1
0
mirror of synced 2024-12-18 02:16:08 +01:00

Merge pull request #2164 from FChin39/main

feat: Add API Code for Enhanced Functionality
This commit is contained in:
RVC-Boss 2024-06-30 15:06:09 +08:00 committed by GitHub
commit 9899757d07
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
2 changed files with 1005 additions and 0 deletions

440
api_231006.py Normal file
View File

@ -0,0 +1,440 @@
#api for 231006 release version by Xiaokai
import os
import sys
import json
import re
import time
import librosa
import torch
import numpy as np
import torch.nn.functional as F
import torchaudio.transforms as tat
import sounddevice as sd
from dotenv import load_dotenv
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
import threading
import uvicorn
import logging
# Initialize the logger
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Define FastAPI app
app = FastAPI()
class GUIConfig:
def __init__(self) -> None:
self.pth_path: str = ""
self.index_path: str = ""
self.pitch: int = 0
self.samplerate: int = 40000
self.block_time: float = 1.0 # s
self.buffer_num: int = 1
self.threhold: int = -60
self.crossfade_time: float = 0.05
self.extra_time: float = 2.5
self.I_noise_reduce = False
self.O_noise_reduce = False
self.rms_mix_rate = 0.0
self.index_rate = 0.3
self.f0method = "rmvpe"
self.sg_input_device = ""
self.sg_output_device = ""
class ConfigData(BaseModel):
pth_path: str
index_path: str
sg_input_device: str
sg_output_device: str
threhold: int = -60
pitch: int = 0
index_rate: float = 0.3
rms_mix_rate: float = 0.0
block_time: float = 0.25
crossfade_length: float = 0.05
extra_time: float = 2.5
n_cpu: int = 4
I_noise_reduce: bool = False
O_noise_reduce: bool = False
class AudioAPI:
def __init__(self) -> None:
self.gui_config = GUIConfig()
self.config = None # Initialize Config object as None
self.flag_vc = False
self.function = "vc"
self.delay_time = 0
self.rvc = None # Initialize RVC object as None
def load(self):
input_devices, output_devices, _, _ = self.get_devices()
try:
with open("configs/config.json", "r", encoding='utf-8') as j:
data = json.load(j)
data["rmvpe"] = True # Ensure rmvpe is the only f0method
if data["sg_input_device"] not in input_devices:
data["sg_input_device"] = input_devices[sd.default.device[0]]
if data["sg_output_device"] not in output_devices:
data["sg_output_device"] = output_devices[sd.default.device[1]]
except Exception as e:
logger.error(f"Failed to load configuration: {e}")
with open("configs/config.json", "w", encoding='utf-8') as j:
data = {
"pth_path": " ",
"index_path": " ",
"sg_input_device": input_devices[sd.default.device[0]],
"sg_output_device": output_devices[sd.default.device[1]],
"threhold": "-60",
"pitch": "0",
"index_rate": "0",
"rms_mix_rate": "0",
"block_time": "0.25",
"crossfade_length": "0.05",
"extra_time": "2.5",
"f0method": "rmvpe",
"use_jit": False,
}
data["rmvpe"] = True # Ensure rmvpe is the only f0method
json.dump(data, j, ensure_ascii=False)
return data
def set_values(self, values):
logger.info(f"Setting values: {values}")
if not values.pth_path.strip():
raise HTTPException(status_code=400, detail="Please select a .pth file")
if not values.index_path.strip():
raise HTTPException(status_code=400, detail="Please select an index file")
self.set_devices(values.sg_input_device, values.sg_output_device)
self.config.use_jit = False
self.gui_config.pth_path = values.pth_path
self.gui_config.index_path = values.index_path
self.gui_config.threhold = values.threhold
self.gui_config.pitch = values.pitch
self.gui_config.block_time = values.block_time
self.gui_config.crossfade_time = values.crossfade_length
self.gui_config.extra_time = values.extra_time
self.gui_config.I_noise_reduce = values.I_noise_reduce
self.gui_config.O_noise_reduce = values.O_noise_reduce
self.gui_config.rms_mix_rate = values.rms_mix_rate
self.gui_config.index_rate = values.index_rate
self.gui_config.n_cpu = values.n_cpu
self.gui_config.f0method = "rmvpe"
return True
def start_vc(self):
torch.cuda.empty_cache()
self.flag_vc = True
self.rvc = rvc_for_realtime.RVC(
