fix: train step2a & add arg --port --pycmd --noparallel
This commit is contained in:
parent
9d1eb265c3
commit
a3089e6ead
1
.gitignore
vendored
1
.gitignore
vendored
@ -3,3 +3,4 @@ __pycache__
|
||||
/TEMP
|
||||
*.pyd
|
||||
hubert_base.pt
|
||||
/logs
|
||||
|
14
config.py
14
config.py
@ -1,3 +1,10 @@
|
||||
import argparse
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--port", type=int, default=7865, help="Listen port")
|
||||
parser.add_argument("--pycmd", type=str, default="python", help="Python command")
|
||||
parser.add_argument("--colab", action='store_true', help="Launch in colab")
|
||||
parser.add_argument("--noparallel", action='store_true', help="Disable parallel processing")
|
||||
cmd_opts = parser.parse_args()
|
||||
############离线VC参数
|
||||
inp_root=r"白鹭霜华长条"#对输入目录下所有音频进行转换,别放非音频文件
|
||||
opt_root=r"opt"#输出目录
|
||||
@ -7,10 +14,15 @@ person=r"weights\洛天依v3.pt"#目前只有洛天依v3
|
||||
device = "cuda:0"#填写cuda:x或cpu,x指代第几张卡,只支持N卡加速
|
||||
is_half=True#9-10-20-30-40系显卡无脑True,不影响质量,>=20显卡开启有加速
|
||||
n_cpu=0#默认0用上所有线程,写数字限制CPU资源使用
|
||||
############python命令路径
|
||||
python_cmd=cmd_opts.pycmd
|
||||
listen_port=cmd_opts.port
|
||||
iscolab=cmd_opts.colab
|
||||
noparallel=cmd_opts.noparallel
|
||||
############下头别动
|
||||
import torch
|
||||
if(torch.cuda.is_available()==False):
|
||||
print("没有发现支持的N卡,使用CPU进行推理")
|
||||
print("没有发现支持的N卡, 使用CPU进行推理")
|
||||
device="cpu"
|
||||
is_half=False
|
||||
if(device!="cpu"):
|
||||
|
35
infer-web.py
35
infer-web.py
@ -1,9 +1,10 @@
|
||||
from multiprocessing import cpu_count
|
||||
import threading
|
||||
from time import sleep
|
||||
from subprocess import Popen,PIPE,run as runn
|
||||
from subprocess import Popen
|
||||
from time import sleep
|
||||
import torch, pdb, os,traceback,sys,warnings,shutil,numpy as np,faiss
|
||||
import torch, os,traceback,sys,warnings,shutil,numpy as np
|
||||
import faiss
|
||||
#判断是否有能用来训练和加速推理的N卡
|
||||
ncpu=cpu_count()
|
||||
ngpu=torch.cuda.device_count()
|
||||
@ -33,11 +34,9 @@ from infer_pack.models import SynthesizerTrnMs256NSFsid, SynthesizerTrnMs256NSFs
|
||||
from scipy.io import wavfile
|
||||
from fairseq import checkpoint_utils
|
||||
import gradio as gr
|
||||
import librosa
|
||||
import logging
|
||||
from vc_infer_pipeline import VC
|
||||
import soundfile as sf
|
||||
from config import is_half,device,is_half
|
||||
from config import is_half,device,is_half,python_cmd,listen_port,iscolab,noparallel
|
||||
from infer_uvr5 import _audio_pre_
|
||||
from my_utils import load_audio
|
||||
from train.process_ckpt import show_info,change_info,merge,extract_small_model
|
||||
@ -222,7 +221,7 @@ def preprocess_dataset(trainset_dir,exp_dir,sr,n_p=ncpu):
|
||||
os.makedirs("%s/logs/%s"%(now_dir,exp_dir),exist_ok=True)
|
||||
f = open("%s/logs/%s/preprocess.log"%(now_dir,exp_dir), "w")
