From 3686c8b3174856d71c4b350b6dd79688d5b2582b Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?=E6=BA=90=E6=96=87=E9=9B=A8?= <41315874+fumiama@users.noreply.github.com> Date: Sun, 27 Aug 2023 01:01:43 +0800 Subject: [PATCH] optimize: use scan_i18n -> extract_locale(#1058) --- .github/workflows/genlocale.yml | 2 +- extract_locale.py | 31 ---- scan_i18n.py => lib/i18n/scan_i18n.py | 8 + lib/i18n/zh_CN.json | 238 +++++++++++++------------- 4 files changed, 126 insertions(+), 153 deletions(-) delete mode 100644 extract_locale.py rename scan_i18n.py => lib/i18n/scan_i18n.py (87%) diff --git a/.github/workflows/genlocale.yml b/.github/workflows/genlocale.yml index 7642f56..ebed03a 100644 --- a/.github/workflows/genlocale.yml +++ b/.github/workflows/genlocale.yml @@ -13,7 +13,7 @@ jobs: - name: Run locale generation run: | - python3 extract_locale.py + python3 lib/i18n/scan_i18n.py cd lib/i18n && python3 locale_diff.py - name: Commit back diff --git a/extract_locale.py b/extract_locale.py deleted file mode 100644 index d0953da..0000000 --- a/extract_locale.py +++ /dev/null @@ -1,31 +0,0 @@ -import json -import re - -# Define regular expression patterns -pattern = r"""i18n\([\s\n\t]*(["'][^"']+["'])[\s\n\t]*\)""" - -# Initialize the dictionary to store key-value pairs -data = {} - - -def process(fn: str): - global data - with open(fn, "r", encoding="utf-8") as f: - contents = f.read() - matches = re.findall(pattern, contents) - for key in matches: - key = eval(key) - print("extract:", key) - data[key] = key - - -print("processing infer-web.py") -process("infer-web.py") - -print("processing gui_v1.py") -process("gui_v1.py") - -# Save as a JSON file -with open("./lib/i18n/zh_CN.json", "w", encoding="utf-8") as f: - json.dump(data, f, ensure_ascii=False, indent=4) - f.write("\n") diff --git a/scan_i18n.py b/lib/i18n/scan_i18n.py similarity index 87% rename from scan_i18n.py rename to lib/i18n/scan_i18n.py index 7f4a3f7..12573be 100644 --- a/scan_i18n.py +++ b/lib/i18n/scan_i18n.py @@ -65,3 +65,11 @@ missing_keys = code_keys - standard_keys print("Missing keys:", len(missing_keys)) for missing_key in missing_keys: print("\t", missing_key) + +code_keys_dict = OrderedDict() +for s in strings: code_keys_dict[s] = s + +# write back +with open(f"lib/i18n/{standard_file}", "w", encoding="utf-8") as f: + json.dump(code_keys_dict, f, ensure_ascii=False, indent=4, sort_keys=True) + f.write('\n') diff --git a/lib/i18n/zh_CN.json b/lib/i18n/zh_CN.json index 27bfcfa..12f8738 100644 --- a/lib/i18n/zh_CN.json +++ b/lib/i18n/zh_CN.json @@ -1,129 +1,125 @@ { - "很遗憾您这没有能用的显卡来支持您训练": "很遗憾您这没有能用的显卡来支持您训练", - "是": "是", - "step1:正在处理数据": "step1:正在处理数据", - "step2a:无需提取音高": "step2a:无需提取音高", - "step2b:正在提取特征": "step2b:正在提取特征", - "step3a:正在训练模型": "step3a:正在训练模型", - "训练结束, 您可查看控制台训练日志或实验文件夹下的train.log": "训练结束, 您可查看控制台训练日志或实验文件夹下的train.log", - "全流程结束!": "全流程结束!", - "本软件以MIT协议开源, 作者不对软件具备任何控制力, 使用软件者、传播软件导出的声音者自负全责.
如不认可该条款, 则不能使用或引用软件包内任何代码和文件. 详见根目录LICENSE.": "本软件以MIT协议开源, 作者不对软件具备任何控制力, 使用软件者、传播软件导出的声音者自负全责.