self.gui_config.pitch,
self.gui_config.pth_path,
self.gui_config.index_path,
self.gui_config.index_rate,
0,
0,
0,
self.config,
self.rvc if self.rvc else None,
)
self.gui_config.samplerate = self.rvc.tgt_sr
self.zc = self.rvc.tgt_sr // 100
self.block_frame = (
int(
np.round(
self.gui_config.block_time
* self.gui_config.samplerate
/ self.zc
)
)
* self.zc
)
self.block_frame_16k = 160 * self.block_frame // self.zc
self.crossfade_frame = (
int(
np.round(
self.gui_config.crossfade_time
* self.gui_config.samplerate
/ self.zc
)
)
* self.zc
)
self.sola_search_frame = self.zc
self.extra_frame = (
int(
np.round(
self.gui_config.extra_time
* self.gui_config.samplerate
/ self.zc
)
)
* self.zc
)
self.input_wav = torch.zeros(
self.extra_frame + self.crossfade_frame + self.sola_search_frame + self.block_frame,
device=self.config.device,
dtype=torch.float32,
)
self.input_wav_res = torch.zeros(
160 * self.input_wav.shape[0] // self.zc,
device=self.config.device,
dtype=torch.float32,
)
self.pitch = np.zeros(self.input_wav.shape[0] // self.zc, dtype="int32")
self.pitchf = np.zeros(self.input_wav.shape[0] // self.zc, dtype="float64")
self.sola_buffer = torch.zeros(self.crossfade_frame, device=self.config.device, dtype=torch.float32)
self.nr_buffer = self.sola_buffer.clone()
self.output_buffer = self.input_wav.clone()
self.res_buffer = torch.zeros(2 * self.zc, device=self.config.device, dtype=torch.float32)
self.valid_rate = 1 - (self.extra_frame - 1) / self.input_wav.shape[0]
self.fade_in_window = (
torch.sin(0.5 * np.pi * torch.linspace(0.0, 1.0, steps=self.crossfade_frame, device=self.config.device, dtype=torch.float32)) ** 2
)
self.fade_out_window = 1 - self.fade_in_window
self.resampler = tat.Resample(
orig_freq=self.gui_config.samplerate,
new_freq=16000,
dtype=torch.float32,
).to(self.config.device)
self.tg = TorchGate(
sr=self.gui_config.samplerate, n_fft=4 * self.zc, prop_decrease=0.9
).to(self.config.device)
thread_vc = threading.Thread(target=self.soundinput)
thread_vc.start()
def soundinput(self):
channels = 1 if sys.platform == "darwin" else 2
with sd.Stream(
channels=channels,
callback=self.audio_callback,
blocksize=self.block_frame,
samplerate=self.gui_config.samplerate,
dtype="float32",
) as stream:
global stream_latency
stream_latency = stream.latency[-1]
while self.flag_vc:
time.sleep(self.gui_config.block_time)
logger.info("Audio block passed.")
logger.info("Ending VC")
def audio_callback(self, indata: np.ndarray, outdata: np.ndarray, frames, times, status):
start_time = time.perf_counter()
indata = librosa.to_mono(indata.T)
if self.gui_config.threhold > -60:
rms = librosa.feature.rms(y=indata, frame_length=4 * self.zc, hop_length=self.zc)
db_threhold = (librosa.amplitude_to_db(rms, ref=1.0)[0] < self.gui_config.threhold)
for i in range(db_threhold.shape[0]):
if db_threhold[i]:
indata[i * self.zc : (i + 1) * self.zc] = 0
self.input_wav[: -self.block_frame] = self.input_wav[self.block_frame :].clone()
self.input_wav[-self.block_frame :] = torch.from_numpy(indata).to(self.config.device)
self.input_wav_res[: -self.block_frame_16k] = self.input_wav_res[self.block_frame_16k :].clone()
if self.gui_config.I_noise_reduce and self.function == "vc":
input_wav = self.input_wav[-self.crossfade_frame - self.block_frame - 2 * self.zc :]
input_wav = self.tg(input_wav.unsqueeze(0), self.input_wav.unsqueeze(0))[0, 2 * self.zc :]
input_wav[: self.crossfade_frame] *= self.fade_in_window
input_wav[: self.crossfade_frame] += self.nr_buffer * self.fade_out_window
self.nr_buffer[:] = input_wav[-self.crossfade_frame :]
input_wav = torch.cat((self.res_buffer[:], input_wav[: self.block_frame]))
self.res_buffer[:] = input_wav[-2 * self.zc :]
self.input_wav_res[-self.block_frame_16k - 160 :] = self.resampler(input_wav)[160:]
else:
self.input_wav_res[-self.block_frame_16k - 160 :] = self.resampler(self.input_wav[-self.block_frame - 2 * self.zc :])[160:]
if self.function == "vc":
f0_extractor_frame = self.block_frame_16k + 800
if self.gui_config.f0method == "rmvpe":
