- wget==3.2
|
||||
prefix: D:\ProgramData\anaconda3_\envs\pydml
|
710
guidml.py
Normal file
710
guidml.py
Normal file
@ -0,0 +1,710 @@
|
||||
"""
|
||||
0416后的更新:
|
||||
引入config中half
|
||||
重建npy而不用填写
|
||||
v2支持
|
||||
无f0模型支持
|
||||
修复
|
||||
|
||||
int16:
|
||||
增加无索引支持
|
||||
f0算法改harvest(怎么看就只有这个会影响CPU占用),但是不这么改效果不好
|
||||
"""
|
||||
import os, sys, traceback, re
|
||||
|
||||
import json
|
||||
|
||||
now_dir = os.getcwd()
|
||||
sys.path.append(now_dir)
|
||||
from config import Config
|
||||
|
||||
Config = Config()
|
||||
|
||||
import torch_directml
|
||||
import PySimpleGUI as sg
|
||||
import sounddevice as sd
|
||||
import noisereduce as nr
|
||||
import numpy as np
|
||||
from fairseq import checkpoint_utils
|
||||
import librosa, torch, pyworld, faiss, time, threading
|
||||
import torch.nn.functional as F
|
||||
import torchaudio.transforms as tat
|
||||
import scipy.signal as signal
|
||||
|
||||
|
||||
# import matplotlib.pyplot as plt
|
||||
from lib.infer_pack.models import (
|
||||
SynthesizerTrnMs256NSFsid,
|
||||
SynthesizerTrnMs256NSFsid_nono,
|
||||
SynthesizerTrnMs768NSFsid,
|
||||
SynthesizerTrnMs768NSFsid_nono,
|
||||
)
|
||||
from i18n import I18nAuto
|
||||
|
||||
i18n = I18nAuto()
|
||||
device = torch_directml.device(torch_directml.default_device())
|
||||
current_dir = os.getcwd()
|
||||
|
||||
|
||||
class RVC:
|
||||
def __init__(
|
||||
self, key, hubert_path, pth_path, index_path, npy_path, index_rate
|
||||
) -> None:
|
||||
"""
|
||||
初始化
|
||||
"""
|
||||
try:
|
||||
self.f0_up_key = key
|
||||
self.time_step = 160 / 16000 * 1000
|
||||
self.f0_min = 50
|
||||
self.f0_max = 1100
|
||||
self.f0_mel_min = 1127 * np.log(1 + self.f0_min / 700)
|
||||
self.f0_mel_max = 1127 * np.log(1 + self.f0_max / 700)
|
||||
self.sr = 16000
|
||||
self.window = 160
|
||||
if index_rate != 0:
|
||||
self.index = faiss.read_index(index_path)
|
||||
# self.big_npy = np.load(npy_path)
|
||||
self.big_npy = self.index.reconstruct_n(0, self.index.ntotal)
|
||||
print("index search enabled")
|
||||
self.index_rate = index_rate
|
||||
model_path = hubert_path
|
||||
print("load model(s) from {}".format(model_path))
|
||||
models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task(
|
||||
[model_path],
|
||||
suffix="",
|
||||
)
|
||||
self.model = models[0]
|
||||
self.model = self.model.to(device)
|
||||
if Config.is_half:
|
||||
self.model = self.model.half()
|
||||
else:
|
||||
self.model = self.model.float()
|
||||
self.model.eval()
|
||||
cpt = torch.load(pth_path, map_location="cpu")
|
||||
self.tgt_sr = cpt["config"][-1]
|
||||
cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] # n_spk
|
||||
self.if_f0 = cpt.get("f0", 1)
|
||||
self.version = cpt.get("version", "v1")
|
||||
if self.version == "v1":
|
||||
if self.if_f0 == 1:
|
||||
self.net_g = SynthesizerTrnMs256NSFsid(
|
||||
*cpt["config"], is_half=Config.is_half
|
||||
)
|
||||
else:
|
||||
self.net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
|
||||
elif self.version == "v2":
|
||||
if self.if_f0 == 1:
|
||||
self.net_g = SynthesizerTrnMs768NSFsid(
|
||||
*cpt["config"], is_half=Config.is_half
|
||||
)
|
||||
else:
|
||||