如不认可该条款, 则不能使用或引用软件包内任何代码和文件. 详见根目录LICENSE.", - "模型推理": "模型推理", - "推理音色": "推理音色", - "刷新音色列表和索引路径": "刷新音色列表和索引路径", - "卸载音色省显存": "卸载音色省显存", - "请选择说话人id": "请选择说话人id", - "男转女推荐+12key, 女转男推荐-12key, 如果音域爆炸导致音色失真也可以自己调整到合适音域. ": "男转女推荐+12key, 女转男推荐-12key, 如果音域爆炸导致音色失真也可以自己调整到合适音域. ", - "变调(整数, 半音数量, 升八度12降八度-12)": "变调(整数, 半音数量, 升八度12降八度-12)", - "输入待处理音频文件路径(默认是正确格式示例)": "输入待处理音频文件路径(默认是正确格式示例)", - "选择音高提取算法,输入歌声可用pm提速,harvest低音好但巨慢无比,crepe效果好但吃GPU,rmvpe效果最好且微吃GPU": "选择音高提取算法,输入歌声可用pm提速,harvest低音好但巨慢无比,crepe效果好但吃GPU,rmvpe效果最好且微吃GPU", ">=3则使用对harvest音高识别的结果使用中值滤波,数值为滤波半径,使用可以削弱哑音": ">=3则使用对harvest音高识别的结果使用中值滤波,数值为滤波半径,使用可以削弱哑音", - "特征检索库文件路径,为空则使用下拉的选择结果": "特征检索库文件路径,为空则使用下拉的选择结果", - "自动检测index路径,下拉式选择(dropdown)": "自动检测index路径,下拉式选择(dropdown)", - "特征文件路径": "特征文件路径", - "检索特征占比": "检索特征占比", - "后处理重采样至最终采样率,0为不进行重采样": "后处理重采样至最终采样率,0为不进行重采样", - "输入源音量包络替换输出音量包络融合比例,越靠近1越使用输出包络": "输入源音量包络替换输出音量包络融合比例,越靠近1越使用输出包络", - "保护清辅音和呼吸声,防止电音撕裂等artifact,拉满0.5不开启,调低加大保护力度但可能降低索引效果": "保护清辅音和呼吸声,防止电音撕裂等artifact,拉满0.5不开启,调低加大保护力度但可能降低索引效果", - "F0曲线文件, 可选, 一行一个音高, 代替默认F0及升降调": "F0曲线文件, 可选, 一行一个音高, 代替默认F0及升降调", - "转换": "转换", - "输出信息": "输出信息", - "输出音频(右下角三个点,点了可以下载)": "输出音频(右下角三个点,点了可以下载)", - "批量转换, 输入待转换音频文件夹, 或上传多个音频文件, 在指定文件夹(默认opt)下输出转换的音频. ": "批量转换, 输入待转换音频文件夹, 或上传多个音频文件, 在指定文件夹(默认opt)下输出转换的音频. ", - "指定输出文件夹": "指定输出文件夹", - "输入待处理音频文件夹路径(去文件管理器地址栏拷就行了)": "输入待处理音频文件夹路径(去文件管理器地址栏拷就行了)", - "也可批量输入音频文件, 二选一, 优先读文件夹": "也可批量输入音频文件, 二选一, 优先读文件夹", - "导出文件格式": "导出文件格式", - "伴奏人声分离&去混响&去回声": "伴奏人声分离&去混响&去回声", - "人声伴奏分离批量处理, 使用UVR5模型。
合格的文件夹路径格式举例: E:\\codes\\py39\\vits_vc_gpu\\白鹭霜华测试样例(去文件管理器地址栏拷就行了)。
模型分为三类:
1、保留人声:不带和声的音频选这个,对主人声保留比HP5更好。内置HP2和HP3两个模型,HP3可能轻微漏伴奏但对主人声保留比HP2稍微好一丁点;
2、仅保留主人声:带和声的音频选这个,对主人声可能有削弱。内置HP5一个模型;
3、去混响、去延迟模型(by FoxJoy):
  (1)MDX-Net(onnx_dereverb):对于双通道混响是最好的选择,不能去除单通道混响;
 (234)DeEcho:去除延迟效果。Aggressive比Normal去除得更彻底,DeReverb额外去除混响,可去除单声道混响,但是对高频重的板式混响去不干净。
去混响/去延迟,附:
