1
0
mirror of synced 2024-11-23 23:21:03 +01:00

Format code (#932)

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
This commit is contained in:
github-actions[bot] 2023-08-03 10:25:05 +08:00 committed by GitHub
parent 296905983a
commit 9a20c3b28f
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 29 additions and 19 deletions

View File

@ -234,16 +234,12 @@ def get_vc(model_path):
version = cpt.get("version", "v1")
if version == "v1":
if if_f0 == 1:
net_g = SynthesizerTrnMs256NSFsid(
*cpt["config"], is_half=is_half
)
net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=is_half)
else:
net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
elif version == "v2":
if if_f0 == 1:
net_g = SynthesizerTrnMs768NSFsid(
*cpt["config"], is_half=is_half
)
net_g = SynthesizerTrnMs768NSFsid(*cpt["config"], is_half=is_half)
else:
net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"])
del net_g.enc_q

View File

@ -1,10 +1,11 @@
# This code references https://huggingface.co/JosephusCheung/ASimilarityCalculatior/blob/main/qwerty.py
# Fill in the path of the model to be queried and the root directory of the reference models, and this script will return the similarity between the model to be queried and all reference models.
import sys,os
import sys, os
import torch
import torch.nn as nn
import torch.nn.functional as F
def cal_cross_attn(to_q, to_k, to_v, rand_input):
hidden_dim, embed_dim = to_q.shape
attn_to_q = nn.Linear(hidden_dim, embed_dim, bias=False)
@ -16,41 +17,50 @@ def cal_cross_attn(to_q, to_k, to_v, rand_input):
return torch.einsum(
"ik, jk -> ik",
F.softmax(torch.einsum("ij, kj -> ik", attn_to_q(rand_input), attn_to_k(rand_input)), dim=-1),
attn_to_v(rand_input)
F.softmax(
torch.einsum("ij, kj -> ik", attn_to_q(rand_input), attn_to_k(rand_input)),
dim=-1,
),
attn_to_v(rand_input),
)
def model_hash(filename):
try:
with open(filename, "rb") as file:
import hashlib
m = hashlib.sha256()
file.seek(0x100000)
m.update(file.read(0x10000))
return m.hexdigest()[0:8]
except FileNotFoundError:
return 'NOFILE'
return "NOFILE"
def eval(model, n, input):
qk = f"enc_p.encoder.attn_layers.{n}.conv_q.weight"
uk = f"enc_p.encoder.attn_layers.{n}.conv_k.weight"
vk = f"enc_p.encoder.attn_layers.{n}.conv_v.weight"
atoq, atok, atov = model[qk][:,:,0], model[uk][:,:,0], model[vk][:,:,0]
atoq, atok, atov = model[qk][:, :, 0], model[uk][:, :, 0], model[vk][:, :, 0]
attn = cal_cross_attn(atoq, atok, atov, input)
return attn
def main(path,root):
def main(path, root):
torch.manual_seed(114514)
model_a = torch.load(path, map_location="cpu")["weight"]
print("query:\t\t%s\t%s"%(path,model_hash(path)))
print("query:\t\t%s\t%s" % (path, model_hash(path)))
map_attn_a = {}
map_rand_input = {}
for n in range(6):
hidden_dim, embed_dim,_ = model_a[f"enc_p.encoder.attn_layers.{n}.conv_v.weight"].shape
hidden_dim, embed_dim, _ = model_a[
f"enc_p.encoder.attn_layers.{n}.conv_v.weight"
].shape
rand_input = torch.randn([embed_dim, hidden_dim])
map_attn_a[n] = eval(model_a, n, rand_input)
@ -59,7 +69,7 @@ def main(path,root):
del model_a
for name in sorted(list(os.listdir(root))):
path="%s/%s"%(root,name)
path = "%s/%s" % (root, name)
model_b = torch.load(path, map_location="cpu")["weight"]
sims = []
@ -70,9 +80,13 @@ def main(path,root):
sim = torch.mean(torch.cosine_similarity(attn_a, attn_b))
sims.append(sim)
print("reference:\t%s\t%s\t%s"%(path,model_hash(path),f"{torch.mean(torch.stack(sims)) * 1e2:.2f}%"))
print(
"reference:\t%s\t%s\t%s"
% (path, model_hash(path), f"{torch.mean(torch.stack(sims)) * 1e2:.2f}%")
)
if __name__ == "__main__":
query_path=r"weights\mi v3.pth"
reference_root=r"weights"
main(query_path,reference_root)
query_path = r"weights\mi v3.pth"
reference_root = r"weights"
main(query_path, reference_root)