f0_extractor_frame = (5120 * ((f0_extractor_frame - 1) // 5120 + 1) - 160)
infer_wav = self.rvc.infer(
self.input_wav_res,
self.input_wav_res[-f0_extractor_frame:].cpu().numpy(),
self.block_frame_16k,
self.valid_rate,
self.pitch,
self.pitchf,
self.gui_config.f0method,
)
infer_wav = infer_wav[-self.crossfade_frame - self.sola_search_frame - self.block_frame :]
else:
infer_wav = self.input_wav[-self.crossfade_frame - self.sola_search_frame - self.block_frame :].clone()
if (self.gui_config.O_noise_reduce and self.function == "vc") or (self.gui_config.I_noise_reduce and self.function == "im"):
self.output_buffer[: -self.block_frame] = self.output_buffer[self.block_frame :].clone()
self.output_buffer[-self.block_frame :] = infer_wav[-self.block_frame :]
infer_wav = self.tg(infer_wav.unsqueeze(0), self.output_buffer.unsqueeze(0)).squeeze(0)
if self.gui_config.rms_mix_rate < 1 and self.function == "vc":
rms1 = librosa.feature.rms(y=self.input_wav_res[-160 * infer_wav.shape[0] // self.zc :].cpu().numpy(), frame_length=640, hop_length=160)
rms1 = torch.from_numpy(rms1).to(self.config.device)
rms1 = F.interpolate(rms1.unsqueeze(0), size=infer_wav.shape[0] + 1, mode="linear", align_corners=True)[0, 0, :-1]
rms2 = librosa.feature.rms(y=infer_wav[:].cpu().numpy(), frame_length=4 * self.zc, hop_length=self.zc)
rms2 = torch.from_numpy(rms2).to(self.config.device)
rms2 = F.interpolate(rms2.unsqueeze(0), size=infer_wav.shape[0] + 1, mode="linear", align_corners=True)[0, 0, :-1]
rms2 = torch.max(rms2, torch.zeros_like(rms2) + 1e-3)
infer_wav *= torch.pow(rms1 / rms2, torch.tensor(1 - self.gui_config.rms_mix_rate))
conv_input = infer_wav[None, None, : self.crossfade_frame + self.sola_search_frame]
cor_nom = F.conv1d(conv_input, self.sola_buffer[None, None, :])
cor_den = torch.sqrt(F.conv1d(conv_input**2, torch.ones(1, 1, self.crossfade_frame, device=self.config.device)) + 1e-8)
if sys.platform == "darwin":
_, sola_offset = torch.max(cor_nom[0, 0] / cor_den[0, 0])
sola_offset = sola_offset.item()
else:
sola_offset = torch.argmax(cor_nom[0, 0] / cor_den[0, 0])
logger.info(f"sola_offset = {sola_offset}")
infer_wav = infer_wav[sola_offset : sola_offset + self.block_frame + self.crossfade_frame]
infer_wav[: self.crossfade_frame] *= self.fade_in_window
infer_wav[: self.crossfade_frame] += self.sola_buffer * self.fade_out_window
self.sola_buffer[:] = infer_wav[-self.crossfade_frame :]
if sys.platform == "darwin":
outdata[:] = infer_wav[: -self.crossfade_frame].cpu().numpy()[:, np.newaxis]
else:
outdata[:] = infer_wav[: -self.crossfade_frame].repeat(2, 1).t().cpu().numpy()
total_time = time.perf_counter() - start_time
logger.info(f"Infer time: {total_time:.2f}")
def get_devices(self, update: bool = True):
if update:
sd._terminate()
sd._initialize()
devices = sd.query_devices()
hostapis = sd.query_hostapis()
for hostapi in hostapis:
for device_idx in hostapi["devices"]:
devices[device_idx]["hostapi_name"] = hostapi["name"]
input_devices = [
f"{d['name']} ({d['hostapi_name']})"
for d in devices
if d["max_input_channels"] > 0
]
output_devices = [
f"{d['name']} ({d['hostapi_name']})"
for d in devices
if d["max_output_channels"] > 0
]
input_devices_indices = [
d["index"] if "index" in d else d["name"]
for d in devices
if d["max_input_channels"] > 0
]
output_devices_indices = [
d["index"] if "index" in d else d["name"]
for d in devices
if d["max_output_channels"] > 0
]
return (
input_devices,
output_devices,
input_devices_indices,
output_devices_indices,
)
def set_devices(self, input_device, output_device):
(
input_devices,
output_devices,
input_device_indices,
output_device_indices,
) = self.get_devices()
logger.debug(f"Available input devices: {input_devices}")
logger.debug(f"Available output devices: {output_devices}")
logger.debug(f"Selected input device: {input_device}")
logger.debug(f"Selected output device: {output_device}")
if input_device not in input_devices:
logger.error(f"Input device '{input_device}' is not in the list of available devices")
raise HTTPException(status_code=400, detail=f"Input device '{input_device}' is not available")
