1
0
mirror of synced 2024-12-18 02:16:08 +01:00

Add files via upload

This commit is contained in:
RVC-Boss 2023-05-13 03:29:30 +08:00 committed by GitHub
parent 0bc1ea782e
commit 44449efc2e
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 162 additions and 63 deletions

View File

@ -18,6 +18,10 @@ from fairseq import checkpoint_utils
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if torch.cuda.is_available():device="cuda"
elif torch.backends.mps.is_available():device="mps"
else:device="cpu"
f = open("%s/extract_f0_feature.log" % exp_dir, "a+") f = open("%s/extract_f0_feature.log" % exp_dir, "a+")
@ -60,7 +64,7 @@ models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task(
model = models[0] model = models[0]
model = model.to(device) model = model.to(device)
printt("move model to %s" % device) printt("move model to %s" % device)
if device != "cpu": if device not in ["mps","cpu"]:
model = model.half() model = model.half()
model.eval() model.eval()
@ -83,7 +87,7 @@ else:
padding_mask = torch.BoolTensor(feats.shape).fill_(False) padding_mask = torch.BoolTensor(feats.shape).fill_(False)
inputs = { inputs = {
"source": feats.half().to(device) "source": feats.half().to(device)
if device != "cpu" if device not in ["mps", "cpu"]
else feats.to(device), else feats.to(device),
"padding_mask": padding_mask.to(device), "padding_mask": padding_mask.to(device),
"output_layer": 9, # layer 9 "output_layer": 9, # layer 9

View File

@ -11,6 +11,8 @@ now_dir = os.getcwd()
sys.path.append(now_dir) sys.path.append(now_dir)
tmp = os.path.join(now_dir, "TEMP") tmp = os.path.join(now_dir, "TEMP")
shutil.rmtree(tmp, ignore_errors=True) shutil.rmtree(tmp, ignore_errors=True)
shutil.rmtree("%s/runtime/Lib/site-packages/infer_pack"%(now_dir), ignore_errors=True)
shutil.rmtree("%s/runtime/Lib/site-packages/uvr5_pack"%(now_dir) , ignore_errors=True)
os.makedirs(tmp, exist_ok=True) os.makedirs(tmp, exist_ok=True)
os.makedirs(os.path.join(now_dir, "logs"), exist_ok=True) os.makedirs(os.path.join(now_dir, "logs"), exist_ok=True)
os.makedirs(os.path.join(now_dir, "weights"), exist_ok=True) os.makedirs(os.path.join(now_dir, "weights"), exist_ok=True)
@ -114,10 +116,16 @@ def load_hubert():
weight_root = "weights" weight_root = "weights"
weight_uvr5_root = "uvr5_weights" weight_uvr5_root = "uvr5_weights"
index_root = "logs"
names = [] names = []
for name in os.listdir(weight_root): for name in os.listdir(weight_root):
if name.endswith(".pth"): if name.endswith(".pth"):
names.append(name) names.append(name)
index_paths=[]
for root, dirs, files in os.walk(index_root, topdown=False):
for name in files:
if name.endswith(".index") and "trained" not in name:
index_paths.append("%s/%s"%(root,name))
uvr5_names = [] uvr5_names = []
for name in os.listdir(weight_uvr5_root): for name in os.listdir(weight_uvr5_root):
if name.endswith(".pth"): if name.endswith(".pth"):
@ -126,20 +134,23 @@ for name in os.listdir(weight_uvr5_root):
def vc_single( def vc_single(
sid, sid,
