1
0
mirror of synced 2024-11-28 01:10:56 +01:00

Format code (#1193)

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
This commit is contained in:
github-actions[bot] 2023-09-14 09:34:30 +09:00 committed by GitHub
parent 72a18e66b6
commit a6456f6d46
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
15 changed files with 562 additions and 237 deletions

View File

@ -5,10 +5,13 @@ import json
from multiprocessing import cpu_count from multiprocessing import cpu_count
import torch import torch
try: try:
import intel_extension_for_pytorch as ipex # pylint: disable=import-error, unused-import import intel_extension_for_pytorch as ipex # pylint: disable=import-error, unused-import
if torch.xpu.is_available(): if torch.xpu.is_available():
from infer.modules.ipex import ipex_init from infer.modules.ipex import ipex_init
ipex_init() ipex_init()
except Exception: except Exception:
pass pass

150
gui_v1.py
View File

@ -478,15 +478,28 @@ if __name__ == "__main__":
inp_q, inp_q,
opt_q, opt_q,
device, device,
self.rvc if hasattr(self, "rvc") else None self.rvc if hasattr(self, "rvc") else None,
) )
self.config.samplerate = self.rvc.tgt_sr self.config.samplerate = self.rvc.tgt_sr
self.zc = self.rvc.tgt_sr // 100 self.zc = self.rvc.tgt_sr // 100
self.block_frame = int(np.round(self.config.block_time * self.config.samplerate / self.zc)) * self.zc self.block_frame = (
int(np.round(self.config.block_time * self.config.samplerate / self.zc))
* self.zc
)
self.block_frame_16k = 160 * self.block_frame // self.zc self.block_frame_16k = 160 * self.block_frame // self.zc
self.crossfade_frame = int(np.round(self.config.crossfade_time * self.config.samplerate / self.zc)) * self.zc self.crossfade_frame = (
int(
np.round(
self.config.crossfade_time * self.config.samplerate / self.zc
)
)
* self.zc
)
self.sola_search_frame = self.zc self.sola_search_frame = self.zc
self.extra_frame = int(np.round(self.config.extra_time * self.config.samplerate / self.zc)) * self.zc self.extra_frame = (
int(np.round(self.config.extra_time * self.config.samplerate / self.zc))
* self.zc
)
self.input_wav: torch.Tensor = torch.zeros( self.input_wav: torch.Tensor = torch.zeros(
self.extra_frame self.extra_frame
+ self.crossfade_frame + self.crossfade_frame
@ -495,7 +508,11 @@ if __name__ == "__main__":
device=device, device=device,
dtype=torch.float32, dtype=torch.float32,
) )
self.input_wav_res: torch.Tensor= torch.zeros(160 * self.input_wav.shape[0] // self.zc, device=device,dtype=torch.float32) self.input_wav_res: torch.Tensor = torch.zeros(
160 * self.input_wav.shape[0] // self.zc,
device=device,
dtype=torch.float32,
)
self.pitch: np.ndarray = np.zeros( self.pitch: np.ndarray = np.zeros(
self.input_wav.shape[0] // self.zc, self.input_wav.shape[0] // self.zc,
dtype="int32", dtype="int32",
@ -509,7 +526,9 @@ if __name__ == "__main__":
) )
self.nr_buffer: torch.Tensor = self.sola_buffer.clone() self.nr_buffer: torch.Tensor = self.sola_buffer.clone()
self.output_buffer: torch.Tensor = self.input_wav.clone() self.output_buffer: torch.Tensor = self.input_wav.clone()
self.res_buffer: torch.Tensor = torch.zeros(2 * self.zc, device=device,dtype=torch.float32) self.res_buffer: torch.Tensor = torch.zeros(
2 * self.zc, device=device, dtype=torch.float32
)
self.valid_rate = 1 - (self.extra_frame - 1) / self.input_wav.shape[0] self.valid_rate = 1 - (self.extra_frame - 1) / self.input_wav.shape[0]
self.fade_in_window: torch.Tensor = ( self.fade_in_window: torch.Tensor = (
torch.sin( torch.sin(
@ -529,7 +548,9 @@ if __name__ == "__main__":
self.resampler = tat.Resample( self.resampler = tat.Resample(
orig_freq=self.config.samplerate, new_freq=16000, dtype=torch.float32 orig_freq=self.config.samplerate, new_freq=16000, dtype=torch.float32
).to(device) ).to(device)
self.tg = TorchGate(sr=self.config.samplerate, n_fft=4*self.zc, prop_decrease=0.9).to(device) self.tg = TorchGate(
sr=self.config.samplerate, n_fft=4 * self.zc, prop_decrease=0.9
).to(device)
thread_vc = threading.Thread(target=self.soundinput) thread_vc = threading.Thread(target=self.soundinput)
thread_vc.start() thread_vc.start()
@ -560,7 +581,7 @@ if __name__ == "__main__":
indata = librosa.to_mono(indata.T) indata = librosa.to_mono(indata.T)