self.net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"])
|
||||
del self.net_g.enc_q
|
||||
print(self.net_g.load_state_dict(cpt["weight"], strict=False))
|
||||
self.net_g.eval().to(device)
|
||||
if Config.is_half:
|
||||
self.net_g = self.net_g.half()
|
||||
else:
|
||||
self.net_g = self.net_g.float()
|
||||
except:
|
||||
print(traceback.format_exc())
|
||||
|
||||
def get_f0(self, x, f0_up_key, inp_f0=None):
|
||||
x_pad = 1
|
||||
f0_min = 50
|
||||
f0_max = 1100
|
||||
f0_mel_min = 1127 * np.log(1 + f0_min / 700)
|
||||
f0_mel_max = 1127 * np.log(1 + f0_max / 700)
|
||||
f0, t = pyworld.harvest(
|
||||
x.astype(np.double),
|
||||
fs=self.sr,
|
||||
f0_ceil=f0_max,
|
||||
f0_floor=f0_min,
|
||||
frame_period=10,
|
||||
)
|
||||
f0 = pyworld.stonemask(x.astype(np.double), f0, t, self.sr)
|
||||
f0 = signal.medfilt(f0, 3)
|
||||
f0 *= pow(2, f0_up_key / 12)
|
||||
# with open("test.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
|
||||
tf0 = self.sr // self.window # 每秒f0点数
|
||||
if inp_f0 is not None:
|
||||
delta_t = np.round(
|
||||
(inp_f0[:, 0].max() - inp_f0[:, 0].min()) * tf0 + 1
|
||||
).astype("int16")
|
||||
replace_f0 = np.interp(
|
||||
list(range(delta_t)), inp_f0[:, 0] * 100, inp_f0[:, 1]
|
||||
)
|
||||
shape = f0[x_pad * tf0 : x_pad * tf0 + len(replace_f0)].shape[0]
|
||||
f0[x_pad * tf0 : x_pad * tf0 + len(replace_f0)] = replace_f0[:shape]
|
||||
# with open("test_opt.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
|
||||
f0bak = f0.copy()
|
||||
f0_mel = 1127 * np.log(1 + f0 / 700)
|
||||
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / (
|
||||
f0_mel_max - f0_mel_min
|
||||
) + 1
|
||||
f0_mel[f0_mel <= 1] = 1
|
||||
f0_mel[f0_mel > 255] = 255
|
||||
f0_coarse = np.rint(f0_mel).astype(np.int)
|
||||
return f0_coarse, f0bak # 1-0
|
||||
|
||||
def infer(self, feats: torch.Tensor) -> np.ndarray:
|
||||
"""
|
||||
推理函数
|
||||
"""
|
||||
audio = feats.clone().cpu().numpy()
|
||||
assert feats.dim() == 1, feats.dim()
|
||||
feats = feats.view(1, -1)
|
||||
padding_mask = torch.BoolTensor(feats.shape).fill_(False)
|
||||
if Config.is_half:
|
||||
feats = feats.half()
|
||||
else:
|
||||
feats = feats.float()
|
||||
inputs = {
|
||||
"source": feats.to(device),
|
||||
"padding_mask": padding_mask.to(device),
|
||||
"output_layer": 9 if self.version == "v1" else 12,
|
||||
}
|
||||
torch.cuda.synchronize()
|
||||
with torch.no_grad():
|
||||
logits = self.model.extract_features(**inputs)
|
||||
feats = (
|
||||
self.model.final_proj(logits[0]) if self.version == "v1" else logits[0]
|
||||
)
|
||||
|
||||
####索引优化
|
||||
try:
|
||||
if (
|
||||
hasattr(self, "index")
|
||||
and hasattr(self, "big_npy")
|
||||
and self.index_rate != 0
|
||||
):
|
||||
npy = feats[0].cpu().numpy().astype("float32")
|
||||
score, ix = self.index.search(npy, k=8)
|
||||
weight = np.square(1 / score)
|
||||
weight /= weight.sum(axis=1, keepdims=True)
|
||||
npy = np.sum(self.big_npy[ix] * np.expand_dims(weight, axis=2), axis=1)
|
||||
if Config.is_half:
|
||||
npy = npy.astype("float16")
|
||||
feats = (
|
||||
torch.from_numpy(npy).unsqueeze(0).to(device) * self.index_rate
|
||||
+ (1 - self.index_rate) * feats
|
||||
)
|
||||
else:
|
||||