|
||||
f.close()
|
||||
cmd="python trainset_preprocess_pipeline_print.py %s %s %s %s/logs/%s"%(trainset_dir,sr,n_p,now_dir,exp_dir)
|
||||
cmd=python_cmd + " trainset_preprocess_pipeline_print.py %s %s %s %s/logs/%s "%(trainset_dir,sr,n_p,now_dir,exp_dir)+str(noparallel)
|
||||
print(cmd)
|
||||
p = Popen(cmd, shell=True)#, stdin=PIPE, stdout=PIPE,stderr=PIPE,cwd=now_dir
|
||||
###煞笔gr,popen read都非得全跑完了再一次性读取,不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读
|
||||
@ -242,7 +241,7 @@ def extract_f0_feature(gpus,n_p,f0method,if_f0,exp_dir):
|
||||
f = open("%s/logs/%s/extract_f0_feature.log"%(now_dir,exp_dir), "w")
|
||||
f.close()
|
||||
if(if_f0=="是"):
|
||||
cmd="python extract_f0_print.py %s/logs/%s %s %s"%(now_dir,exp_dir,n_p,f0method)
|
||||
cmd=python_cmd + " extract_f0_print.py %s/logs/%s %s %s"%(now_dir,exp_dir,n_p,f0method)
|
||||
print(cmd)
|
||||
p = Popen(cmd, shell=True,cwd=now_dir)#, stdin=PIPE, stdout=PIPE,stderr=PIPE
|
||||
###煞笔gr,popen read都非得全跑完了再一次性读取,不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读
|
||||
@ -266,7 +265,7 @@ def extract_f0_feature(gpus,n_p,f0method,if_f0,exp_dir):
|
||||
leng=len(gpus)
|
||||
ps=[]
|
||||
for idx,n_g in enumerate(gpus):
|
||||
cmd="python extract_feature_print.py %s %s %s %s/logs/%s"%(leng,idx,n_g,now_dir,exp_dir)
|
||||
cmd=python_cmd + " extract_feature_print.py %s %s %s %s/logs/%s"%(leng,idx,n_g,now_dir,exp_dir)
|
||||
print(cmd)
|
||||
p = Popen(cmd, shell=True, cwd=now_dir)#, shell=True, stdin=PIPE, stdout=PIPE, stderr=PIPE, cwd=now_dir
|
||||
ps.append(p)
|
||||
@ -305,8 +304,8 @@ def click_train(exp_dir1,sr2,if_f0_3,spk_id5,save_epoch10,total_epoch11,batch_si
|
||||
with open("%s/filelist.txt"%exp_dir,"w")as f:f.write("\n".join(opt))
|
||||
print("write filelist done")
|
||||
#生成config#无需生成config
|
||||
# cmd = "python train_nsf_sim_cache_sid_load_pretrain.py -e mi-test -sr 40k -f0 1 -bs 4 -g 0 -te 10 -se 5 -pg pretrained/f0G40k.pth -pd pretrained/f0D40k.pth -l 1 -c 0"
|
||||
cmd = "python train_nsf_sim_cache_sid_load_pretrain.py -e %s -sr %s -f0 %s -bs %s -g %s -te %s -se %s -pg %s -pd %s -l %s -c %s" % (exp_dir1,sr2,1 if if_f0_3=="是"else 0,batch_size12,gpus16,total_epoch11,save_epoch10,pretrained_G14,pretrained_D15,1 if if_save_latest13=="是"else 0,1 if if_cache_gpu17=="是"else 0)
|
||||
# cmd = python_cmd + " train_nsf_sim_cache_sid_load_pretrain.py -e mi-test -sr 40k -f0 1 -bs 4 -g 0 -te 10 -se 5 -pg pretrained/f0G40k.pth -pd pretrained/f0D40k.pth -l 1 -c 0"
|
||||
cmd = python_cmd + " train_nsf_sim_cache_sid_load_pretrain.py -e %s -sr %s -f0 %s -bs %s -g %s -te %s -se %s -pg %s -pd %s -l %s -c %s" % (exp_dir1,sr2,1 if if_f0_3=="是"else 0,batch_size12,gpus16,total_epoch11,save_epoch10,pretrained_G14,pretrained_D15,1 if if_save_latest13=="是"else 0,1 if if_cache_gpu17=="是"else 0)