if self.config.threhold > -60: if self.config.threhold > -60:
rms = librosa.feature.rms( rms = librosa.feature.rms(
y=indata, frame_length=4*self.zc, hop_length=self.zc y=indata, frame_length=4 * self.zc, hop_length=self.zc
) )
db_threhold = ( db_threhold = (
librosa.amplitude_to_db(rms, ref=1.0)[0] < self.config.threhold librosa.amplitude_to_db(rms, ref=1.0)[0] < self.config.threhold
@ -568,28 +589,44 @@ if __name__ == "__main__":
for i in range(db_threhold.shape[0]): for i in range(db_threhold.shape[0]):
if db_threhold[i]: if db_threhold[i]:
indata[i * self.zc : (i + 1) * self.zc] = 0 indata[i * self.zc : (i + 1) * self.zc] = 0
self.input_wav[: -self.block_frame] = self.input_wav[self.block_frame :].clone() self.input_wav[: -self.block_frame] = self.input_wav[
self.input_wav[-self.block_frame: ] = torch.from_numpy(indata).to(device) self.block_frame :
self.input_wav_res[ : -self.block_frame_16k] = self.input_wav_res[self.block_frame_16k :].clone() ].clone()
self.input_wav[-self.block_frame :] = torch.from_numpy(indata).to(device)
self.input_wav_res[: -self.block_frame_16k] = self.input_wav_res[
self.block_frame_16k :
].clone()
# input noise reduction and resampling # input noise reduction and resampling
if self.config.I_noise_reduce: if self.config.I_noise_reduce:
input_wav = self.input_wav[-self.crossfade_frame -self.block_frame-2*self.zc: ] input_wav = self.input_wav[
input_wav = self.tg(input_wav.unsqueeze(0), self.input_wav.unsqueeze(0))[0, 2*self.zc:] -self.crossfade_frame - self.block_frame - 2 * self.zc :
]
input_wav = self.tg(
input_wav.unsqueeze(0), self.input_wav.unsqueeze(0)
)[0, 2 * self.zc :]
input_wav[: self.crossfade_frame] *= self.fade_in_window input_wav[: self.crossfade_frame] *= self.fade_in_window
input_wav[: self.crossfade_frame] += self.nr_buffer * self.fade_out_window input_wav[: self.crossfade_frame] += (
self.nr_buffer[:] = input_wav[-self.crossfade_frame: ] self.nr_buffer * self.fade_out_window
input_wav = torch.cat((self.res_buffer[:], input_wav[: self.block_frame])) )
self.res_buffer[:] = input_wav[-2*self.zc: ] self.nr_buffer[:] = input_wav[-self.crossfade_frame :]
self.input_wav_res[-self.block_frame_16k-160: ] = self.resampler(input_wav)[160: ] input_wav = torch.cat(
(self.res_buffer[:], input_wav[: self.block_frame])
)
self.res_buffer[:] = input_wav[-2 * self.zc :]
self.input_wav_res[-self.block_frame_16k - 160 :] = self.resampler(
input_wav
)[160:]
else: else:
self.input_wav_res[-self.block_frame_16k-160: ] = self.resampler(self.input_wav[-self.block_frame-2*self.zc: ])[160: ] self.input_wav_res[-self.block_frame_16k - 160 :] = self.resampler(
self.input_wav[-self.block_frame - 2 * self.zc :]
)[160:]
# infer # infer
f0_extractor_frame = self.block_frame_16k + 800 f0_extractor_frame = self.block_frame_16k + 800
if self.config.f0method == 'rmvpe': if self.config.f0method == "rmvpe":
f0_extractor_frame = 5120 * ((f0_extractor_frame - 1) // 5120 + 1) f0_extractor_frame = 5120 * ((f0_extractor_frame - 1) // 5120 + 1)
infer_wav = self.rvc.infer( infer_wav = self.rvc.infer(
self.input_wav_res, self.input_wav_res,
self.input_wav_res[-f0_extractor_frame :].cpu().numpy(), self.input_wav_res[-f0_extractor_frame:].cpu().numpy(),
self.block_frame_16k, self.block_frame_16k,
self.valid_rate, self.valid_rate,
self.pitch, self.pitch,
@ -601,48 +638,77 @@ if __name__ == "__main__":
] ]
# output noise reduction # output noise reduction
if self.config.O_noise_reduce: if self.config.O_noise_reduce:
self.output_buffer[: -self.block_frame] = self.output_buffer[self.block_frame :].clone() self.output_buffer[: -self.block_frame] = self.output_buffer[
self.output_buffer[-self.block_frame: ] = infer_wav[-self.block_frame:] self.block_frame :
infer_wav = self.tg(infer_wav.unsqueeze(0), self.output_buffer.unsqueeze(0)).squeeze(0) ].clone()
self.output_buffer[-self.block_frame :] = infer_wav[-self.block_frame :]
infer_wav = self.tg(
infer_wav.unsqueeze(0), self.output_buffer.unsqueeze(0)
).squeeze(0)
# volume envelop mixing # volume envelop mixing
if self.config.rms_mix_rate < 1: if self.config.rms_mix_rate < 1:
rms1 = librosa.feature.rms( rms1 = librosa.feature.rms(