print("index search FAIL or disabled")
|
||||
except:
|
||||
traceback.print_exc()
|
||||
print("index search FAIL")
|
||||
feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1)
|
||||
torch.cuda.synchronize()
|
||||
print(feats.shape)
|
||||
if self.if_f0 == 1:
|
||||
pitch, pitchf = self.get_f0(audio, self.f0_up_key)
|
||||
p_len = min(feats.shape[1], 13000, pitch.shape[0]) # 太大了爆显存
|
||||
else:
|
||||
pitch, pitchf = None, None
|
||||
p_len = min(feats.shape[1], 13000) # 太大了爆显存
|
||||
torch.cuda.synchronize()
|
||||
# print(feats.shape,pitch.shape)
|
||||
feats = feats[:, :p_len, :]
|
||||
if self.if_f0 == 1:
|
||||
pitch = pitch[:p_len]
|
||||
pitchf = pitchf[:p_len]
|
||||
pitch = torch.LongTensor(pitch).unsqueeze(0).to(device)
|
||||
pitchf = torch.FloatTensor(pitchf).unsqueeze(0).to(device)
|
||||
p_len = torch.LongTensor([p_len]).to(device)
|
||||
ii = 0 # sid
|
||||
sid = torch.LongTensor([ii]).to(device)
|
||||
with torch.no_grad():
|
||||
if self.if_f0 == 1:
|
||||
infered_audio = (
|
||||
self.net_g.infer(feats, p_len, pitch, pitchf, sid)[0][0, 0]
|
||||
.data.cpu()
|
||||
.float()
|
||||
)
|
||||
else:
|
||||
infered_audio = (
|
||||
self.net_g.infer(feats, p_len, sid)[0][0, 0].data.cpu().float()
|
||||
)
|
||||
torch.cuda.synchronize()
|
||||
return infered_audio
|
||||
|
||||
|
||||
class GUIConfig:
|
||||
def __init__(self) -> None:
|
||||
self.hubert_path: str = ""
|
||||
self.pth_path: str = ""
|
||||
self.index_path: str = ""
|
||||
self.npy_path: str = ""
|
||||
self.pitch: int = 12
|
||||
self.samplerate: int = 44100
|
||||
self.block_time: float = 1.0 # s
|
||||
self.buffer_num: int = 1
|
||||
self.threhold: int = -30
|
||||
self.crossfade_time: float = 0.08
|
||||
self.extra_time: float = 0.04
|
||||
self.I_noise_reduce = False
|
||||
self.O_noise_reduce = False
|
||||
self.index_rate = 0.3
|
||||
|
||||
|
||||
class GUI:
|
||||
def __init__(self) -> None:
|
||||
self.config = GUIConfig()
|
||||
self.flag_vc = False
|
||||
|
||||
self.launcher()
|
||||
|
||||
def load(self):
|
||||
(
|
||||
input_devices,
|
||||
output_devices,
|
||||
input_devices_indices,
|
||||
output_devices_indices,
|
||||
) = self.get_devices()
|
||||
try:
|
||||
with open("values1.json", "r") as j:
|
||||
data = json.load(j)
|
||||
except:
|
||||
with open("values1.json", "w") as j:
|
||||
data = {
|
||||
"pth_path": "",
|
||||
"index_path": "",
|
||||
"sg_input_device": input_devices[
|
||||
input_devices_indices.index(sd.default.device[0])
|
||||
],
|
||||
"sg_output_device": output_devices[
|
||||
output_devices_indices.index(sd.default.device[1])
|
||||
],
|
||||
"threhold": "-45",
|
||||
"pitch": "0",
|
||||
"index_rate": "0",
|
||||
"block_time": "1",
|
||||
"crossfade_length": "0.04",
|
||||
"extra_time": "1",
|
||||
}
|
||||
return data
|
||||
|
||||
def launcher(self):
|
||||
data = self.load()
|
||||
sg.theme("LightBlue3")
|
||||
input_devices, output_devices, _, _ = self.get_devices()
|
||||
layout = [
|
||||
[
|
||||
sg.Frame(
|
||||
title=i18n("加载模型"),
|
||||
layout=[
|
||||
[
|
||||
sg.Input(
|
||||
default_text="hubert_base.pt",
|
||||
key="hubert_path",
|
||||
disabled=True,
|
||||
),
|
||||
sg.FileBrowse(
|
||||