|
||||
print(cmd)
|
||||
p = Popen(cmd, shell=True, cwd=now_dir)
|
||||
p.wait()
|
||||
@ -351,7 +350,7 @@ def train1key(exp_dir1, sr2, if_f0_3, trainset_dir4, spk_id5, gpus6, np7, f0meth
|
||||
os.makedirs("%s/logs/%s"%(now_dir,exp_dir1),exist_ok=True)
|
||||
#########step1:处理数据
|
||||
open("%s/logs/%s/preprocess.log"%(now_dir,exp_dir1), "w").close()
|
||||
cmd="python trainset_preprocess_pipeline_print.py %s %s %s %s/logs/%s"%(trainset_dir4,sr_dict[sr2],ncpu,now_dir,exp_dir1)
|
||||
cmd=python_cmd + " trainset_preprocess_pipeline_print.py %s %s %s %s/logs/%s "%(trainset_dir4,sr_dict[sr2],ncpu,now_dir,exp_dir1)+str(noparallel)
|
||||
yield get_info_str("step1:正在处理数据")
|
||||
yield get_info_str(cmd)
|
||||
p = Popen(cmd, shell=True)
|
||||
@ -361,7 +360,7 @@ def train1key(exp_dir1, sr2, if_f0_3, trainset_dir4, spk_id5, gpus6, np7, f0meth
|
||||
open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir1), "w")
|
||||
if(if_f0_3=="是"):
|
||||
yield get_info_str("step2a:正在提取音高")
|
||||
cmd="python extract_f0_print.py %s/logs/%s %s %s"%(now_dir,exp_dir1,np7,f0method8)
|
||||
cmd=python_cmd + " extract_f0_print.py %s/logs/%s %s %s"%(now_dir,exp_dir1,np7,f0method8)
|
||||
yield get_info_str(cmd)
|
||||
p = Popen(cmd, shell=True,cwd=now_dir)
|
||||
p.wait()
|
||||
@ -373,7 +372,7 @@ def train1key(exp_dir1, sr2, if_f0_3, trainset_dir4, spk_id5, gpus6, np7, f0meth
|
||||
leng=len(gpus)
|
||||
ps=[]
|
||||
for idx,n_g in enumerate(gpus):
|
||||
cmd="python extract_feature_print.py %s %s %s %s/logs/%s"%(leng,idx,n_g,now_dir,exp_dir1)
|
||||
cmd=python_cmd + " extract_feature_print.py %s %s %s %s/logs/%s"%(leng,idx,n_g,now_dir,exp_dir1)
|
||||
yield get_info_str(cmd)
|
||||
p = Popen(cmd, shell=True, cwd=now_dir)#, shell=True, stdin=PIPE, stdout=PIPE, stderr=PIPE, cwd=now_dir
|
||||
ps.append(p)
|
||||
@ -399,7 +398,7 @@ def train1key(exp_dir1, sr2, if_f0_3, trainset_dir4, spk_id5, gpus6, np7, f0meth
|
||||
opt.append("%s/%s.wav|%s/%s.npy|%s"%(gt_wavs_dir.replace("\\","\\\\"),name,co256_dir.replace("\\","\\\\"),name,spk_id5))
|
||||
with open("%s/filelist.txt"%exp_dir,"w")as f:f.write("\n".join(opt))
|
||||
yield get_info_str("write filelist done")
|
||||
cmd = "python train_nsf_sim_cache_sid_load_pretrain.py -e %s -sr %s -f0 %s -bs %s -g %s -te %s -se %s -pg %s -pd %s -l %s -c %s" % (exp_dir1,sr2,1 if if_f0_3=="是"else 0,batch_size12,gpus16,total_epoch11,save_epoch10,pretrained_G14,pretrained_D15,1 if if_save_latest13=="是"else 0,1 if if_cache_gpu17=="是"else 0)
|
||||
cmd = python_cmd + " train_nsf_sim_cache_sid_load_pretrain.py -e %s -sr %s -f0 %s -bs %s -g %s -te %s -se %s -pg %s -pd %s -l %s -c %s" % (exp_dir1,sr2,1 if if_f0_3=="是"else 0,batch_size12,gpus16,total_epoch11,save_epoch10,pretrained_G14,pretrained_D15,1 if if_save_latest13=="是"else 0,1 if if_cache_gpu17=="是"else 0)