input_audio, input_audio_path,
f0_up_key, f0_up_key,
f0_file, f0_file,
f0_method, f0_method,
file_index, file_index,
file_index2,
# file_big_npy, # file_big_npy,
index_rate, index_rate,
filter_radius,
resample_sr,
): # spk_item, input_audio0, vc_transform0,f0_file,f0method0 ): # spk_item, input_audio0, vc_transform0,f0_file,f0method0
global tgt_sr, net_g, vc, hubert_model global tgt_sr, net_g, vc, hubert_model
if input_audio is None: if input_audio_path is None:
return "You need to upload an audio", None return "You need to upload an audio", None
f0_up_key = int(f0_up_key) f0_up_key = int(f0_up_key)
try: try:
audio = load_audio(input_audio, 16000) audio = load_audio(input_audio_path, 16000)
times = [0, 0, 0] times = [0, 0, 0]
if hubert_model == None: if hubert_model == None:
load_hubert() load_hubert()
@ -151,7 +162,7 @@ def vc_single(
.strip('"') .strip('"')
.strip(" ") .strip(" ")
.replace("trained", "added") .replace("trained", "added")
) # 防止小白写错,自动帮他替换掉 )if file_index!=""else file_index2 # 防止小白写错,自动帮他替换掉
# file_big_npy = ( # file_big_npy = (
# file_big_npy.strip(" ").strip('"').strip("\n").strip('"').strip(" ") # file_big_npy.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
# ) # )
@ -160,6 +171,7 @@ def vc_single(
net_g, net_g,
sid, sid,
audio, audio,
input_audio_path,
times, times,
f0_up_key, f0_up_key,
f0_method, f0_method,
@ -167,12 +179,15 @@ def vc_single(
# file_big_npy, # file_big_npy,
index_rate, index_rate,
if_f0, if_f0,
filter_radius,
tgt_sr,
resample_sr,
f0_file=f0_file, f0_file=f0_file,
) )
print( if(resample_sr>=16000 and tgt_sr!=resample_sr):
"npy: ", times[0], "s, f0: ", times[1], "s, infer: ", times[2], "s", sep="" tgt_sr=resample_sr
) index_info="Using index:%s."%file_index if os.path.exists(file_index)else"Index not used."
return "Success", (tgt_sr, audio_opt) return "Success.\n %s\nTime:\n npy:%ss, f0:%ss, infer:%ss"%(index_info,times[0],times[1],times[2]), (tgt_sr, audio_opt)
except: except:
info = traceback.format_exc() info = traceback.format_exc()
print(info) print(info)
@ -187,8 +202,11 @@ def vc_multi(
f0_up_key, f0_up_key,
f0_method, f0_method,
file_index, file_index,
file_index2,
# file_big_npy, # file_big_npy,
index_rate, index_rate,
filter_radius,
resample_sr,
): ):
try: try:
dir_path = ( dir_path = (
@ -205,14 +223,6 @@ def vc_multi(
traceback.print_exc() traceback.print_exc()
paths = [path.name for path in paths] paths = [path.name for path in paths]
infos = [] infos = []
file_index = (
file_index.strip(" ")
.strip('"')
.strip("\n")
.strip('"')
.strip(" ")
.replace("trained", "added")
) # 防止小白写错,自动帮他替换掉
for path in paths: for path in paths:
info, opt = vc_single( info, opt = vc_single(
sid, sid,
@ -221,17 +231,20 @@ def vc_multi(
None, None,
f0_method, f0_method,
file_index, file_index,
file_index2,
# file_big_npy, # file_big_npy,
index_rate, index_rate,
filter_radius,
resample_sr,
) )
if info == "Success": if "Success"in info:
try: try:
tgt_sr, audio_opt = opt tgt_sr, audio_opt = opt