i18n("Hubert模型"),
|
||||
initial_folder=os.path.join(os.getcwd()),
|
||||
file_types=(("pt files", "*.pt"),),
|
||||
),
|
||||
],
|
||||
[
|
||||
sg.Input(
|
||||
default_text=data.get("pth_path", ""),
|
||||
key="pth_path",
|
||||
),
|
||||
sg.FileBrowse(
|
||||
i18n("选择.pth文件"),
|
||||
initial_folder=os.path.join(os.getcwd(), "weights"),
|
||||
file_types=(("weight files", "*.pth"),),
|
||||
),
|
||||
],
|
||||
[
|
||||
sg.Input(
|
||||
default_text=data.get("index_path", ""),
|
||||
key="index_path",
|
||||
),
|
||||
sg.FileBrowse(
|
||||
i18n("选择.index文件"),
|
||||
initial_folder=os.path.join(os.getcwd(), "logs"),
|
||||
file_types=(("index files", "*.index"),),
|
||||
),
|
||||
],
|
||||
[
|
||||
sg.Input(
|
||||
default_text="你不需要填写这个You don't need write this.",
|
||||
key="npy_path",
|
||||
disabled=True,
|
||||
),
|
||||
sg.FileBrowse(
|
||||
i18n("选择.npy文件"),
|
||||
initial_folder=os.path.join(os.getcwd(), "logs"),
|
||||
file_types=(("feature files", "*.npy"),),
|
||||
),
|
||||
],
|
||||
],
|
||||
)
|
||||
],
|
||||
[
|
||||
sg.Frame(
|
||||
layout=[
|
||||
[
|
||||
sg.Text(i18n("输入设备")),
|
||||
sg.Combo(
|
||||
input_devices,
|
||||
key="sg_input_device",
|
||||
default_value=data.get("sg_input_device", ""),
|
||||
),
|
||||
],
|
||||
[
|
||||
sg.Text(i18n("输出设备")),
|
||||
sg.Combo(
|
||||
output_devices,
|
||||
key="sg_output_device",
|
||||
default_value=data.get("sg_output_device", ""),
|
||||
),
|
||||
],
|
||||
],
|
||||
title=i18n("音频设备(请使用同种类驱动)"),
|
||||
)
|
||||
],
|
||||
[
|
||||
sg.Frame(
|
||||
layout=[
|
||||
[
|
||||
sg.Text(i18n("响应阈值")),
|
||||
sg.Slider(
|
||||
range=(-60, 0),
|
||||
key="threhold",
|
||||
resolution=1,
|
||||
orientation="h",
|
||||
default_value=data.get("threhold", ""),
|
||||
),
|
||||
],
|
||||
[
|
||||
sg.Text(i18n("音调设置")),
|
||||
sg.Slider(
|
||||
range=(-24, 24),
|
||||
key="pitch",
|
||||
resolution=1,
|
||||
orientation="h",
|
||||
default_value=data.get("pitch", ""),
|
||||
),
|
||||
],
|
||||
[
|
||||
sg.Text(i18n("Index Rate")),
|
||||
sg.Slider(
|
||||
range=(0.0, 1.0),
|
||||
key="index_rate",
|
||||
resolution=0.01,
|
||||
orientation="h",
|
||||
default_value=data.get("index_rate", ""),
|
||||
),
|
||||
],
|
||||
],
|
||||
title=i18n("常规设置"),
|
||||
),
|
||||
sg.Frame(
|
||||
layout=[
|
||||
[
|
||||
sg.Text(i18n("采样长度")),
|
||||
sg.Slider(
|
||||
range=(0.1, 3.0),
|
||||
key="block_time",
|
||||
resolution=0.1,
|
||||
orientation="h",
|
||||
default_value=data.get("block_time", ""),
|
||||
),
|
||||
],
|
||||
[
|
||||
sg.Text(i18n("淡入淡出长度")),
|
||||
sg.Slider(
|
||||
range=(0.01, 0.15),
|
||||
key="crossfade_length",
|
||||
resolution=0.01,
|
||||
orientation="h",
|
||||
default_value=data.get("crossfade_length", ""),
|
||||
),
|
||||
],
|
||||
[
|
||||
sg.Text(i18n("额外推理时长")),
|
||||
sg.Slider(
|
||||
range=(0.05, 3.00),
|
||||
key="extra_time",
|
||||
resolution=0.01,
|
||||
orientation="h",
|
||||
default_value=data.get("extra_time", ""),
|
||||
),
|
||||
],
|
||||
[
|
||||
sg.Checkbox(i18n("输入降噪"), key="I_noise_reduce"),
|
||||
sg.Checkbox(i18n("输出降噪"), key="O_noise_reduce"),
|
||||
],
|
||||
],
|
||||
title=i18n("性能设置"),
|
||||
),
|
||||
],
|
||||
[
|
||||
sg.Button(i18n("开始音频转换"), key="start_vc"),