1、DeEcho-DeReverb模型的耗时是另外2个DeEcho模型的接近2倍;
2、MDX-Net-Dereverb模型挺慢的;
3、个人推荐的最干净的配置是先MDX-Net再DeEcho-Aggressive。": "人声伴奏分离批量处理, 使用UVR5模型。
合格的文件夹路径格式举例: E:\\codes\\py39\\vits_vc_gpu\\白鹭霜华测试样例(去文件管理器地址栏拷就行了)。
模型分为三类:
1、保留人声:不带和声的音频选这个,对主人声保留比HP5更好。内置HP2和HP3两个模型,HP3可能轻微漏伴奏但对主人声保留比HP2稍微好一丁点;
2、仅保留主人声:带和声的音频选这个,对主人声可能有削弱。内置HP5一个模型;
3、去混响、去延迟模型(by FoxJoy):
  (1)MDX-Net(onnx_dereverb):对于双通道混响是最好的选择,不能去除单通道混响;
 (234)DeEcho:去除延迟效果。Aggressive比Normal去除得更彻底,DeReverb额外去除混响,可去除单声道混响,但是对高频重的板式混响去不干净。
去混响/去延迟,附:
1、DeEcho-DeReverb模型的耗时是另外2个DeEcho模型的接近2倍;
2、MDX-Net-Dereverb模型挺慢的;
3、个人推荐的最干净的配置是先MDX-Net再DeEcho-Aggressive。", - "输入待处理音频文件夹路径": "输入待处理音频文件夹路径", - "模型": "模型", - "指定输出主人声文件夹": "指定输出主人声文件夹", - "指定输出非主人声文件夹": "指定输出非主人声文件夹", - "训练": "训练", - "step1: 填写实验配置. 实验数据放在logs下, 每个实验一个文件夹, 需手工输入实验名路径, 内含实验配置, 日志, 训练得到的模型文件. ": "step1: 填写实验配置. 实验数据放在logs下, 每个实验一个文件夹, 需手工输入实验名路径, 内含实验配置, 日志, 训练得到的模型文件. ", - "输入实验名": "输入实验名", - "目标采样率": "目标采样率", - "模型是否带音高指导(唱歌一定要, 语音可以不要)": "模型是否带音高指导(唱歌一定要, 语音可以不要)", - "版本": "版本", - "提取音高和处理数据使用的CPU进程数": "提取音高和处理数据使用的CPU进程数", - "step2a: 自动遍历训练文件夹下所有可解码成音频的文件并进行切片归一化, 在实验目录下生成2个wav文件夹; 暂时只支持单人训练. ": "step2a: 自动遍历训练文件夹下所有可解码成音频的文件并进行切片归一化, 在实验目录下生成2个wav文件夹; 暂时只支持单人训练. ", - "输入训练文件夹路径": "输入训练文件夹路径", - "请指定说话人id": "请指定说话人id", - "处理数据": "处理数据", - "step2b: 使用CPU提取音高(如果模型带音高), 使用GPU提取特征(选择卡号)": "step2b: 使用CPU提取音高(如果模型带音高), 使用GPU提取特征(选择卡号)", - "以-分隔输入使用的卡号, 例如 0-1-2 使用卡0和卡1和卡2": "以-分隔输入使用的卡号, 例如 0-1-2 使用卡0和卡1和卡2", - "显卡信息": "显卡信息", - "选择音高提取算法:输入歌声可用pm提速,高质量语音但CPU差可用dio提速,harvest质量更好但慢,rmvpe效果最好且微吃CPU/GPU": "选择音高提取算法:输入歌声可用pm提速,高质量语音但CPU差可用dio提速,harvest质量更好但慢,rmvpe效果最好且微吃CPU/GPU", - "rmvpe卡号配置:以-分隔输入使用的不同进程卡号,例如0-0-1使用在卡0上跑2个进程并在卡1上跑1个进程": "rmvpe卡号配置:以-分隔输入使用的不同进程卡号,例如0-0-1使用在卡0上跑2个进程并在卡1上跑1个进程", - "特征提取": "特征提取", - "step3: 填写训练设置, 开始训练模型和索引": "step3: 填写训练设置, 开始训练模型和索引", - "保存频率save_every_epoch": "保存频率save_every_epoch", - "总训练轮数total_epoch": "总训练轮数total_epoch", - "每张显卡的batch_size": "每张显卡的batch_size", - "是否仅保存最新的ckpt文件以节省硬盘空间": "是否仅保存最新的ckpt文件以节省硬盘空间", - "否": "否", - "是否缓存所有训练集至显存. 