wavfile.write( wavfile.write(
"%s/%s" % (opt_root, os.path.basename(path)), tgt_sr, audio_opt "%s/%s" % (opt_root, os.path.basename(path)), tgt_sr, audio_opt
) )
except: except:
info = traceback.format_exc() info += traceback.format_exc()
infos.append("%s->%s" % (os.path.basename(path), info)) infos.append("%s->%s" % (os.path.basename(path), info))
yield "\n".join(infos) yield "\n".join(infos)
yield "\n".join(infos) yield "\n".join(infos)
@ -310,7 +323,7 @@ def uvr(model_name, inp_root, save_root_vocal, paths, save_root_ins, agg):
# 一个选项卡全局只能有一个音色 # 一个选项卡全局只能有一个音色
def get_vc(sid): def get_vc(sid):
global n_spk, tgt_sr, net_g, vc, cpt global n_spk, tgt_sr, net_g, vc, cpt
if sid == "": if sid == ""or sid==[]:
global hubert_model global hubert_model
if hubert_model != None: # 考虑到轮询, 需要加个判断看是否 sid 是由有模型切换到无模型的 if hubert_model != None: # 考虑到轮询, 需要加个判断看是否 sid 是由有模型切换到无模型的
print("clean_empty_cache") print("clean_empty_cache")
@ -358,7 +371,12 @@ def change_choices():
for name in os.listdir(weight_root): for name in os.listdir(weight_root):
if name.endswith(".pth"): if name.endswith(".pth"):
names.append(name) names.append(name)
return {"choices": sorted(names), "__type__": "update"} index_paths=[]
for root, dirs, files in os.walk(index_root, topdown=False):
for name in files:
if name.endswith(".index") and "trained" not in name:
index_paths.append("%s/%s" % (root, name))
return {"choices": sorted(names), "__type__": "update"},{"choices": sorted(index_paths), "__type__": "update"}
def clean(): def clean():
@ -412,7 +430,7 @@ def if_done_multi(done, ps):
done[0] = True done[0] = True
def preprocess_dataset(trainset_dir, exp_dir, sr, n_p=ncpu): def preprocess_dataset(trainset_dir, exp_dir, sr, n_p):
sr = sr_dict[sr] sr = sr_dict[sr]
os.makedirs("%s/logs/%s" % (now_dir, exp_dir), exist_ok=True) os.makedirs("%s/logs/%s" % (now_dir, exp_dir), exist_ok=True)
f = open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir), "w") f = open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir), "w")
@ -684,7 +702,6 @@ def train_index(exp_dir1):
infos.append("training") infos.append("training")
yield "\n".join(infos) yield "\n".join(infos)
index_ivf = faiss.extract_index_ivf(index) # index_ivf = faiss.extract_index_ivf(index) #
# index_ivf.nprobe = int(np.power(n_ivf,0.3))
index_ivf.nprobe = 1 index_ivf.nprobe = 1
index.train(big_npy) index.train(big_npy)
faiss.write_index( faiss.write_index(
@ -743,7 +760,7 @@ def train1key(
cmd = ( cmd = (
config.python_cmd config.python_cmd
+ " trainset_preprocess_pipeline_print.py %s %s %s %s " + " trainset_preprocess_pipeline_print.py %s %s %s %s "
% (trainset_dir4, sr_dict[sr2], ncpu, model_log_dir) % (trainset_dir4, sr_dict[sr2], np7, model_log_dir)
+ str(config.noparallel) + str(config.noparallel)
) )
yield get_info_str(i18n("step1:正在处理数据")) yield get_info_str(i18n("step1:正在处理数据"))
@ -908,7 +925,6 @@ def train1key(
index = faiss.index_factory(256, "IVF%s,Flat" % n_ivf) index = faiss.index_factory(256, "IVF%s,Flat" % n_ivf)