y=self.input_wav_res[-160*infer_wav.shape[0]//self.zc :].cpu().numpy(), y=self.input_wav_res[-160 * infer_wav.shape[0] // self.zc :]
frame_length=640, .cpu()
hop_length=160, .numpy(),
frame_length=640,
hop_length=160,
) )
rms1 = torch.from_numpy(rms1).to(device) rms1 = torch.from_numpy(rms1).to(device)
rms1 = F.interpolate( rms1 = F.interpolate(
rms1.unsqueeze(0), size=infer_wav.shape[0] + 1, mode="linear",align_corners=True, rms1.unsqueeze(0),
)[0,0,:-1] size=infer_wav.shape[0] + 1,
mode="linear",
align_corners=True,
)[0, 0, :-1]
rms2 = librosa.feature.rms( rms2 = librosa.feature.rms(
y=infer_wav[:].cpu().numpy(), frame_length=4*self.zc, hop_length=self.zc y=infer_wav[:].cpu().numpy(),
frame_length=4 * self.zc,
hop_length=self.zc,
) )
rms2 = torch.from_numpy(rms2).to(device) rms2 = torch.from_numpy(rms2).to(device)
rms2 = F.interpolate( rms2 = F.interpolate(
rms2.unsqueeze(0), size=infer_wav.shape[0] + 1, mode="linear",align_corners=True, rms2.unsqueeze(0),
)[0,0,:-1] size=infer_wav.shape[0] + 1,
mode="linear",
align_corners=True,
)[0, 0, :-1]
rms2 = torch.max(rms2, torch.zeros_like(rms2) + 1e-3) rms2 = torch.max(rms2, torch.zeros_like(rms2) + 1e-3)
infer_wav *= torch.pow(rms1 / rms2, torch.tensor(1 - self.config.rms_mix_rate)) infer_wav *= torch.pow(
rms1 / rms2, torch.tensor(1 - self.config.rms_mix_rate)
)
# SOLA algorithm from https://github.com/yxlllc/DDSP-SVC # SOLA algorithm from https://github.com/yxlllc/DDSP-SVC
conv_input = infer_wav[None, None, : self.crossfade_frame + self.sola_search_frame] conv_input = infer_wav[
None, None, : self.crossfade_frame + self.sola_search_frame
]
cor_nom = F.conv1d(conv_input, self.sola_buffer[None, None, :]) cor_nom = F.conv1d(conv_input, self.sola_buffer[None, None, :])
cor_den = torch.sqrt( cor_den = torch.sqrt(
F.conv1d(conv_input ** 2, torch.ones(1, 1, self.crossfade_frame, device=device)) + 1e-8) F.conv1d(
conv_input**2,
torch.ones(1, 1, self.crossfade_frame, device=device),
)
+ 1e-8
)
if sys.platform == "darwin": if sys.platform == "darwin":
_, sola_offset = torch.max(cor_nom[0, 0] / cor_den[0, 0]) _, sola_offset = torch.max(cor_nom[0, 0] / cor_den[0, 0])
sola_offset = sola_offset.item() sola_offset = sola_offset.item()
else: else:
sola_offset = torch.argmax(cor_nom[0, 0] / cor_den[0, 0]) sola_offset = torch.argmax(cor_nom[0, 0] / cor_den[0, 0])
logger.debug("sola_offset = %d", int(sola_offset)) logger.debug("sola_offset = %d", int(sola_offset))
infer_wav = infer_wav[sola_offset: sola_offset + self.block_frame + self.crossfade_frame] infer_wav = infer_wav[
sola_offset : sola_offset + self.block_frame + self.crossfade_frame
]
infer_wav[: self.crossfade_frame] *= self.fade_in_window infer_wav[: self.crossfade_frame] *= self.fade_in_window
infer_wav[: self.crossfade_frame] += self.sola_buffer *self.fade_out_window infer_wav[: self.crossfade_frame] += self.sola_buffer * self.fade_out_window
self.sola_buffer[:] = infer_wav[-self.crossfade_frame:] self.sola_buffer[:] = infer_wav[-self.crossfade_frame :]
if sys.platform == "darwin": if sys.platform == "darwin":
outdata[:] = infer_wav[:-self.crossfade_frame].cpu().numpy()[:, np.newaxis] outdata[:] = (
infer_wav[: -self.crossfade_frame].cpu().numpy()[:, np.newaxis]
)
else: else:
outdata[:] = infer_wav[:-self.crossfade_frame].repeat(2, 1).t().cpu().numpy() outdata[:] = (
infer_wav[: -self.crossfade_frame].repeat(2, 1).t().cpu().numpy()
)
total_time = time.perf_counter() - start_time total_time = time.perf_counter() - start_time
self.window["infer_time"].update(int(total_time * 1000)) self.window["infer_time"].update(int(total_time * 1000))
logger.info("Infer time: %.2f", total_time) logger.info("Infer time: %.2f", total_time)
@ -698,9 +764,7 @@ if __name__ == "__main__":
sd.default.device[1] = output_device_indices[ sd.default.device[1] = output_device_indices[
output_devices.index(output_device) output_devices.index(output_device)
] ]
logger.info( logger.info("Input device: %s:%s", str(sd.default.device[0]), input_device)
"Input device: %s:%s", str(sd.default.device[0]), input_device
)
logger.info( logger.info(
"Output device: %s:%s", str(sd.default.device[1]), output_device "Output device: %s:%s", str(sd.default.device[1]), output_device
) )