if output_device not in output_devices:
logger.error(f"Output device '{output_device}' is not in the list of available devices")
raise HTTPException(status_code=400, detail=f"Output device '{output_device}' is not available")
sd.default.device[0] = input_device_indices[input_devices.index(input_device)]
sd.default.device[1] = output_device_indices[output_devices.index(output_device)]
logger.info(f"Input device set to {sd.default.device[0]}: {input_device}")
logger.info(f"Output device set to {sd.default.device[1]}: {output_device}")
audio_api = AudioAPI()
@app.get("/inputDevices", response_model=list)
def get_input_devices():
try:
input_devices, _, _, _ = audio_api.get_devices()
return input_devices
except Exception as e:
logger.error(f"Failed to get input devices: {e}")
raise HTTPException(status_code=500, detail="Failed to get input devices")
@app.get("/outputDevices", response_model=list)
def get_output_devices():
try:
_, output_devices, _, _ = audio_api.get_devices()
return output_devices
except Exception as e:
logger.error(f"Failed to get output devices: {e}")
raise HTTPException(status_code=500, detail="Failed to get output devices")
@app.post("/config")
def configure_audio(config_data: ConfigData):
try:
logger.info(f"Configuring audio with data: {config_data}")
if audio_api.set_values(config_data):
settings = config_data.dict()
settings["use_jit"] = False
settings["f0method"] = "rmvpe"
with open("configs/config.json", "w", encoding='utf-8') as j:
json.dump(settings, j, ensure_ascii=False)
logger.info("Configuration set successfully")
return {"message": "Configuration set successfully"}
except HTTPException as e:
logger.error(f"Configuration error: {e.detail}")
raise
except Exception as e:
logger.error(f"Configuration failed: {e}")
raise HTTPException(status_code=400, detail=f"Configuration failed: {e}")
@app.post("/start")
def start_conversion():
try:
if not audio_api.flag_vc:
audio_api.start_vc()
return {"message": "Audio conversion started"}
else:
logger.warning("Audio conversion already running")
raise HTTPException(status_code=400, detail="Audio conversion already running")
except HTTPException as e:
logger.error(f"Start conversion error: {e.detail}")
raise
except Exception as e:
logger.error(f"Failed to start conversion: {e}")
raise HTTPException(status_code=500, detail=f"Failed to start conversion: {e}")
@app.post("/stop")
def stop_conversion():
try:
if audio_api.flag_vc:
audio_api.flag_vc = False
global stream_latency
stream_latency = -1
return {"message": "Audio conversion stopped"}
else:
logger.warning("Audio conversion not running")
raise HTTPException(status_code=400, detail="Audio conversion not running")
except HTTPException as e:
logger.error(f"Stop conversion error: {e.detail}")
raise
except Exception as e:
logger.error(f"Failed to stop conversion: {e}")
raise HTTPException(status_code=500, detail=f"Failed to stop conversion: {e}")
if __name__ == "__main__":
if sys.platform == "win32":
from multiprocessing import freeze_support
freeze_support()
load_dotenv()
os.environ["OMP_NUM_THREADS"] = "4"
if sys.platform == "darwin":
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"
from tools.torchgate import TorchGate
import tools.rvc_for_realtime as rvc_for_realtime
from configs.config import Config
audio_api.config = Config()
uvicorn.run(app, host="0.0.0.0", port=6242)

565
api_240604.py Normal file
View File

@ -0,0 +1,565 @@
#api for 240604 release version by Xiaokai
import os
import sys
import json
import re
import time
import librosa
import torch
import numpy as np
import torch.nn.functional as F
import torchaudio.transforms as tat
import sounddevice as sd
from dotenv import load_dotenv
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
import threading
import uvicorn
import logging
from multiprocessing import Queue, Process, cpu_count, freeze_support
# Initialize the logger
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Define FastAPI app
app = FastAPI()
class GUIConfig:
def __init__(self) -> None:
self.pth_path: str = ""
self.index_path: str = ""
self.pitch: int = 0
self.formant: float = 0.0
self.sr_type: str = "sr_model"
self.block_time: float = 0.25 # s
self.threhold: int = -60
self.crossfade_time: float = 0.05
self.extra_time: float = 2.5
self.I_noise_reduce: bool = False
self.O_noise_reduce: bool = False
self.use_pv: bool = False
self.rms_mix_rate: float = 0.0
self.index_rate: float = 0.0
self.n_cpu: int = 4
self.f0method: str = "fcpe"
self.sg_input_device: str = ""
self.sg_output_device: str = ""
class ConfigData(BaseModel):
pth_path: str
index_path: str
sg_input_device: str
sg_output_device: str
threhold: int = -60
pitch: int = 0
formant: float = 0.0
index_rate: float = 0.3
rms_mix_rate: float = 0.0
block_time: float = 0.25
crossfade_length: float = 0.05
extra_time: float = 2.5
n_cpu: int = 4
I_noise_reduce: bool = False
O_noise_reduce: bool = False
use_pv: bool = False
f0method: str = "fcpe"
class Harvest(Process):
def __init__(self, inp_q, opt_q):
super(Harvest, self).__init__()
self.inp_q = inp_q
self.opt_q = opt_q
def run(self):
import numpy as np
import pyworld
while True:
idx, x, res_f0, n_cpu, ts = self.inp_q.get()
f0, t = pyworld.harvest(
x.astype(np.double),
fs=16000,
f0_ceil=1100,
f0_floor=50,
frame_period=10,
)
res_f0[idx] = f0
if len(res_f0.keys()) >= n_cpu:
self.opt_q.put(ts)
class AudioAPI:
def __init__(self) -> None:
self.gui_config = GUIConfig()
self.config = None # Initialize Config object as None
self.flag_vc = False
self.function = "vc"
self.delay_time = 0
self.rvc = None # Initialize RVC object as None
self.inp_q = None
self.opt_q = None
self.n_cpu = min(cpu_count(), 8)
def initialize_queues(self):
self.inp_q = Queue()
self.opt_q = Queue()
for _ in range(self.n_cpu):
p = Harvest(self.inp_q, self.opt_q)
p.daemon = True
p.start()
def load(self):
input_devices, output_devices, _, _ = self.get_devices()
try:
with open("configs/config.json", "r", encoding='utf-8') as j:
data = json.load(j)
if data["sg_input_device"] not in input_devices:
data["sg_input_device"] = input_devices[sd.default.device[0]]
if data["sg_output_device"] not in output_devices:
data["sg_output_device"] = output_devices[sd.default.device[1]]
except Exception as e:
logger.error(f"Failed to load configuration: {e}")
with open("configs/config.json", "w", encoding='utf-8') as j:
data = {
"pth_path": "",
"index_path": "",
"sg_input_device": input_devices[sd.default.device[0]],
"sg_output_device": output_devices[sd.default.device[1]],
"threhold": -60,
"pitch": 0,
"formant": 0.0,
"index_rate": 0,
"rms_mix_rate": 0,
"block_time": 0.25,
"crossfade_length": 0.05,
"extra_time": 2.5,
"n_cpu": 4,
"f0method": "fcpe",
"use_jit": False,
"use_pv": False,
}
json.dump(data, j, ensure_ascii=False)
return data
def set_values(self, values):
logger.info(f"Setting values: {values}")
if not values.pth_path.strip():
raise HTTPException(status_code=400, detail="Please select a .pth file")
if not values.index_path.strip():
raise HTTPException(status_code=400, detail="Please select an index file")
self.set_devices(values.sg_input_device, values.sg_output_device)
self.config.use_jit = False
self.gui_config.pth_path = values.pth_path
self.gui_config.index_path = values.index_path
self.gui_config.threhold = values.threhold
self.gui_config.pitch = values.pitch
self.gui_config.formant = values.formant
self.gui_config.block_time = values.block_time
self.gui_config.crossfade_time = values.crossfade_length
self.gui_config.extra_time = values.extra_time
self.gui_config.I_noise_reduce = values.I_noise_reduce
self.gui_config.O_noise_reduce = values.O_noise_reduce
self.gui_config.rms_mix_rate = values.rms_mix_rate
self.gui_config.index_rate = values.index_rate
self.gui_config.n_cpu = values.n_cpu
self.gui_config.use_pv = values.use_pv
self.gui_config.f0method = values.f0method
return True
def start_vc(self):
torch.cuda.empty_cache()
self.flag_vc = True
self.rvc = rvc_for_realtime.RVC(
self.gui_config.pitch,
self.gui_config.pth_path,
self.gui_config.index_path,
self.gui_config.index_rate,
self.gui_config.n_cpu,
self.inp_q,