|
||||
yield get_info_str(cmd)
|
||||
p = Popen(cmd, shell=True, cwd=now_dir)
|
||||
p.wait()
|
||||
@ -630,11 +629,7 @@ with gr.Blocks() as app:
|
||||
with gr.TabItem("点击查看交流、问题反馈群号"):
|
||||
gr.Markdown(value="""xxxxx""")
|
||||
|
||||
import argparse
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--colab", action='store_true', help="Launch in colab")
|
||||
cmd_opts = parser.parse_args()
|
||||
if cmd_opts.colab:
|
||||
if iscolab:
|
||||
app.queue(concurrency_count=511, max_size=1022).launch(share=True)
|
||||
else:
|
||||
app.queue(concurrency_count=511, max_size=1022).launch(server_name="0.0.0.0",inbrowser=True,server_port=7865,quiet=True)
|
||||
app.queue(concurrency_count=511, max_size=1022).launch(server_name="0.0.0.0",inbrowser=True,server_port=listen_port,quiet=True)
|
||||
|
@ -10,10 +10,7 @@ def load_audio(file,sr):
|
||||
.output("-", format="s16le", acodec="pcm_s16le", ac=1, ar=sr)
|
||||
.run(cmd=["ffmpeg", "-nostdin"], capture_stdout=True, capture_stderr=True)
|
||||
)
|
||||
except ffmpeg.Error as e:
|
||||
raise RuntimeError(f"Failed to load audio: {e.stderr.decode()}") from e
|
||||
except Exception as e:
|
||||
raise RuntimeError(f"Failed to load audio: {e}")
|
||||
|
||||
return np.frombuffer(out, np.int16).flatten().astype(np.float32) / 32768.0
|
||||
|
||||
if __name__=='__main__' :
|
||||
print(load_audio(r"C:\CloudMusic\宮野幸子,森下唯 - 月夜に謳う君 -LUNA-.mp3",16000).shape)
|
@ -4,7 +4,6 @@ import numpy as np
|
||||
# This function is obtained from librosa.
|
||||
def get_rms(
|
||||
y,
|
||||
*,
|
||||
frame_length=2048,
|
||||
hop_length=512,
|
||||
pad_mode="constant",
|
||||
|
@ -1,4 +1,4 @@
|
||||
import sys,os,pdb,multiprocessing
|
||||
import sys,os,multiprocessing
|
||||
now_dir=os.getcwd()
|
||||
sys.path.append(now_dir)
|
||||
|
||||
@ -6,20 +6,15 @@ inp_root = sys.argv[1]
|
||||
sr = int(sys.argv[2])
|
||||
n_p = int(sys.argv[3])
|
||||
exp_dir = sys.argv[4]
|
||||
import numpy as np,ffmpeg,os,traceback
|
||||
noparallel = sys.argv[5] == "True"
|
||||
import numpy as np,os,traceback
|
||||
from slicer2 import Slicer
|
||||
from joblib import Parallel, delayed
|
||||
import librosa,traceback
|
||||
from scipy.io import wavfile
|
||||
import multiprocessing
|
||||
from my_utils import load_audio
|
||||
from time import sleep
|
||||
|
||||
f = open("%s/preprocess.log"%exp_dir, "a+")
|
||||
def printt(strr):
|
||||
print(strr)
|
||||
f.write("%s\n" % strr)
|
||||
f.flush()
|
||||
mutex = multiprocessing.Lock()
|
||||
|
||||
class PreProcess():
|
||||
def __init__(self,sr,exp_dir):
|
||||
@ -40,10 +35,18 @@ class PreProcess():
|
||||
self.exp_dir=exp_dir
|
||||
self.gt_wavs_dir="%s/0_gt_wavs"%exp_dir
|
||||
self.wavs16k_dir="%s/1_16k_wavs"%exp_dir
|
||||
self.f = open("%s/preprocess.log"%exp_dir, "a+")