10min以下小数据可缓存以加速训练, 大数据缓存会炸显存也加不了多少速": "是否缓存所有训练集至显存. 10min以下小数据可缓存以加速训练, 大数据缓存会炸显存也加不了多少速", - "是否在每次保存时间点将最终小模型保存至weights文件夹": "是否在每次保存时间点将最终小模型保存至weights文件夹", - "加载预训练底模G路径": "加载预训练底模G路径", - "加载预训练底模D路径": "加载预训练底模D路径", - "训练模型": "训练模型", - "训练特征索引": "训练特征索引", - "一键训练": "一键训练", - "ckpt处理": "ckpt处理", - "模型融合, 可用于测试音色融合": "模型融合, 可用于测试音色融合", + "A模型权重": "A模型权重", "A模型路径": "A模型路径", "B模型路径": "B模型路径", - "A模型权重": "A模型权重", - "模型是否带音高指导": "模型是否带音高指导", - "要置入的模型信息": "要置入的模型信息", - "保存的模型名不带后缀": "保存的模型名不带后缀", - "模型版本型号": "模型版本型号", - "融合": "融合", - "修改模型信息(仅支持weights文件夹下提取的小模型文件)": "修改模型信息(仅支持weights文件夹下提取的小模型文件)", - "模型路径": "模型路径", - "要改的模型信息": "要改的模型信息", - "保存的文件名, 默认空为和源文件同名": "保存的文件名, 默认空为和源文件同名", - "修改": "修改", - "查看模型信息(仅支持weights文件夹下提取的小模型文件)": "查看模型信息(仅支持weights文件夹下提取的小模型文件)", - "查看": "查看", - "模型提取(输入logs文件夹下大文件模型路径),适用于训一半不想训了模型没有自动提取保存小文件模型,或者想测试中间模型的情况": "模型提取(输入logs文件夹下大文件模型路径),适用于训一半不想训了模型没有自动提取保存小文件模型,或者想测试中间模型的情况", - "保存名": "保存名", - "模型是否带音高指导,1是0否": "模型是否带音高指导,1是0否", - "提取": "提取", - "Onnx导出": "Onnx导出", - "RVC模型路径": "RVC模型路径", - "Onnx输出路径": "Onnx输出路径", - "导出Onnx模型": "导出Onnx模型", - "常见问题解答": "常见问题解答", - "招募音高曲线前端编辑器": "招募音高曲线前端编辑器", - "加开发群联系我xxxxx": "加开发群联系我xxxxx", - "点击查看交流、问题反馈群号": "点击查看交流、问题反馈群号", - "xxxxx": "xxxxx", - "加载模型": "加载模型", - "选择.pth文件": "选择.pth文件", - "选择.index文件": "选择.index文件", - "输入设备": "输入设备", - "输出设备": "输出设备", - "重载设备列表": "重载设备列表", - "音频设备(请使用同种类驱动)": "音频设备(请使用同种类驱动)", - "响应阈值": "响应阈值", - "音调设置": "音调设置", + "F0曲线文件, 可选, 一行一个音高, 代替默认F0及升降调": "F0曲线文件, 可选, 一行一个音高, 代替默认F0及升降调", "Index Rate": "Index