View File

@ -1028,7 +1028,7 @@ with gr.Blocks(title="RVC WebUI") as app:
fn=vc.get_vc, fn=vc.get_vc,
inputs=[sid0, protect0, protect1], inputs=[sid0, protect0, protect1],
outputs=[spk_item, protect0, protect1, file_index2, file_index4], outputs=[spk_item, protect0, protect1, file_index2, file_index4],
api_name="infer_change_voice" api_name="infer_change_voice",
) )
with gr.TabItem(i18n("伴奏人声分离&去混响&去回声")): with gr.TabItem(i18n("伴奏人声分离&去混响&去回声")):
with gr.Group(): with gr.Group():

View File

@ -3,38 +3,49 @@ import numpy as np
import av import av
from io import BytesIO from io import BytesIO
def wav2(i, o, format): def wav2(i, o, format):
inp = av.open(i, 'rb') inp = av.open(i, "rb")
if format == "m4a": format = "mp4" if format == "m4a":
out = av.open(o, 'wb', format=format) format = "mp4"
if format == "ogg": format = "libvorbis" out = av.open(o, "wb", format=format)
if format == "mp4": format = "aac" if format == "ogg":
format = "libvorbis"
if format == "mp4":
format = "aac"
ostream = out.add_stream(format) ostream = out.add_stream(format)
for frame in inp.decode(audio=0): for frame in inp.decode(audio=0):
for p in ostream.encode(frame): out.mux(p) for p in ostream.encode(frame):
out.mux(p)
for p in ostream.encode(None): out.mux(p) for p in ostream.encode(None):
out.mux(p)
out.close() out.close()
inp.close() inp.close()
def audio2(i, o, format, sr): def audio2(i, o, format, sr):
inp = av.open(i, 'rb') inp = av.open(i, "rb")
out = av.open(o, 'wb', format=format) out = av.open(o, "wb", format=format)
if format == "ogg": format = "libvorbis" if format == "ogg":
if format == "f32le": format = "pcm_f32le" format = "libvorbis"
if format == "f32le":
format = "pcm_f32le"
ostream = out.add_stream(format, channels=1) ostream = out.add_stream(format, channels=1)
ostream.sample_rate = sr ostream.sample_rate = sr
for frame in inp.decode(audio=0): for frame in inp.decode(audio=0):
for p in ostream.encode(frame): out.mux(p) for p in ostream.encode(frame):
out.mux(p)
out.close() out.close()
inp.close() inp.close()
def load_audio(file, sr): def load_audio(file, sr):
try: try:
file = ( file = (

View File

@ -15,6 +15,7 @@ from infer.lib.infer_pack.commons import get_padding, init_weights
has_xpu = bool(hasattr(torch, "xpu") and torch.xpu.is_available()) has_xpu = bool(hasattr(torch, "xpu") and torch.xpu.is_available())
class TextEncoder256(nn.Module): class TextEncoder256(nn.Module):
def __init__( def __init__(
self, self,
@ -1158,7 +1159,9 @@ class DiscriminatorP(torch.nn.Module):
if t % self.period != 0: # pad first if t % self.period != 0: # pad first
n_pad = self.period - (t % self.period) n_pad = self.period - (t % self.period)
if has_xpu and x.dtype == torch.bfloat16: if has_xpu and x.dtype == torch.bfloat16:
x = F.pad(x.to(dtype=torch.float16), (0, n_pad), "reflect").to(dtype=torch.bfloat16) x = F.pad(x.to(dtype=torch.float16), (0, n_pad), "reflect").to(
dtype=torch.bfloat16
)
else: else:
x = F.pad(x, (0, n_pad), "reflect") x = F.pad(x, (0, n_pad), "reflect")
t = t + n_pad t = t + n_pad

View File

@ -2,11 +2,14 @@ import pdb, os
import numpy as np import numpy as np
import torch import torch
try: try:
#Fix "Torch not compiled with CUDA enabled" # Fix "Torch not compiled with CUDA enabled"
import intel_extension_for_pytorch as ipex # pylint: disable=import-error, unused-import import intel_extension_for_pytorch as ipex # pylint: disable=import-error, unused-import
if torch.xpu.is_available(): if torch.xpu.is_available():
from infer.modules.ipex import ipex_init from infer.modules.ipex import ipex_init
ipex_init() ipex_init()
except Exception: except Exception:
pass pass