|
||||
sg.Button(i18n("停止音频转换"), key="stop_vc"),
|
||||
sg.Text(i18n("推理时间(ms):")),
|
||||
sg.Text("0", key="infer_time"),
|
||||
],
|
||||
]
|
||||
self.window = sg.Window("RVC - GUI", layout=layout)
|
||||
self.event_handler()
|
||||
|
||||
def event_handler(self):
|
||||
while True:
|
||||
event, values = self.window.read()
|
||||
if event == sg.WINDOW_CLOSED:
|
||||
self.flag_vc = False
|
||||
exit()
|
||||
if event == "start_vc" and self.flag_vc == False:
|
||||
if self.set_values(values) == True:
|
||||
print("using_cuda:" + str(torch.cuda.is_available()))
|
||||
self.start_vc()
|
||||
settings = {
|
||||
"pth_path": values["pth_path"],
|
||||
"index_path": values["index_path"],
|
||||
"sg_input_device": values["sg_input_device"],
|
||||
"sg_output_device": values["sg_output_device"],
|
||||
"threhold": values["threhold"],
|
||||
"pitch": values["pitch"],
|
||||
"index_rate": values["index_rate"],
|
||||
"block_time": values["block_time"],
|
||||
"crossfade_length": values["crossfade_length"],
|
||||
"extra_time": values["extra_time"],
|
||||
}
|
||||
with open("values1.json", "w") as j:
|
||||
json.dump(settings, j)
|
||||
if event == "stop_vc" and self.flag_vc == True:
|
||||
self.flag_vc = False
|
||||
|
||||
def set_values(self, values):
|
||||
if len(values["pth_path"].strip()) == 0:
|
||||
sg.popup(i18n("请选择pth文件"))
|
||||
return False
|
||||
if len(values["index_path"].strip()) == 0:
|
||||
sg.popup(i18n("请选择index文件"))
|
||||
return False
|
||||
pattern = re.compile("[^\x00-\x7F]+")
|
||||
if pattern.findall(values["hubert_path"]):
|
||||
sg.popup(i18n("hubert模型路径不可包含中文"))
|
||||
return False
|
||||
if pattern.findall(values["pth_path"]):
|
||||
sg.popup(i18n("pth文件路径不可包含中文"))
|
||||
return False
|
||||
if pattern.findall(values["index_path"]):
|
||||
sg.popup(i18n("index文件路径不可包含中文"))
|
||||
return False
|
||||
self.set_devices(values["sg_input_device"], values["sg_output_device"])
|
||||
self.config.hubert_path = os.path.join(current_dir, "hubert_base.pt")
|
||||
self.config.pth_path = values["pth_path"]
|
||||
self.config.index_path = values["index_path"]
|
||||
self.config.npy_path = values["npy_path"]
|
||||
self.config.threhold = values["threhold"]
|
||||
self.config.pitch = values["pitch"]
|
||||
self.config.block_time = values["block_time"]
|
||||
self.config.crossfade_time = values["crossfade_length"]
|
||||
self.config.extra_time = values["extra_time"]
|
||||
self.config.I_noise_reduce = values["I_noise_reduce"]
|
||||
self.config.O_noise_reduce = values["O_noise_reduce"]
|
||||
self.config.index_rate = values["index_rate"]
|
||||
return True
|
||||
|
||||
def start_vc(self):
|
||||
torch.cuda.empty_cache()
|
||||
self.flag_vc = True
|
||||
self.block_frame = int(self.config.block_time * self.config.samplerate)
|
||||
self.crossfade_frame = int(self.config.crossfade_time * self.config.samplerate)
|
||||
self.sola_search_frame = int(0.012 * self.config.samplerate)
|
||||
self.delay_frame = int(0.01 * self.config.samplerate) # 往前预留0.02s
|
||||
self.extra_frame = int(self.config.extra_time * self.config.samplerate)
|
||||
self.rvc = None
|
||||
self.rvc = RVC(
|
||||
self.config.pitch,
|
||||