yield get_info_str("training index") yield get_info_str("training index")
index_ivf = faiss.extract_index_ivf(index) # index_ivf = faiss.extract_index_ivf(index) #
# index_ivf.nprobe = int(np.power(n_ivf,0.3))
index_ivf.nprobe = 1 index_ivf.nprobe = 1
index.train(big_npy) index.train(big_npy)
faiss.write_index( faiss.write_index(
@ -1044,8 +1060,7 @@ with gr.Blocks() as app:
with gr.TabItem(i18n("模型推理")): with gr.TabItem(i18n("模型推理")):
with gr.Row(): with gr.Row():
sid0 = gr.Dropdown(label=i18n("推理音色"), choices=sorted(names)) sid0 = gr.Dropdown(label=i18n("推理音色"), choices=sorted(names))
refresh_button = gr.Button(i18n("刷新音色列表"), variant="primary") refresh_button = gr.Button(i18n("刷新音色列表和索引路径"), variant="primary")
refresh_button.click(fn=change_choices, inputs=[], outputs=[sid0])
clean_button = gr.Button(i18n("卸载音色省显存"), variant="primary") clean_button = gr.Button(i18n("卸载音色省显存"), variant="primary")
spk_item = gr.Slider( spk_item = gr.Slider(
minimum=0, minimum=0,
@ -1073,7 +1088,7 @@ with gr.Blocks() as app:
) )
input_audio0 = gr.Textbox( input_audio0 = gr.Textbox(
label=i18n("输入待处理音频文件路径(默认是正确格式示例)"), label=i18n("输入待处理音频文件路径(默认是正确格式示例)"),
value="E:\\codes\\py39\\vits_vc_gpu_train\\todo-songs\\冬之花clip1.wav", value="E:\\codes\\py39\\test-20230416b\\todo-songs\\冬之花clip1.wav",
) )
f0method0 = gr.Radio( f0method0 = gr.Radio(
label=i18n("选择音高提取算法,输入歌声可用pm提速,harvest低音好但巨慢无比"), label=i18n("选择音高提取算法,输入歌声可用pm提速,harvest低音好但巨慢无比"),
@ -1081,12 +1096,26 @@ with gr.Blocks() as app:
value="pm", value="pm",
interactive=True, interactive=True,
) )
with gr.Column(): filter_radius0=gr.Slider(
file_index1 = gr.Textbox( minimum=0,
label=i18n("特征检索库文件路径"), maximum=7,
value="E:\\codes\\py39\\vits_vc_gpu_train\\logs\\mi-test-1key\\added_IVF677_Flat_nprobe_7.index", label=i18n(">=3则使用对harvest音高识别的结果使用中值滤波数值为滤波半径使用可以削弱哑音"),
value=3,
step=1,
interactive=True, interactive=True,
) )
with gr.Column():
file_index1 = gr.Textbox(
label=i18n("特征检索库文件路径,为空则使用下拉的选择结果"),
value="",
interactive=True,
)
file_index2 = gr.Dropdown(
label=i18n("自动检测index路径,下拉式选择(dropdown)"),
choices=sorted(index_paths),
interactive=True,
)
refresh_button.click(fn=change_choices, inputs=[], outputs=[sid0, file_index2])
# file_big_npy1 = gr.Textbox( # file_big_npy1 = gr.Textbox(
# label=i18n("特征文件路径"), # label=i18n("特征文件路径"),
# value="E:\\codes\py39\\vits_vc_gpu_train\\logs\\mi-test-1key\\total_fea.npy", # value="E:\\codes\py39\\vits_vc_gpu_train\\logs\\mi-test-1key\\total_fea.npy",
@ -1099,6 +1128,14 @@ with gr.Blocks() as app:
value=0.76, value=0.76,
interactive=True, interactive=True,
) )
resample_sr0=gr.Slider(
minimum=0,
maximum=48000,
label=i18n("后处理重采样至最终采样率0为不进行重采样"),
value=0,
step=1,
interactive=True,
)
f0_file = gr.File(label=i18n("F0曲线文件, 可选, 一行一个音高, 代替默认F0及升降调")) f0_file = gr.File(label=i18n("F0曲线文件, 可选, 一行一个音高, 代替默认F0及升降调"))
but0 = gr.Button(i18n("转换"), variant="primary") but0 = gr.Button(i18n("转换"), variant="primary")
with gr.Column(): with gr.Column():
@ -1113,8 +1150,11 @@ with gr.Blocks() as app:
f0_file, f0_file,
f0method0, f0method0,
file_index1, file_index1,
file_index2,
# file_big_npy1, # file_big_npy1,
index_rate1, index_rate1,
filter_radius0,
resample_sr0
], ],
[vc_output1, vc_output2], [vc_output1, vc_output2],
) )
@ -1134,10 +1174,23 @@ with gr.Blocks() as app:
value="pm", value="pm",
interactive=True, interactive=True,
) )
filter_radius1=gr.Slider(
minimum=0,
maximum=7,
label=i18n(">=3则使用对harvest音高识别的结果使用中值滤波数值为滤波半径使用可以削弱哑音"),
value=3,
step=1,
interactive=True,
)
with gr.Column(): with gr.Column():
file_index2 = gr.Textbox( file_index3 = gr.Textbox(
label=i18n("特征检索库文件路径"), label=i18n("特征检索库文件路径,为空则使用下拉的选择结果"),
value="E:\\codes\\py39\\vits_vc_gpu_train\\logs\\mi-test-1key\\added_IVF677_Flat_nprobe_7.index", value="",
interactive=True,
)
file_index4 = gr.Dropdown(
label=i18n("自动检测index路径,下拉式选择(dropdown)"),
choices=sorted(index_paths),
interactive=True, interactive=True,
) )
# file_big_npy2 = gr.Textbox( # file_big_npy2 = gr.Textbox(
@ -1152,10 +1205,18 @@ with gr.Blocks() as app:
value=1, value=1,
interactive=True, interactive=True,
) )
resample_sr1=gr.Slider(
minimum=0,
maximum=48000,
label=i18n("后处理重采样至最终采样率0为不进行重采样"),
value=0,
step=1,
interactive=True,
)
with gr.Column(): with gr.Column():
dir_input = gr.Textbox( dir_input = gr.Textbox(
label=i18n("输入待处理音频文件夹路径(去文件管理器地址栏拷就行了)"), label=i18n("输入待处理音频文件夹路径(去文件管理器地址栏拷就行了)"),
value="E:\codes\py39\\vits_vc_gpu_train\\todo-songs", value="E:\codes\py39\\test-20230416b\\todo-songs",
) )
inputs = gr.File( inputs = gr.File(
file_count="multiple", label=i18n("也可批量输入音频文件, 二选一, 优先读文件夹") file_count="multiple", label=i18n("也可批量输入音频文件, 二选一, 优先读文件夹")
@ -1171,9 +1232,12 @@ with gr.Blocks() as app:
inputs, inputs,
vc_transform1, vc_transform1,
f0method1, f0method1,
file_index2, file_index3,
file_index4,
# file_big_npy2, # file_big_npy2,
index_rate2, index_rate2,
filter_radius1,
resample_sr1
], ],
[vc_output3], [vc_output3],
) )
@ -1188,7 +1252,7 @@ with gr.Blocks() as app:
with gr.Column(): with gr.Column():
dir_wav_input = gr.Textbox( dir_wav_input = gr.Textbox(
label=i18n("输入待处理音频文件夹路径"), label=i18n("输入待处理音频文件夹路径"),
value="E:\\codes\\py39\\vits_vc_gpu_train\\todo-songs", value="E:\\codes\\py39\\test-20230416b\\todo-songs\\todo-songs",
) )
wav_inputs = gr.File( wav_inputs = gr.File(
file_count="multiple", label=i18n("也可批量输入音频文件, 二选一, 优先读文件夹") file_count="multiple", label=i18n("也可批量输入音频文件, 二选一, 优先读文件夹")
@ -1242,6 +1306,14 @@ with gr.Blocks() as app:
value=True, value=True,
interactive=True, interactive=True,
) )
np7 = gr.Slider(
minimum=0,
maximum=ncpu,
step=1,
label=i18n("提取音高和处理数据使用的CPU进程数"),
value=ncpu,
interactive=True,
)
with gr.Group(): # 暂时单人的, 后面支持最多4人的#数据处理 with gr.Group(): # 暂时单人的, 后面支持最多4人的#数据处理
gr.Markdown( gr.Markdown(
value=i18n( value=i18n(
@ -1263,7 +1335,7 @@ with gr.Blocks() as app:
but1 = gr.Button(i18n("处理数据"), variant="primary") but1 = gr.Button(i18n("处理数据"), variant="primary")
info1 = gr.Textbox(label=i18n("输出信息"), value="") info1 = gr.Textbox(label=i18n("输出信息"), value="")