View File

@ -2,15 +2,16 @@ import os
import sys import sys
import contextlib import contextlib
import torch import torch
import intel_extension_for_pytorch as ipex # pylint: disable=import-error, unused-import import intel_extension_for_pytorch as ipex # pylint: disable=import-error, unused-import
from .hijacks import ipex_hijacks from .hijacks import ipex_hijacks
from .attention import attention_init from .attention import attention_init
# pylint: disable=protected-access, missing-function-docstring, line-too-long # pylint: disable=protected-access, missing-function-docstring, line-too-long
def ipex_init(): # pylint: disable=too-many-statements
def ipex_init(): # pylint: disable=too-many-statements
try: try:
#Replace cuda with xpu: # Replace cuda with xpu:
torch.cuda.current_device = torch.xpu.current_device torch.cuda.current_device = torch.xpu.current_device
torch.cuda.current_stream = torch.xpu.current_stream torch.cuda.current_stream = torch.xpu.current_stream
torch.cuda.device = torch.xpu.device torch.cuda.device = torch.xpu.device
@ -91,11 +92,11 @@ def ipex_init(): # pylint: disable=too-many-statements
torch.cuda.CharStorage = torch.xpu.CharStorage torch.cuda.CharStorage = torch.xpu.CharStorage
torch.cuda.__file__ = torch.xpu.__file__ torch.cuda.__file__ = torch.xpu.__file__
torch.cuda._is_in_bad_fork = torch.xpu.lazy_init._is_in_bad_fork torch.cuda._is_in_bad_fork = torch.xpu.lazy_init._is_in_bad_fork
#torch.cuda.is_current_stream_capturing = torch.xpu.is_current_stream_capturing # torch.cuda.is_current_stream_capturing = torch.xpu.is_current_stream_capturing
#Memory: # Memory:
torch.cuda.memory = torch.xpu.memory torch.cuda.memory = torch.xpu.memory
if 'linux' in sys.platform and "WSL2" in os.popen("uname -a").read(): if "linux" in sys.platform and "WSL2" in os.popen("uname -a").read():
torch.xpu.empty_cache = lambda: None torch.xpu.empty_cache = lambda: None
torch.cuda.empty_cache = torch.xpu.empty_cache torch.cuda.empty_cache = torch.xpu.empty_cache
torch.cuda.memory_stats = torch.xpu.memory_stats torch.cuda.memory_stats = torch.xpu.memory_stats
@ -111,9 +112,11 @@ def ipex_init(): # pylint: disable=too-many-statements
torch.cuda.reset_max_memory_cached = torch.xpu.reset_peak_memory_stats torch.cuda.reset_max_memory_cached = torch.xpu.reset_peak_memory_stats
torch.cuda.reset_max_memory_allocated = torch.xpu.reset_peak_memory_stats torch.cuda.reset_max_memory_allocated = torch.xpu.reset_peak_memory_stats
torch.cuda.memory_stats_as_nested_dict = torch.xpu.memory_stats_as_nested_dict torch.cuda.memory_stats_as_nested_dict = torch.xpu.memory_stats_as_nested_dict
torch.cuda.reset_accumulated_memory_stats = torch.xpu.reset_accumulated_memory_stats torch.cuda.reset_accumulated_memory_stats = (
torch.xpu.reset_accumulated_memory_stats
)
#RNG: # RNG:
torch.cuda.get_rng_state = torch.xpu.get_rng_state torch.cuda.get_rng_state = torch.xpu.get_rng_state
torch.cuda.get_rng_state_all = torch.xpu.get_rng_state_all torch.cuda.get_rng_state_all = torch.xpu.get_rng_state_all
torch.cuda.set_rng_state = torch.xpu.set_rng_state torch.cuda.set_rng_state = torch.xpu.set_rng_state
@ -124,35 +127,44 @@ def ipex_init(): # pylint: disable=too-many-statements
torch.cuda.seed_all = torch.xpu.seed_all torch.cuda.seed_all = torch.xpu.seed_all
torch.cuda.initial_seed = torch.xpu.initial_seed torch.cuda.initial_seed = torch.xpu.initial_seed
#AMP: # AMP:
torch.cuda.amp = torch.xpu.amp torch.cuda.amp = torch.xpu.amp
if not hasattr(torch.cuda.amp, "common"): if not hasattr(torch.cuda.amp, "common"):
torch.cuda.amp.common = contextlib.nullcontext() torch.cuda.amp.common = contextlib.nullcontext()
torch.cuda.amp.common.amp_definitely_not_available = lambda: False torch.cuda.amp.common.amp_definitely_not_available = lambda: False
try: try:
torch.cuda.amp.GradScaler = torch.xpu.amp.GradScaler torch.cuda.amp.GradScaler = torch.xpu.amp.GradScaler
except Exception: # pylint: disable=broad-exception-caught except Exception: # pylint: disable=broad-exception-caught
try: try:
from .gradscaler import gradscaler_init # pylint: disable=import-outside-toplevel, import-error from .gradscaler import (
gradscaler_init,
) # pylint: disable=import-outside-toplevel, import-error
gradscaler_init() gradscaler_init()
torch.cuda.amp.GradScaler = torch.xpu.amp.GradScaler torch.cuda.amp.GradScaler = torch.xpu.amp.GradScaler
except Exception: # pylint: disable=broad-exception-caught except Exception: # pylint: disable=broad-exception-caught
torch.cuda.amp.GradScaler = ipex.cpu.autocast._grad_scaler.GradScaler torch.cuda.amp.GradScaler = ipex.cpu.autocast._grad_scaler.GradScaler
#C # C
torch._C._cuda_getCurrentRawStream = ipex._C._getCurrentStream torch._C._cuda_getCurrentRawStream = ipex._C._getCurrentStream
ipex._C._DeviceProperties.major = 2023 ipex._C._DeviceProperties.major = 2023
ipex._C._DeviceProperties.minor = 2 ipex._C._DeviceProperties.minor = 2
#Fix functions with ipex: # Fix functions with ipex:
torch.cuda.mem_get_info = lambda device=None: [(torch.xpu.get_device_properties(device).total_memory - torch.xpu.memory_allocated(device)), torch.xpu.get_device_properties(device).total_memory] torch.cuda.mem_get_info = lambda device=None: [
(
torch.xpu.get_device_properties(device).total_memory
- torch.xpu.memory_allocated(device)
),
torch.xpu.get_device_properties(device).total_memory,
]
torch._utils._get_available_device_type = lambda: "xpu" torch._utils._get_available_device_type = lambda: "xpu"
torch.has_cuda = True torch.has_cuda = True
torch.cuda.has_half = True torch.cuda.has_half = True
torch.cuda.is_bf16_supported = lambda *args, **kwargs: True torch.cuda.is_bf16_supported = lambda *args, **kwargs: True
torch.cuda.is_fp16_supported = lambda *args, **kwargs: True torch.cuda.is_fp16_supported = lambda *args, **kwargs: True
torch.version.cuda = "11.7" torch.version.cuda = "11.7"
torch.cuda.get_device_capability = lambda *args, **kwargs: [11,7] torch.cuda.get_device_capability = lambda *args, **kwargs: [11, 7]
torch.cuda.get_device_properties.major = 11 torch.cuda.get_device_properties.major = 11
torch.cuda.get_device_properties.minor = 7 torch.cuda.get_device_properties.minor = 7
torch.cuda.ipc_collect = lambda *args, **kwargs: None torch.cuda.ipc_collect = lambda *args, **kwargs: None