self.config.hubert_path,
|
||||
self.config.pth_path,
|
||||
self.config.index_path,
|
||||
self.config.npy_path,
|
||||
self.config.index_rate,
|
||||
)
|
||||
self.input_wav: np.ndarray = np.zeros(
|
||||
self.extra_frame
|
||||
+ self.crossfade_frame
|
||||
+ self.sola_search_frame
|
||||
+ self.block_frame,
|
||||
dtype="float32",
|
||||
)
|
||||
self.output_wav: torch.Tensor = torch.zeros(
|
||||
self.block_frame, device=device, dtype=torch.float32
|
||||
)
|
||||
self.sola_buffer: torch.Tensor = torch.zeros(
|
||||
self.crossfade_frame, device=device, dtype=torch.float32
|
||||
)
|
||||
self.fade_in_window: torch.Tensor = torch.linspace(
|
||||
0.0, 1.0, steps=self.crossfade_frame, device=device, dtype=torch.float32
|
||||
)
|
||||
self.fade_out_window: torch.Tensor = 1 - self.fade_in_window
|
||||
self.resampler1 = tat.Resample(
|
||||
orig_freq=self.config.samplerate, new_freq=16000, dtype=torch.float32
|
||||
)
|
||||
self.resampler2 = tat.Resample(
|
||||
orig_freq=self.rvc.tgt_sr,
|
||||
new_freq=self.config.samplerate,
|
||||
dtype=torch.float32,
|
||||
)
|
||||
thread_vc = threading.Thread(target=self.soundinput)
|
||||
thread_vc.start()
|
||||
|
||||
def soundinput(self):
|
||||
"""
|
||||
接受音频输入
|
||||
"""
|
||||
with sd.Stream(
|
||||
channels=2,
|
||||
callback=self.audio_callback,
|
||||
blocksize=self.block_frame,
|
||||
samplerate=self.config.samplerate,
|
||||
dtype="float32",
|
||||
):
|
||||
while self.flag_vc:
|
||||
time.sleep(self.config.block_time)
|
||||
print("Audio block passed.")
|
||||
print("ENDing VC")
|
||||
|
||||
def audio_callback(
|
||||
self, indata: np.ndarray, outdata: np.ndarray, frames, times, status
|
||||
):
|
||||
"""
|
||||
音频处理
|
||||
"""
|
||||
start_time = time.perf_counter()
|
||||
indata = librosa.to_mono(indata.T)
|
||||
if self.config.I_noise_reduce:
|
||||
indata[:] = nr.reduce_noise(y=indata, sr=self.config.samplerate)
|
||||
|
||||
"""noise gate"""
|
||||
frame_length = 2048
|
||||
hop_length = 1024
|
||||
rms = librosa.feature.rms(
|
||||
y=indata, frame_length=frame_length, hop_length=hop_length
|
||||
)
|
||||
db_threhold = librosa.amplitude_to_db(rms, ref=1.0)[0] < self.config.threhold
|
||||
# print(rms.shape,db.shape,db)
|
||||
for i in range(db_threhold.shape[0]):
|
||||
if db_threhold[i]:
|
||||
indata[i * hop_length : (i + 1) * hop_length] = 0
|
||||
self.input_wav[:] = np.append(self.input_wav[self.block_frame :], indata)
|
||||
|
||||
# infer
|
||||
print("input_wav:" + str(self.input_wav.shape))
|
||||
# print('infered_wav:'+str(infer_wav.shape))
|
||||
infer_wav: torch.Tensor = self.resampler2(
|
||||
self.rvc.infer(self.resampler1(torch.from_numpy(self.input_wav)))
|
||||
)[-self.crossfade_frame - self.sola_search_frame - self.block_frame :].to(
|
||||
device
|
||||
)
|
||||
print("infer_wav:" + str(infer_wav.shape))
|
||||
|
||||
# SOLA algorithm from https://github.com/yxlllc/DDSP-SVC
|
||||
cor_nom = F.conv1d(
|
||||
infer_wav[None, None, : self.crossfade_frame + self.sola_search_frame],
|
||||
self.sola_buffer[None, None, :],
|
||||
)
|
||||
cor_den = torch.sqrt(
|
||||
F.conv1d(
|
||||
infer_wav[None, None, : self.crossfade_frame + self.sola_search_frame]
|
||||
** 2,
|