but1.click( but1.click(
preprocess_dataset, [trainset_dir4, exp_dir1, sr2], [info1] preprocess_dataset, [trainset_dir4, exp_dir1, sr2,np7], [info1]
) )
with gr.Group(): with gr.Group():
gr.Markdown(value=i18n("step2b: 使用CPU提取音高(如果模型带音高), 使用GPU提取特征(选择卡号)")) gr.Markdown(value=i18n("step2b: 使用CPU提取音高(如果模型带音高), 使用GPU提取特征(选择卡号)"))
@ -1276,14 +1348,6 @@ with gr.Blocks() as app:
) )
gpu_info9 = gr.Textbox(label=i18n("显卡信息"), value=gpu_info) gpu_info9 = gr.Textbox(label=i18n("显卡信息"), value=gpu_info)
with gr.Column(): with gr.Column():
np7 = gr.Slider(
minimum=0,
maximum=ncpu,
step=1,
label=i18n("提取音高使用的CPU进程数"),
value=ncpu,
interactive=True,
)
f0method8 = gr.Radio( f0method8 = gr.Radio(
label=i18n( label=i18n(
"选择音高提取算法:输入歌声可用pm提速,高质量语音但CPU差可用dio提速,harvest质量更好但慢" "选择音高提取算法:输入歌声可用pm提速,高质量语音但CPU差可用dio提速,harvest质量更好但慢"
@ -1533,6 +1597,19 @@ with gr.Blocks() as app:
butOnnx = gr.Button(i18n("导出Onnx模型"), variant="primary") butOnnx = gr.Button(i18n("导出Onnx模型"), variant="primary")
butOnnx.click(export_onnx, [ckpt_dir, onnx_dir, moevs], infoOnnx) butOnnx.click(export_onnx, [ckpt_dir, onnx_dir, moevs], infoOnnx)
tab_faq=i18n("常见问题解答")
with gr.TabItem(tab_faq):
try:
if(tab_faq=="常见问题解答"):
with open("docs/faq.md","r",encoding="utf8")as f:info=f.read()
else:
with open("docs/faq_en.md", "r")as f:info = f.read()
gr.Markdown(
value=info
)
except:
gr.Markdown(traceback.format_exc())
# with gr.TabItem(i18n("招募音高曲线前端编辑器")): # with gr.TabItem(i18n("招募音高曲线前端编辑器")):
# gr.Markdown(value=i18n("加开发群联系我xxxxx")) # gr.Markdown(value=i18n("加开发群联系我xxxxx"))
# with gr.TabItem(i18n("点击查看交流、问题反馈群号")): # with gr.TabItem(i18n("点击查看交流、问题反馈群号")):

View File

@ -1,6 +1,7 @@
import sys, os import sys, os
now_dir = os.getcwd() now_dir = os.getcwd()
sys.path.append(os.path.join(now_dir))
sys.path.append(os.path.join(now_dir, "train")) sys.path.append(os.path.join(now_dir, "train"))
import utils import utils

View File

@ -2,11 +2,25 @@ import numpy as np, parselmouth, torch, pdb
from time import time as ttime from time import time as ttime
import torch.nn.functional as F import torch.nn.functional as F
import scipy.signal as signal import scipy.signal as signal
import pyworld, os, traceback, faiss import pyworld, os, traceback, faiss,librosa
from scipy import signal from scipy import signal
from functools import lru_cache
bh, ah = signal.butter(N=5, Wn=48, btype="high", fs=16000) bh, ah = signal.butter(N=5, Wn=48, btype="high", fs=16000)
input_audio_path2wav={}
@lru_cache
def cache_harvest_f0(input_audio_path,fs,f0max,f0min,frame_period):
audio=input_audio_path2wav[input_audio_path]
f0, t = pyworld.harvest(
audio,
fs=fs,
f0_ceil=f0max,
f0_floor=f0min,
frame_period=frame_period,
)
f0 = pyworld.stonemask(audio, f0, t, fs)
return f0
class VC(object): class VC(object):
def __init__(self, tgt_sr, config): def __init__(self, tgt_sr, config):
@ -27,7 +41,8 @@ class VC(object):
self.t_max = self.sr * self.x_max # 免查询时长阈值 self.t_max = self.sr * self.x_max # 免查询时长阈值