View File

@ -1,22 +1,32 @@
import torch import torch
import intel_extension_for_pytorch as ipex # pylint: disable=import-error, unused-import import intel_extension_for_pytorch as ipex # pylint: disable=import-error, unused-import
# pylint: disable=protected-access, missing-function-docstring, line-too-long # pylint: disable=protected-access, missing-function-docstring, line-too-long
original_torch_bmm = torch.bmm original_torch_bmm = torch.bmm
def torch_bmm(input, mat2, *, out=None): def torch_bmm(input, mat2, *, out=None):
if input.dtype != mat2.dtype: if input.dtype != mat2.dtype:
mat2 = mat2.to(input.dtype) mat2 = mat2.to(input.dtype)
#ARC GPUs can't allocate more than 4GB to a single block, Slice it: # ARC GPUs can't allocate more than 4GB to a single block, Slice it:
batch_size_attention, input_tokens, mat2_shape = input.shape[0], input.shape[1], mat2.shape[2] batch_size_attention, input_tokens, mat2_shape = (
input.shape[0],
input.shape[1],
mat2.shape[2],
)
block_multiply = 2.4 if input.dtype == torch.float32 else 1.2 block_multiply = 2.4 if input.dtype == torch.float32 else 1.2
block_size = (batch_size_attention * input_tokens * mat2_shape) / 1024 * block_multiply #MB block_size = (
(batch_size_attention * input_tokens * mat2_shape) / 1024 * block_multiply
) # MB
split_slice_size = batch_size_attention split_slice_size = batch_size_attention
if block_size >= 4000: if block_size >= 4000:
do_split = True do_split = True
#Find something divisible with the input_tokens # Find something divisible with the input_tokens
while ((split_slice_size * input_tokens * mat2_shape) / 1024 * block_multiply) > 4000: while (
(split_slice_size * input_tokens * mat2_shape) / 1024 * block_multiply
) > 4000:
split_slice_size = split_slice_size // 2 split_slice_size = split_slice_size // 2
if split_slice_size <= 1: if split_slice_size <= 1:
split_slice_size = 1 split_slice_size = 1
@ -24,12 +34,16 @@ def torch_bmm(input, mat2, *, out=None):
else: else:
do_split = False do_split = False
split_block_size = (split_slice_size * input_tokens * mat2_shape) / 1024 * block_multiply #MB split_block_size = (
(split_slice_size * input_tokens * mat2_shape) / 1024 * block_multiply
) # MB
split_2_slice_size = input_tokens split_2_slice_size = input_tokens
if split_block_size >= 4000: if split_block_size >= 4000:
do_split_2 = True do_split_2 = True
#Find something divisible with the input_tokens # Find something divisible with the input_tokens
while ((split_slice_size * split_2_slice_size * mat2_shape) / 1024 * block_multiply) > 4000: while (
(split_slice_size * split_2_slice_size * mat2_shape) / 1024 * block_multiply
) > 4000:
split_2_slice_size = split_2_slice_size // 2 split_2_slice_size = split_2_slice_size // 2
if split_2_slice_size <= 1: if split_2_slice_size <= 1:
split_2_slice_size = 1 split_2_slice_size = 1
@ -38,40 +52,61 @@ def torch_bmm(input, mat2, *, out=None):
do_split_2 = False do_split_2 = False
if do_split: if do_split:
hidden_states = torch.zeros(input.shape[0], input.shape[1], mat2.shape[2], device=input.device, dtype=input.dtype) hidden_states = torch.zeros(
input.shape[0],
input.shape[1],
mat2.shape[2],
device=input.device,
dtype=input.dtype,
)
for i in range(batch_size_attention // split_slice_size): for i in range(batch_size_attention // split_slice_size):
start_idx = i * split_slice_size start_idx = i * split_slice_size
end_idx = (i + 1) * split_slice_size end_idx = (i + 1) * split_slice_size
if do_split_2: if do_split_2:
for i2 in range(input_tokens // split_2_slice_size): # pylint: disable=invalid-name for i2 in range(
input_tokens // split_2_slice_size
): # pylint: disable=invalid-name
start_idx_2 = i2 * split_2_slice_size start_idx_2 = i2 * split_2_slice_size
end_idx_2 = (i2 + 1) * split_2_slice_size end_idx_2 = (i2 + 1) * split_2_slice_size
hidden_states[start_idx:end_idx, start_idx_2:end_idx_2] = original_torch_bmm( hidden_states[
start_idx:end_idx, start_idx_2:end_idx_2
] = original_torch_bmm(
input[start_idx:end_idx, start_idx_2:end_idx_2], input[start_idx:end_idx, start_idx_2:end_idx_2],
mat2[start_idx:end_idx, start_idx_2:end_idx_2], mat2[start_idx:end_idx, start_idx_2:end_idx_2],
out=out out=out,
) )
else: else:
hidden_states[start_idx:end_idx] = original_torch_bmm( hidden_states[start_idx:end_idx] = original_torch_bmm(
input[start_idx:end_idx], input[start_idx:end_idx], mat2[start_idx:end_idx], out=out
mat2[start_idx:end_idx],
out=out
) )
else: else:
return original_torch_bmm(input, mat2, out=out) return original_torch_bmm(input, mat2, out=out)
return hidden_states return hidden_states
original_scaled_dot_product_attention = torch.nn.functional.scaled_dot_product_attention original_scaled_dot_product_attention = torch.nn.functional.scaled_dot_product_attention
def scaled_dot_product_attention(query, key, value, attn_mask=None, dropout_p=0.0, is_causal=False):
#ARC GPUs can't allocate more than 4GB to a single block, Slice it:
def scaled_dot_product_attention(