Rate", - "音高算法": "音高算法", - "常规设置": "常规设置", - "采样长度": "采样长度", + "Onnx导出": "Onnx导出", + "Onnx输出路径": "Onnx输出路径", + "RVC模型路径": "RVC模型路径", + "ckpt处理": "ckpt处理", "harvest进程数": "harvest进程数", - "淡入淡出长度": "淡入淡出长度", - "额外推理时长": "额外推理时长", - "输入降噪": "输入降噪", - "输出降噪": "输出降噪", - "性能设置": "性能设置", - "开始音频转换": "开始音频转换", - "停止音频转换": "停止音频转换", - "推理时间(ms):": "推理时间(ms):", - "请选择pth文件": "请选择pth文件", - "请选择index文件": "请选择index文件", + "index文件路径不可包含中文": "index文件路径不可包含中文", "pth文件路径不可包含中文": "pth文件路径不可包含中文", - "index文件路径不可包含中文": "index文件路径不可包含中文" + "rmvpe卡号配置:以-分隔输入使用的不同进程卡号,例如0-0-1使用在卡0上跑2个进程并在卡1上跑1个进程": "rmvpe卡号配置:以-分隔输入使用的不同进程卡号,例如0-0-1使用在卡0上跑2个进程并在卡1上跑1个进程", + "step1: 填写实验配置. 实验数据放在logs下, 每个实验一个文件夹, 需手工输入实验名路径, 内含实验配置, 日志, 训练得到的模型文件. ": "step1: 填写实验配置. 实验数据放在logs下, 每个实验一个文件夹, 需手工输入实验名路径, 内含实验配置, 日志, 训练得到的模型文件. ", + "step1:正在处理数据": "step1:正在处理数据", + "step2a: 自动遍历训练文件夹下所有可解码成音频的文件并进行切片归一化, 在实验目录下生成2个wav文件夹; 暂时只支持单人训练. ": "step2a: 自动遍历训练文件夹下所有可解码成音频的文件并进行切片归一化, 在实验目录下生成2个wav文件夹; 暂时只支持单人训练. ", + "step2a:无需提取音高": "step2a:无需提取音高", + "step2b: 使用CPU提取音高(如果模型带音高), 使用GPU提取特征(选择卡号)": "step2b: 使用CPU提取音高(如果模型带音高), 使用GPU提取特征(选择卡号)", + "step2b:正在提取特征": "step2b:正在提取特征", + "step3: 填写训练设置, 开始训练模型和索引": "step3: 填写训练设置, 开始训练模型和索引", + "step3a:正在训练模型": "step3a:正在训练模型", + "一键训练": "一键训练", + "也可批量输入音频文件, 二选一, 优先读文件夹": "也可批量输入音频文件, 二选一, 优先读文件夹", + "人声伴奏分离批量处理, 使用UVR5模型。
合格的文件夹路径格式举例: E:\\codes\\py39\\vits_vc_gpu\\白鹭霜华测试样例(去文件管理器地址栏拷就行了)。
模型分为三类:
1、保留人声:不带和声的音频选这个,对主人声保留比HP5更好。内置HP2和HP3两个模型,HP3可能轻微漏伴奏但对主人声保留比HP2稍微好一丁点;
2、仅保留主人声:带和声的音频选这个,对主人声可能有削弱。内置HP5一个模型;
3、去混响、去延迟模型(by FoxJoy):
  (1)MDX-Net(onnx_dereverb):对于双通道混响是最好的选择,不能去除单通道混响;
 (234)DeEcho:去除延迟效果。Aggressive比Normal去除得更彻底,DeReverb额外去除混响,可去除单声道混响,但是对高频重的板式混响去不干净。
去混响/去延迟,附:
1、DeEcho-DeReverb模型的耗时是另外2个DeEcho模型的接近2倍;
2、MDX-Net-Dereverb模型挺慢的;
3、个人推荐的最干净的配置是先MDX-Net再DeEcho-Aggressive。": "人声伴奏分离批量处理, 使用UVR5模型。
合格的文件夹路径格式举例: E:\\codes\\py39\\vits_vc_gpu\\白鹭霜华测试样例(去文件管理器地址栏拷就行了)。
模型分为三类:
1、保留人声:不带和声的音频选这个,对主人声保留比HP5更好。内置HP2和HP3两个模型,HP3可能轻微漏伴奏但对主人声保留比HP2稍微好一丁点;
2、仅保留主人声:带和声的音频选这个,对主人声可能有削弱。内置HP5一个模型;
3、去混响、去延迟模型(by FoxJoy):
  (1)MDX-Net(onnx_dereverb):对于双通道混响是最好的选择,不能去除单通道混响;