self.opt_q,
self.config,
self.rvc if self.rvc else None,
)
self.gui_config.samplerate = (
self.rvc.tgt_sr
if self.gui_config.sr_type == "sr_model"
else self.get_device_samplerate()
)
self.zc = self.gui_config.samplerate // 100
self.block_frame = (
int(
np.round(
self.gui_config.block_time
* self.gui_config.samplerate
/ self.zc
)
)
* self.zc
)
self.block_frame_16k = 160 * self.block_frame // self.zc
self.crossfade_frame = (
int(
np.round(
self.gui_config.crossfade_time
* self.gui_config.samplerate
/ self.zc
)
)
* self.zc
)
self.sola_buffer_frame = min(self.crossfade_frame, 4 * self.zc)
self.sola_search_frame = self.zc
self.extra_frame = (
int(
np.round(
self.gui_config.extra_time
* self.gui_config.samplerate
/ self.zc
)
)
* self.zc
)
self.input_wav = torch.zeros(
self.extra_frame
+ self.crossfade_frame
+ self.sola_search_frame
+ self.block_frame,
device=self.config.device,
dtype=torch.float32,
)
self.input_wav_denoise = self.input_wav.clone()
self.input_wav_res = torch.zeros(
160 * self.input_wav.shape[0] // self.zc,
device=self.config.device,
dtype=torch.float32,
)
self.rms_buffer = np.zeros(4 * self.zc, dtype="float32")
self.sola_buffer = torch.zeros(
self.sola_buffer_frame, device=self.config.device, dtype=torch.float32
)
self.nr_buffer = self.sola_buffer.clone()
self.output_buffer = self.input_wav.clone()
self.skip_head = self.extra_frame // self.zc
self.return_length = (
self.block_frame + self.sola_buffer_frame + self.sola_search_frame
) // self.zc
self.fade_in_window = (
torch.sin(
0.5
* np.pi
* torch.linspace(
0.0,
1.0,
steps=self.sola_buffer_frame,
device=self.config.device,
dtype=torch.float32,
)
)
** 2
)
self.fade_out_window = 1 - self.fade_in_window
self.resampler = tat.Resample(
orig_freq=self.gui_config.samplerate,
new_freq=16000,
dtype=torch.float32,
).to(self.config.device)
if self.rvc.tgt_sr != self.gui_config.samplerate:
self.resampler2 = tat.Resample(
orig_freq=self.rvc.tgt_sr,
new_freq=self.gui_config.samplerate,
dtype=torch.float32,
).to(self.config.device)
else:
self.resampler2 = None
self.tg = TorchGate(
sr=self.gui_config.samplerate, n_fft=4 * self.zc, prop_decrease=0.9
).to(self.config.device)
thread_vc = threading.Thread(target=self.soundinput)
thread_vc.start()
def soundinput(self):
channels = 1 if sys.platform == "darwin" else 2
with sd.Stream(
channels=channels,
callback=self.audio_callback,
blocksize=self.block_frame,
samplerate=self.gui_config.samplerate,
dtype="float32",
) as stream:
global stream_latency
stream_latency = stream.latency[-1]
while self.flag_vc:
time.sleep(self.gui_config.block_time)
logger.info("Audio block passed.")
logger.info("Ending VC")
def audio_callback(self, indata: np.ndarray, outdata: np.ndarray, frames, times, status):
start_time = time.perf_counter()
indata = librosa.to_mono(indata.T)
if self.gui_config.threhold > -60:
indata = np.append(self.rms_buffer, indata)
rms = librosa.feature.rms(y=indata, frame_length=4 * self.zc, hop_length=self.zc)[:, 2:]
self.rms_buffer[:] = indata[-4 * self.zc :]
indata = indata[2 * self.zc - self.zc // 2 :]
db_threhold = (
librosa.amplitude_to_db(rms, ref=1.0)[0] < self.gui_config.threhold
)
for i in range(db_threhold.shape[0]):
if db_threhold[i]:
indata[i * self.zc : (i + 1) * self.zc] = 0
indata = indata[self.zc // 2 :]
self.input_wav[: -self.block_frame] = self.input_wav[self.block_frame :].clone()
self.input_wav[-indata.shape[0] :] = torch.from_numpy(indata).to(self.config.device)
self.input_wav_res[: -self.block_frame_16k] = self.input_wav_res[self.block_frame_16k :].clone()
# input noise reduction and resampling
if self.gui_config.I_noise_reduce:
self.input_wav_denoise[: -self.block_frame] = self.input_wav_denoise[self.block_frame :].clone()
input_wav = self.input_wav[-self.sola_buffer_frame - self.block_frame :]
input_wav = self.tg(input_wav.unsqueeze(0), self.input_wav.unsqueeze(0)).squeeze(0)
input_wav[: self.sola_buffer_frame] *= self.fade_in_window
input_wav[: self.sola_buffer_frame] += self.nr_buffer * self.fade_out_window
self.input_wav_denoise[-self.block_frame :] = input_wav[: self.block_frame]