self.device = config.device self.device = config.device
def get_f0(self, x, p_len, f0_up_key, f0_method, inp_f0=None): def get_f0(self, input_audio_path,x, p_len, f0_up_key, f0_method,filter_radius, inp_f0=None):
global input_audio_path2wav
time_step = self.window / self.sr * 1000 time_step = self.window / self.sr * 1000
f0_min = 50 f0_min = 50
f0_max = 1100 f0_max = 1100
@ -49,15 +64,10 @@ class VC(object):
f0 = np.pad( f0 = np.pad(
f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant" f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant"
) )
else: elif f0_method == "harvest":
f0, t = pyworld.harvest( input_audio_path2wav[input_audio_path]=x.astype(np.double)
x.astype(np.double), f0=cache_harvest_f0(input_audio_path,self.sr,f0_max,f0_min,10)
fs=self.sr, if(filter_radius>2):
f0_ceil=f0_max,
f0_floor=f0_min,
frame_period=10,
)
f0 = pyworld.stonemask(x.astype(np.double), f0, t, self.sr)
f0 = signal.medfilt(f0, 3) f0 = signal.medfilt(f0, 3)
f0 *= pow(2, f0_up_key / 12) f0 *= pow(2, f0_up_key / 12)
# with open("test.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()])) # with open("test.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
@ -158,7 +168,6 @@ class VC(object):
.data.cpu() .data.cpu()
.float() .float()
.numpy() .numpy()
.astype(np.int16)
) )
else: else:
audio1 = ( audio1 = (
@ -166,7 +175,6 @@ class VC(object):
.data.cpu() .data.cpu()
.float() .float()
.numpy() .numpy()
.astype(np.int16)
) )
del feats, p_len, padding_mask del feats, p_len, padding_mask
if torch.cuda.is_available(): if torch.cuda.is_available():
@ -182,6 +190,7 @@ class VC(object):
net_g, net_g,
sid, sid,
audio, audio,
input_audio_path,
times, times,
f0_up_key, f0_up_key,
f0_method, f0_method,
@ -189,6 +198,9 @@ class VC(object):
# file_big_npy, # file_big_npy,
index_rate, index_rate,
if_f0, if_f0,
filter_radius,
tgt_sr,
resample_sr,
f0_file=None, f0_file=None,
): ):
if ( if (
@ -243,7 +255,7 @@ class VC(object):
sid = torch.tensor(sid, device=self.device).unsqueeze(0).long() sid = torch.tensor(sid, device=self.device).unsqueeze(0).long()
pitch, pitchf = None, None pitch, pitchf = None, None
if if_f0 == 1: if if_f0 == 1:
pitch, pitchf = self.get_f0(audio_pad, p_len, f0_up_key, f0_method, inp_f0) pitch, pitchf = self.get_f0(input_audio_path,audio_pad, p_len, f0_up_key, f0_method,filter_radius, inp_f0)
pitch = pitch[:p_len] pitch = pitch[:p_len]
pitchf = pitchf[:p_len] pitchf = pitchf[:p_len]
if self.device == "mps": if self.device == "mps":
@ -316,6 +328,11 @@ class VC(object):
)[self.t_pad_tgt : -self.t_pad_tgt] )[self.t_pad_tgt : -self.t_pad_tgt]
) )
audio_opt = np.concatenate(audio_opt) audio_opt = np.concatenate(audio_opt)
if(resample_sr>=16000 and tgt_sr!=resample_sr):
audio_opt = librosa.resample(
audio_opt, orig_sr=tgt_sr, target_sr=resample_sr
)
audio_opt=audio_opt.astype(np.int16)
del pitch, pitchf, sid del pitch, pitchf, sid
if torch.cuda.is_available(): if torch.cuda.is_available():
torch.cuda.empty_cache() torch.cuda.empty_cache()