|
||||
os.makedirs(self.exp_dir,exist_ok=True)
|
||||
os.makedirs(self.gt_wavs_dir,exist_ok=True)
|
||||
os.makedirs(self.wavs16k_dir,exist_ok=True)
|
||||
|
||||
def print(self, strr):
|
||||
mutex.acquire()
|
||||
print(strr)
|
||||
self.f.write("%s\n" % strr)
|
||||
self.f.flush()
|
||||
mutex.release()
|
||||
|
||||
def norm_write(self,tmp_audio,idx0,idx1):
|
||||
tmp_audio = (tmp_audio / np.abs(tmp_audio).max() * (self.max * self.alpha)) + (1 - self.alpha) * tmp_audio
|
||||
wavfile.write("%s/%s_%s.wav" % (self.gt_wavs_dir, idx0, idx1), self.sr, (tmp_audio*32768).astype(np.int16))
|
||||
@ -67,9 +70,9 @@ class PreProcess():
|
||||
tmp_audio = audio[start:]
|
||||
break
|
||||
self.norm_write(tmp_audio, idx0, idx1)
|
||||
printt("%s->Suc."%path)
|
||||
self.print("%s->Suc."%path)
|
||||
except:
|
||||
printt("%s->%s"%(path,traceback.format_exc()))
|
||||
self.print("%s->%s"%(path,traceback.format_exc()))
|
||||
|
||||
def pipeline_mp(self,infos):
|
||||
for path, idx0 in infos:
|
||||
@ -78,6 +81,9 @@ class PreProcess():
|
||||
def pipeline_mp_inp_dir(self,inp_root,n_p):
|
||||
try:
|
||||
infos = [("%s/%s" % (inp_root, name), idx) for idx, name in enumerate(sorted(list(os.listdir(inp_root))))]
|
||||
if noparallel:
|
||||
for i in range(n_p): self.pipeline_mp(infos[i::n_p])
|
||||
else:
|
||||
ps=[]
|
||||
for i in range(n_p):
|
||||
p=multiprocessing.Process(target=self.pipeline_mp,args=(infos[i::n_p],))
|
||||
@ -85,20 +91,14 @@ class PreProcess():
|
||||
ps.append(p)
|
||||
for p in ps:p.join()
|
||||
except:
|
||||
printt("Fail. %s"%traceback.format_exc())
|
||||
self.print("Fail. %s"%traceback.format_exc())
|
||||
|
||||
def preprocess_trainset(inp_root, sr, n_p, exp_dir):
|
||||
pp=PreProcess(sr,exp_dir)
|
||||
pp.print("start preprocess")
|
||||
pp.print(sys.argv)
|
||||
pp.pipeline_mp_inp_dir(inp_root,n_p)
|
||||
pp.print("end preprocess")
|
||||
|
||||
if __name__=='__main__':
|
||||
# f = open("logs/log_preprocess.log", "w")
|
||||
printt(sys.argv)
|
||||
######################################################
|
||||
# inp_root=r"E:\语音音频+标注\米津玄师\src"
|
||||
# inp_root=r"E:\codes\py39\vits_vc_gpu_train\todo-songs"
|
||||
# sr=40000
|
||||
# n_p = 6
|
||||
# exp_dir=r"E:\codes\py39\dataset\mi-test"
|
||||
|
||||
######################################################
|
||||
printt("start preprocess")
|
||||
pp=PreProcess(sr,exp_dir)
|
||||
pp.pipeline_mp_inp_dir(inp_root,n_p)
|
||||
printt("end preprocess")
|
||||
preprocess_trainset(inp_root, sr, n_p, exp_dir)
|
||||
|
@ -1,6 +1,7 @@
|
||||
MIT License
|
||||
|
||||
Copyright (c) 2023 liujing04
|
||||
Copyright (c) 2023 源文雨
|
||||
|
||||
本软件及其相关代码以MIT协议开源,作者不对软件具备任何控制力,使用软件者、传播软件导出的声音者自负全责。
|
||||
如不认可该条款,则不能使用或引用软件包内任何代码和文件。
|
||||
|
Loading…
Reference in New Issue
Block a user