 (234)DeEcho:去除延迟效果。Aggressive比Normal去除得更彻底,DeReverb额外去除混响,可去除单声道混响,但是对高频重的板式混响去不干净。
去混响/去延迟,附:
1、DeEcho-DeReverb模型的耗时是另外2个DeEcho模型的接近2倍;
2、MDX-Net-Dereverb模型挺慢的;
3、个人推荐的最干净的配置是先MDX-Net再DeEcho-Aggressive。", + "以-分隔输入使用的卡号, 例如 0-1-2 使用卡0和卡1和卡2": "以-分隔输入使用的卡号, 例如 0-1-2 使用卡0和卡1和卡2", + "伴奏人声分离&去混响&去回声": "伴奏人声分离&去混响&去回声", + "保存名": "保存名", + "保存的文件名, 默认空为和源文件同名": "保存的文件名, 默认空为和源文件同名", + "保存的模型名不带后缀": "保存的模型名不带后缀", + "保存频率save_every_epoch": "保存频率save_every_epoch", + "保护清辅音和呼吸声,防止电音撕裂等artifact,拉满0.5不开启,调低加大保护力度但可能降低索引效果": "保护清辅音和呼吸声,防止电音撕裂等artifact,拉满0.5不开启,调低加大保护力度但可能降低索引效果", + "修改": "修改", + "修改模型信息(仅支持weights文件夹下提取的小模型文件)": "修改模型信息(仅支持weights文件夹下提取的小模型文件)", + "停止音频转换": "停止音频转换", + "全流程结束!": "全流程结束!", + "刷新音色列表和索引路径": "刷新音色列表和索引路径", + "加载模型": "加载模型", + "加载预训练底模D路径": "加载预训练底模D路径", + "加载预训练底模G路径": "加载预训练底模G路径", + "卸载音色省显存": "卸载音色省显存", + "变调(整数, 半音数量, 升八度12降八度-12)": "变调(整数, 半音数量, 升八度12降八度-12)", + "后处理重采样至最终采样率,0为不进行重采样": "后处理重采样至最终采样率,0为不进行重采样", + "否": "否", + "响应阈值": "响应阈值", + "处理数据": "处理数据", + "导出Onnx模型": "导出Onnx模型", + "导出文件格式": "导出文件格式", + "常见问题解答": "常见问题解答", + "常规设置": "常规设置", + "开始音频转换": "开始音频转换", + "很遗憾您这没有能用的显卡来支持您训练": "很遗憾您这没有能用的显卡来支持您训练", + "性能设置": "性能设置", + "总训练轮数total_epoch": "总训练轮数total_epoch", + "批量转换, 输入待转换音频文件夹, 或上传多个音频文件, 在指定文件夹(默认opt)下输出转换的音频. ": "批量转换, 输入待转换音频文件夹, 或上传多个音频文件, 在指定文件夹(默认opt)下输出转换的音频. ", + "指定输出主人声文件夹": "指定输出主人声文件夹", + "指定输出文件夹": "指定输出文件夹", + "指定输出非主人声文件夹": "指定输出非主人声文件夹", + "推理时间(ms):": "推理时间(ms):", + "推理音色": "推理音色", + "提取": "提取", + "提取音高和处理数据使用的CPU进程数": "提取音高和处理数据使用的CPU进程数", + "是": "是", + "是否仅保存最新的ckpt文件以节省硬盘空间": "是否仅保存最新的ckpt文件以节省硬盘空间", + "是否在每次保存时间点将最终小模型保存至weights文件夹": "是否在每次保存时间点将最终小模型保存至weights文件夹", + "是否缓存所有训练集至显存. 10min以下小数据可缓存以加速训练, 大数据缓存会炸显存也加不了多少速": "是否缓存所有训练集至显存. 10min以下小数据可缓存以加速训练, 大数据缓存会炸显存也加不了多少速", + "显卡信息": "显卡信息", + "本软件以MIT协议开源, 作者不对软件具备任何控制力, 使用软件者、传播软件导出的声音者自负全责.
如不认可该条款, 则不能使用或引用软件包内任何代码和文件. 详见根目录LICENSE.": "本软件以MIT协议开源, 作者不对软件具备任何控制力, 使用软件者、传播软件导出的声音者自负全责.
