diff --git a/i18n/locale/en_US.json b/i18n/locale/en_US.json index dba5ec3..c95223c 100644 --- a/i18n/locale/en_US.json +++ b/i18n/locale/en_US.json @@ -38,7 +38,7 @@ "加载模型": "Load model", "加载预训练底模D路径": "Load pre-trained base model D path:", "加载预训练底模G路径": "Load pre-trained base model G path:", - "单次推理": "单次推理", + "单次推理": "Single Inference", "卸载音色省显存": "Unload voice to save GPU memory:", "变调(整数, 半音数量, 升八度12降八度-12)": "Transpose (integer, number of semitones, raise by an octave: 12, lower by an octave: -12):", "后处理重采样至最终采样率,0为不进行重采样": "Resample the output audio in post-processing to the final sample rate. Set to 0 for no resampling:", @@ -54,7 +54,7 @@ "很遗憾您这没有能用的显卡来支持您训练": "Unfortunately, there is no compatible GPU available to support your training.", "性能设置": "Performance settings", "总训练轮数total_epoch": "Total training epochs (total_epoch):", - "批量推理": "批量推理", + "批量推理": "Batch Inference", "批量转换, 输入待转换音频文件夹, 或上传多个音频文件, 在指定文件夹(默认opt)下输出转换的音频. ": "Batch conversion. Enter the folder containing the audio files to be converted or upload multiple audio files. The converted audio will be output in the specified folder (default: 'opt').", "指定输出主人声文件夹": "Specify the output folder for vocals:", "指定输出文件夹": "Specify output folder:", @@ -120,11 +120,12 @@ "选择.pth文件": "Select the .pth file", "选择音高提取算法,输入歌声可用pm提速,harvest低音好但巨慢无比,crepe效果好但吃GPU": "选择音高提取算法,输入歌声可用pm提速,harvest低音好但巨慢无比,crepe效果好但吃GPU", "选择音高提取算法,输入歌声可用pm提速,harvest低音好但巨慢无比,crepe效果好但吃GPU,rmvpe效果最好且微吃GPU": "Select the pitch extraction algorithm ('pm': faster extraction but lower-quality speech; 'harvest': better bass but extremely slow; 'crepe': better quality but GPU intensive), 'rmvpe': best quality, and little GPU requirement", - "选择音高提取算法:输入歌声可用pm提速,高质量语音但CPU差可用dio提速,harvest质量更好但慢,rmvpe效果最好且微吃CPU/GPU": "选择音高提取算法:输入歌声可用pm提速,高质量语音但CPU差可用dio提速,harvest质量更好但慢,rmvpe效果最好且微吃CPU/GPU", + "选择音高提取算法:输入歌声可用pm提速,高质量语音但CPU差可用dio提速,harvest质量更好但慢,rmvpe效果最好且微吃CPU/GPU": "Select the pitch extraction algorithm: when extracting singing, you can use 'pm' to speed up. For high-quality speech with fast performance, but worse CPU usage, you can use 'dio'. 'harvest' results in better quality but is slower. 'rmvpe' has the best results and consumes less CPU/GPU", "采样长度": "Sample length", "重载设备列表": "Reload device list", "音调设置": "Pitch settings", "音频设备(请使用同种类驱动)": "Audio device (please use the same type of driver)", "音高算法": "pitch detection algorithm", - "额外推理时长": "Extra inference time" + "额外推理时长": "Extra inference time", + "E:\\语音音频+标注\\米津玄师\\src": "C:\\Users\\Desktop\\src" } diff --git a/infer-web.py b/infer-web.py index 9c356c1..8c5f021 100644 --- a/infer-web.py +++ b/infer-web.py @@ -1142,7 +1142,7 @@ with gr.Blocks(title="RVC WebUI") as app: ) with gr.Row(): trainset_dir4 = gr.Textbox( - label=i18n("输入训练文件夹路径"), value="E:\\语音音频+标注\\米津玄师\\src" + label=i18n("输入训练文件夹路径"), value=i18n("E:\\语音音频+标注\\米津玄师\\src") ) spk_id5 = gr.Slider( minimum=0,