||||
torch.ones(1, 1, self.crossfade_frame, device=device),
|
||||
)
|
||||
+ 1e-8
|
||||
)
|
||||
sola_offset = torch.argmax(cor_nom[0, 0] / cor_den[0, 0])
|
||||
print("sola offset: " + str(int(sola_offset)))
|
||||
|
||||
# crossfade
|
||||
self.output_wav[:] = infer_wav[sola_offset : sola_offset + self.block_frame]
|
||||
self.output_wav[: self.crossfade_frame] *= self.fade_in_window
|
||||
self.output_wav[: self.crossfade_frame] += self.sola_buffer[:]
|
||||
if sola_offset < self.sola_search_frame:
|
||||
self.sola_buffer[:] = (
|
||||
infer_wav[
|
||||
-self.sola_search_frame
|
||||
- self.crossfade_frame
|
||||
+ sola_offset : -self.sola_search_frame
|
||||
+ sola_offset
|
||||
]
|
||||
* self.fade_out_window
|
||||
)
|
||||
else:
|
||||
self.sola_buffer[:] = (
|
||||
infer_wav[-self.crossfade_frame :] * self.fade_out_window
|
||||
)
|
||||
|
||||
if self.config.O_noise_reduce:
|
||||
outdata[:] = np.tile(
|
||||
nr.reduce_noise(
|
||||
y=self.output_wav[:].cpu().numpy(), sr=self.config.samplerate
|
||||
),
|
||||
(2, 1),
|
||||
).T
|
||||
else:
|
||||
outdata[:] = self.output_wav[:].repeat(2, 1).t().cpu().numpy()
|
||||
total_time = time.perf_counter() - start_time
|
||||
self.window["infer_time"].update(int(total_time * 1000))
|
||||
print("infer time:" + str(total_time))
|
||||
|
||||
def get_devices(self, update: bool = True):
|
||||
"""获取设备列表"""
|
||||
if update:
|
||||
sd._terminate()
|
||||
sd._initialize()
|
||||
devices = sd.query_devices()
|
||||
hostapis = sd.query_hostapis()
|
||||
for hostapi in hostapis:
|
||||
for device_idx in hostapi["devices"]:
|
||||
devices[device_idx]["hostapi_name"] = hostapi["name"]
|
||||
input_devices = [
|
||||
f"{d['name']} ({d['hostapi_name']})"
|
||||
for d in devices
|
||||
if d["max_input_channels"] > 0
|
||||
]
|
||||
output_devices = [
|
||||
f"{d['name']} ({d['hostapi_name']})"
|
||||
for d in devices
|
||||
if d["max_output_channels"] > 0
|
||||
]
|
||||
input_devices_indices = [
|
||||
d["index"] if "index" in d else d["name"]
|
||||
for d in devices
|
||||
if d["max_input_channels"] > 0
|
||||
]
|
||||
output_devices_indices = [
|
||||
d["index"] if "index" in d else d["name"]
|
||||
for d in devices
|
||||
if d["max_output_channels"] > 0
|
||||
]
|
||||
return (
|
||||
input_devices,
|
||||
output_devices,
|
||||
input_devices_indices,
|
||||
output_devices_indices,
|
||||
)
|
||||
|
||||
def set_devices(self, input_device, output_device):
|
||||
"""设置输出设备"""
|
||||
(
|
||||
input_devices,
|
||||
output_devices,
|
||||
input_device_indices,
|
||||
output_device_indices,
|
||||
) = self.get_devices()
|
||||
sd.default.device[0] = input_device_indices[input_devices.index(input_device)]
|
||||
sd.default.device[1] = output_device_indices[
|
||||
output_devices.index(output_device)
|
||||
]
|
||||
print("input device:" + str(sd.default.device[0]) + ":" + str(input_device))
|
||||
print("output device:" + str(sd.default.device[1]) + ":" + str(output_device))
|
||||
|
||||
|
||||
gui = GUI()
|
1124
lib/infer_pack/models_dml.py
Normal file
1124
lib/infer_pack/models_dml.py
Normal file
File diff suppressed because it is too large
Load Diff
Loading…
Reference in New Issue
Block a user