如不认可该条款, 则不能使用或引用软件包内任何代码和文件. 详见根目录LICENSE.", + "查看": "查看", + "查看模型信息(仅支持weights文件夹下提取的小模型文件)": "查看模型信息(仅支持weights文件夹下提取的小模型文件)", + "检索特征占比": "检索特征占比", + "模型": "模型", + "模型推理": "模型推理", + "模型提取(输入logs文件夹下大文件模型路径),适用于训一半不想训了模型没有自动提取保存小文件模型,或者想测试中间模型的情况": "模型提取(输入logs文件夹下大文件模型路径),适用于训一半不想训了模型没有自动提取保存小文件模型,或者想测试中间模型的情况", + "模型是否带音高指导": "模型是否带音高指导", + "模型是否带音高指导(唱歌一定要, 语音可以不要)": "模型是否带音高指导(唱歌一定要, 语音可以不要)", + "模型是否带音高指导,1是0否": "模型是否带音高指导,1是0否", + "模型版本型号": "模型版本型号", + "模型融合, 可用于测试音色融合": "模型融合, 可用于测试音色融合", + "模型路径": "模型路径", + "每张显卡的batch_size": "每张显卡的batch_size", + "淡入淡出长度": "淡入淡出长度", + "版本": "版本", + "特征提取": "特征提取", + "特征检索库文件路径,为空则使用下拉的选择结果": "特征检索库文件路径,为空则使用下拉的选择结果", + "男转女推荐+12key, 女转男推荐-12key, 如果音域爆炸导致音色失真也可以自己调整到合适音域. ": "男转女推荐+12key, 女转男推荐-12key, 如果音域爆炸导致音色失真也可以自己调整到合适音域. ", + "目标采样率": "目标采样率", + "自动检测index路径,下拉式选择(dropdown)": "自动检测index路径,下拉式选择(dropdown)", + "融合": "融合", + "要改的模型信息": "要改的模型信息", + "要置入的模型信息": "要置入的模型信息", + "训练": "训练", + "训练模型": "训练模型", + "训练特征索引": "训练特征索引", + "训练结束, 您可查看控制台训练日志或实验文件夹下的train.log": "训练结束, 您可查看控制台训练日志或实验文件夹下的train.log", + "请指定说话人id": "请指定说话人id", + "请选择index文件": "请选择index文件", + "请选择pth文件": "请选择pth文件", + "请选择说话人id": "请选择说话人id", + "转换": "转换", + "输入实验名": "输入实验名", + "输入待处理音频文件夹路径": "输入待处理音频文件夹路径", + "输入待处理音频文件夹路径(去文件管理器地址栏拷就行了)": "输入待处理音频文件夹路径(去文件管理器地址栏拷就行了)", + "输入待处理音频文件路径(默认是正确格式示例)": "输入待处理音频文件路径(默认是正确格式示例)", + "输入源音量包络替换输出音量包络融合比例,越靠近1越使用输出包络": "输入源音量包络替换输出音量包络融合比例,越靠近1越使用输出包络", + "输入训练文件夹路径": "输入训练文件夹路径", + "输入设备": "输入设备", + "输入降噪": "输入降噪", + "输出信息": "输出信息", + "输出设备": "输出设备", + "输出降噪": "输出降噪", + "输出音频(右下角三个点,点了可以下载)": "输出音频(右下角三个点,点了可以下载)", + "选择.index文件": "选择.index文件", + "选择.pth文件": "选择.pth文件", + "选择音高提取算法,输入歌声可用pm提速,harvest低音好但巨慢无比,crepe效果好但吃GPU": "选择音高提取算法,输入歌声可用pm提速,harvest低音好但巨慢无比,crepe效果好但吃GPU", + "选择音高提取算法,输入歌声可用pm提速,harvest低音好但巨慢无比,crepe效果好但吃GPU,rmvpe效果最好且微吃GPU": "选择音高提取算法,输入歌声可用pm提速,harvest低音好但巨慢无比,crepe效果好但吃GPU,rmvpe效果最好且微吃GPU", + "选择音高提取算法:输入歌声可用pm提速,高质量语音但CPU差可用dio提速,harvest质量更好但慢,rmvpe效果最好且微吃CPU/GPU": "选择音高提取算法:输入歌声可用pm提速,高质量语音但CPU差可用dio提速,harvest质量更好但慢,rmvpe效果最好且微吃CPU/GPU", + "采样长度": "采样长度", + "重载设备列表": "重载设备列表", + "音调设置": "音调设置", + "音频设备(请使用同种类驱动)": "音频设备(请使用同种类驱动)", + "音高算法": "音高算法", + "额外推理时长": "额外推理时长" }