query, key, value, attn_mask=None, dropout_p=0.0, is_causal=False
):
# ARC GPUs can't allocate more than 4GB to a single block, Slice it:
shape_one, batch_size_attention, query_tokens, shape_four = query.shape shape_one, batch_size_attention, query_tokens, shape_four = query.shape
block_multiply = 2.4 if query.dtype == torch.float32 else 1.2 block_multiply = 2.4 if query.dtype == torch.float32 else 1.2
block_size = (shape_one * batch_size_attention * query_tokens * shape_four) / 1024 * block_multiply #MB block_size = (
(shape_one * batch_size_attention * query_tokens * shape_four)
/ 1024
* block_multiply
) # MB
split_slice_size = batch_size_attention split_slice_size = batch_size_attention
if block_size >= 4000: if block_size >= 4000:
do_split = True do_split = True
#Find something divisible with the shape_one # Find something divisible with the shape_one
while ((shape_one * split_slice_size * query_tokens * shape_four) / 1024 * block_multiply) > 4000: while (
(shape_one * split_slice_size * query_tokens * shape_four)
/ 1024
* block_multiply
) > 4000:
split_slice_size = split_slice_size // 2 split_slice_size = split_slice_size // 2
if split_slice_size <= 1: if split_slice_size <= 1:
split_slice_size = 1 split_slice_size = 1
@ -79,12 +114,20 @@ def scaled_dot_product_attention(query, key, value, attn_mask=None, dropout_p=0.
else: else:
do_split = False do_split = False
split_block_size = (shape_one * split_slice_size * query_tokens * shape_four) / 1024 * block_multiply #MB split_block_size = (
(shape_one * split_slice_size * query_tokens * shape_four)
/ 1024
* block_multiply
) # MB
split_2_slice_size = query_tokens split_2_slice_size = query_tokens
if split_block_size >= 4000: if split_block_size >= 4000:
do_split_2 = True do_split_2 = True
#Find something divisible with the batch_size_attention # Find something divisible with the batch_size_attention
while ((shape_one * split_slice_size * split_2_slice_size * shape_four) / 1024 * block_multiply) > 4000: while (
(shape_one * split_slice_size * split_2_slice_size * shape_four)
/ 1024
* block_multiply
) > 4000:
split_2_slice_size = split_2_slice_size // 2 split_2_slice_size = split_2_slice_size // 2
if split_2_slice_size <= 1: if split_2_slice_size <= 1:
split_2_slice_size = 1 split_2_slice_size = 1
@ -98,31 +141,49 @@ def scaled_dot_product_attention(query, key, value, attn_mask=None, dropout_p=0.
start_idx = i * split_slice_size start_idx = i * split_slice_size
end_idx = (i + 1) * split_slice_size end_idx = (i + 1) * split_slice_size
if do_split_2: if do_split_2:
for i2 in range(query_tokens // split_2_slice_size): # pylint: disable=invalid-name for i2 in range(
query_tokens // split_2_slice_size
): # pylint: disable=invalid-name
start_idx_2 = i2 * split_2_slice_size start_idx_2 = i2 * split_2_slice_size
end_idx_2 = (i2 + 1) * split_2_slice_size end_idx_2 = (i2 + 1) * split_2_slice_size
hidden_states[:, start_idx:end_idx, start_idx_2:end_idx_2] = original_scaled_dot_product_attention( hidden_states[
:, start_idx:end_idx, start_idx_2:end_idx_2
] = original_scaled_dot_product_attention(
query[:, start_idx:end_idx, start_idx_2:end_idx_2], query[:, start_idx:end_idx, start_idx_2:end_idx_2],
key[:, start_idx:end_idx, start_idx_2:end_idx_2], key[:, start_idx:end_idx, start_idx_2:end_idx_2],
value[:, start_idx:end_idx, start_idx_2:end_idx_2], value[:, start_idx:end_idx, start_idx_2:end_idx_2],
attn_mask=attn_mask[:, start_idx:end_idx, start_idx_2:end_idx_2] if attn_mask is not None else attn_mask, attn_mask=attn_mask[:, start_idx:end_idx, start_idx_2:end_idx_2]
dropout_p=dropout_p, is_causal=is_causal if attn_mask is not None
else attn_mask,
dropout_p=dropout_p,
is_causal=is_causal,
) )
else: else:
hidden_states[:, start_idx:end_idx] = original_scaled_dot_product_attention( hidden_states[
:, start_idx:end_idx
] = original_scaled_dot_product_attention(
query[:, start_idx:end_idx], query[:, start_idx:end_idx],
key[:, start_idx:end_idx], key[:, start_idx:end_idx],
value[:, start_idx:end_idx], value[:, start_idx:end_idx],
attn_mask=attn_mask[:, start_idx:end_idx] if attn_mask is not None else attn_mask, attn_mask=attn_mask[:, start_idx:end_idx]
dropout_p=dropout_p, is_causal=is_causal if attn_mask is not None
else attn_mask,
dropout_p=dropout_p,
is_causal=is_causal,
) )
else: else:
return original_scaled_dot_product_attention( return original_scaled_dot_product_attention(
query, key, value, attn_mask=attn_mask, dropout_p=dropout_p, is_causal=is_causal query,
key,
value,
attn_mask=attn_mask,
dropout_p=dropout_p,
is_causal=is_causal,
) )
return hidden_states return hidden_states
def attention_init(): def attention_init():
#ARC GPUs can't allocate more than 4GB to a single block: # ARC GPUs can't allocate more than 4GB to a single block:
torch.bmm = torch_bmm torch.bmm = torch_bmm
torch.nn.functional.scaled_dot_product_attention = scaled_dot_product_attention torch.nn.functional.scaled_dot_product_attention = scaled_dot_product_attention