self.nr_buffer[:] = input_wav[self.block_frame :]
self.input_wav_res[-self.block_frame_16k - 160 :] = self.resampler(
self.input_wav_denoise[-self.block_frame - 2 * self.zc :]
)[160:]
else:
self.input_wav_res[-160 * (indata.shape[0] // self.zc + 1) :] = (
self.resampler(self.input_wav[-indata.shape[0] - 2 * self.zc :])[160:]
)
# infer
if self.function == "vc":
infer_wav = self.rvc.infer(
self.input_wav_res,
self.block_frame_16k,
self.skip_head,
self.return_length,
self.gui_config.f0method,
)
if self.resampler2 is not None:
infer_wav = self.resampler2(infer_wav)
elif self.gui_config.I_noise_reduce:
infer_wav = self.input_wav_denoise[self.extra_frame :].clone()
else:
infer_wav = self.input_wav[self.extra_frame :].clone()
# output noise reduction
if self.gui_config.O_noise_reduce and self.function == "vc":
self.output_buffer[: -self.block_frame] = self.output_buffer[self.block_frame :].clone()
self.output_buffer[-self.block_frame :] = infer_wav[-self.block_frame :]
infer_wav = self.tg(infer_wav.unsqueeze(0), self.output_buffer.unsqueeze(0)).squeeze(0)
# volume envelop mixing
if self.gui_config.rms_mix_rate < 1 and self.function == "vc":
if self.gui_config.I_noise_reduce:
input_wav = self.input_wav_denoise[self.extra_frame :]
else:
input_wav = self.input_wav[self.extra_frame :]
rms1 = librosa.feature.rms(
y=input_wav[: infer_wav.shape[0]].cpu().numpy(),
frame_length=4 * self.zc,
hop_length=self.zc,
)
rms1 = torch.from_numpy(rms1).to(self.config.device)
rms1 = F.interpolate(
rms1.unsqueeze(0),
size=infer_wav.shape[0] + 1,
mode="linear",
align_corners=True,
)[0, 0, :-1]
rms2 = librosa.feature.rms(
y=infer_wav[:].cpu().numpy(),
frame_length=4 * self.zc,
hop_length=self.zc,
)
rms2 = torch.from_numpy(rms2).to(self.config.device)
rms2 = F.interpolate(
rms2.unsqueeze(0),
size=infer_wav.shape[0] + 1,
mode="linear",
align_corners=True,
)[0, 0, :-1]
rms2 = torch.max(rms2, torch.zeros_like(rms2) + 1e-3)
infer_wav *= torch.pow(
rms1 / rms2, torch.tensor(1 - self.gui_config.rms_mix_rate)
)
# SOLA algorithm from https://github.com/yxlllc/DDSP-SVC
conv_input = infer_wav[None, None, : self.sola_buffer_frame + self.sola_search_frame]
cor_nom = F.conv1d(conv_input, self.sola_buffer[None, None, :])
cor_den = torch.sqrt(
F.conv1d(
conv_input**2,
torch.ones(1, 1, self.sola_buffer_frame, device=self.config.device),
)
+ 1e-8
)
if sys.platform == "darwin":
_, sola_offset = torch.max(cor_nom[0, 0] / cor_den[0, 0])
sola_offset = sola_offset.item()
else:
sola_offset = torch.argmax(cor_nom[0, 0] / cor_den[0, 0])
logger.info(f"sola_offset = {sola_offset}")
infer_wav = infer_wav[sola_offset:]
if "privateuseone" in str(self.config.device) or not self.gui_config.use_pv:
infer_wav[: self.sola_buffer_frame] *= self.fade_in_window
infer_wav[: self.sola_buffer_frame] += self.sola_buffer * self.fade_out_window
else:
infer_wav[: self.sola_buffer_frame] = phase_vocoder(
self.sola_buffer,
infer_wav[: self.sola_buffer_frame],
self.fade_out_window,
self.fade_in_window,
)
self.sola_buffer[:] = infer_wav[
self.block_frame : self.block_frame + self.sola_buffer_frame
]
if sys.platform == "darwin":
outdata[:] = infer_wav[: self.block_frame].cpu().numpy()[:, np.newaxis]
else:
outdata[:] = infer_wav[: self.block_frame].repeat(2, 1).t().cpu().numpy()
total_time = time.perf_counter() - start_time
logger.info(f"Infer time: {total_time:.2f}")
def get_devices(self, update: bool = True):
if update:
sd._terminate()
sd._initialize()
devices = sd.query_devices()
hostapis = sd.query_hostapis()
for hostapi in hostapis:
for device_idx in hostapi["devices"]:
devices[device_idx]["hostapi_name"] = hostapi["name"]
input_devices = [
f"{d['name']} ({d['hostapi_name']})"
for d in devices
if d["max_input_channels"] > 0
]
output_devices = [
f"{d['name']} ({d['hostapi_name']})"
for d in devices
if d["max_output_channels"] > 0
]
input_devices_indices = [
d["index"] if "index" in d else d["name"]
for d in devices
if d["max_input_channels"] > 0
]
output_devices_indices = [
d["index"] if "index" in d else d["name"]
for d in devices
if d["max_output_channels"] > 0
]
return (
input_devices,
output_devices,
input_devices_indices,
output_devices_indices,
)
def set_devices(self, input_device, output_device):
(
input_devices,
output_devices,
input_device_indices,
output_device_indices,
) = self.get_devices()
logger.debug(f"Available input devices: {input_devices}")
logger.debug(f"Available output devices: {output_devices}")
logger.debug(f"Selected input device: {input_device}")
logger.debug(f"Selected output device: {output_device}")
if input_device not in input_devices:
logger.error(f"Input device '{input_device}' is not in the list of available devices")
raise HTTPException(status_code=400, detail=f"Input device '{input_device}' is not available")
if output_device not in output_devices:
logger.error(f"Output device '{output_device}' is not in the list of available devices")
raise HTTPException(status_code=400, detail=f"Output device '{output_device}' is not available")
sd.default.device[0] = input_device_indices[input_devices.index(input_device)]
sd.default.device[1] = output_device_indices[output_devices.index(output_device)]
logger.info(f"Input device set to {sd.default.device[0]}: {input_device}")
logger.info(f"Output device set to {sd.default.device[1]}: {output_device}")
audio_api = AudioAPI()
@app.get("/inputDevices", response_model=list)
def get_input_devices():
try:
input_devices, _, _, _ = audio_api.get_devices()
return input_devices
except Exception as e:
logger.error(f"Failed to get input devices: {e}")
raise HTTPException(status_code=500, detail="Failed to get input devices")
@app.get("/outputDevices", response_model=list)
def get_output_devices():
try:
_, output_devices, _, _ = audio_api.get_devices()
return output_devices
except Exception as e:
logger.error(f"Failed to get output devices: {e}")
raise HTTPException(status_code=500, detail="Failed to get output devices")
@app.post("/config")
def configure_audio(config_data: ConfigData):
try:
logger.info(f"Configuring audio with data: {config_data}")
if audio_api.set_values(config_data):
settings = config_data.dict()
settings["use_jit"] = False
with open("configs/config.json", "w", encoding='utf-8') as j:
json.dump(settings, j, ensure_ascii=False)
logger.info("Configuration set successfully")
return {"message": "Configuration set successfully"}
except HTTPException as e:
logger.error(f"Configuration error: {e.detail}")
raise
except Exception as e:
logger.error(f"Configuration failed: {e}")
raise HTTPException(status_code=400, detail=f"Configuration failed: {e}")
@app.post("/start")
def start_conversion():
try:
if not audio_api.flag_vc:
audio_api.start_vc()
return {"message": "Audio conversion started"}
else:
logger.warning("Audio conversion already running")
raise HTTPException(status_code=400, detail="Audio conversion already running")
except HTTPException as e:
logger.error(f"Start conversion error: {e.detail}")
raise
except Exception as e:
logger.error(f"Failed to start conversion: {e}")
raise HTTPException(status_code=500, detail="Failed to start conversion: {e}")
@app.post("/stop")
def stop_conversion():
try:
if audio_api.flag_vc:
audio_api.flag_vc = False
global stream_latency
stream_latency = -1
return {"message": "Audio conversion stopped"}
else:
logger.warning("Audio conversion not running")
raise HTTPException(status_code=400, detail="Audio conversion not running")
except HTTPException as e:
logger.error(f"Stop conversion error: {e.detail}")
raise
except Exception as e:
logger.error(f"Failed to stop conversion: {e}")
raise HTTPException(status_code=500, detail="Failed to stop conversion: {e}")
if __name__ == "__main__":
if sys.platform == "win32":
freeze_support()
load_dotenv()
os.environ["OMP_NUM_THREADS"] = "4"
if sys.platform == "darwin":
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"
from tools.torchgate import TorchGate
import tools.rvc_for_realtime as rvc_for_realtime
from configs.config import Config
audio_api.config = Config()
audio_api.initialize_queues()
uvicorn.run(app, host="0.0.0.0", port=6242)