View File

@ -1,15 +1,20 @@
from collections import defaultdict from collections import defaultdict
import torch import torch
import intel_extension_for_pytorch as ipex # pylint: disable=import-error, unused-import import intel_extension_for_pytorch as ipex # pylint: disable=import-error, unused-import
import intel_extension_for_pytorch._C as core # pylint: disable=import-error, unused-import import intel_extension_for_pytorch._C as core # pylint: disable=import-error, unused-import
# pylint: disable=protected-access, missing-function-docstring, line-too-long # pylint: disable=protected-access, missing-function-docstring, line-too-long
OptState = ipex.cpu.autocast._grad_scaler.OptState OptState = ipex.cpu.autocast._grad_scaler.OptState
_MultiDeviceReplicator = ipex.cpu.autocast._grad_scaler._MultiDeviceReplicator _MultiDeviceReplicator = ipex.cpu.autocast._grad_scaler._MultiDeviceReplicator
_refresh_per_optimizer_state = ipex.cpu.autocast._grad_scaler._refresh_per_optimizer_state _refresh_per_optimizer_state = (
ipex.cpu.autocast._grad_scaler._refresh_per_optimizer_state
)
def _unscale_grads_(self, optimizer, inv_scale, found_inf, allow_fp16): # pylint: disable=unused-argument
def _unscale_grads_(
self, optimizer, inv_scale, found_inf, allow_fp16
): # pylint: disable=unused-argument
per_device_inv_scale = _MultiDeviceReplicator(inv_scale) per_device_inv_scale = _MultiDeviceReplicator(inv_scale)
per_device_found_inf = _MultiDeviceReplicator(found_inf) per_device_found_inf = _MultiDeviceReplicator(found_inf)
@ -43,9 +48,9 @@ def _unscale_grads_(self, optimizer, inv_scale, found_inf, allow_fp16): # pylint
# -: is there a way to split by device and dtype without appending in the inner loop? # -: is there a way to split by device and dtype without appending in the inner loop?
to_unscale = to_unscale.to("cpu") to_unscale = to_unscale.to("cpu")
per_device_and_dtype_grads[to_unscale.device][ per_device_and_dtype_grads[to_unscale.device][to_unscale.dtype].append(
to_unscale.dtype to_unscale
].append(to_unscale) )
for _, per_dtype_grads in per_device_and_dtype_grads.items(): for _, per_dtype_grads in per_device_and_dtype_grads.items():
for grads in per_dtype_grads.values(): for grads in per_dtype_grads.values():
@ -57,6 +62,7 @@ def _unscale_grads_(self, optimizer, inv_scale, found_inf, allow_fp16): # pylint
return per_device_found_inf._per_device_tensors return per_device_found_inf._per_device_tensors
def unscale_(self, optimizer): def unscale_(self, optimizer):
""" """
Divides ("unscales") the optimizer's gradient tensors by the scale factor. Divides ("unscales") the optimizer's gradient tensors by the scale factor.
@ -87,7 +93,7 @@ def unscale_(self, optimizer):
optimizer_state = self._per_optimizer_states[id(optimizer)] optimizer_state = self._per_optimizer_states[id(optimizer)]
if optimizer_state["stage"] is OptState.UNSCALED: # pylint: disable=no-else-raise if optimizer_state["stage"] is OptState.UNSCALED: # pylint: disable=no-else-raise
raise RuntimeError( raise RuntimeError(
"unscale_() has already been called on this optimizer since the last update()." "unscale_() has already been called on this optimizer since the last update()."
) )
@ -96,16 +102,17 @@ def unscale_(self, optimizer):
# FP32 division can be imprecise for certain compile options, so we carry out the reciprocal in FP64. # FP32 division can be imprecise for certain compile options, so we carry out the reciprocal in FP64.
assert self._scale is not None assert self._scale is not None
inv_scale = self._scale.to("cpu").double().reciprocal().float().to(self._scale.device) inv_scale = (
found_inf = torch.full( self._scale.to("cpu").double().reciprocal().float().to(self._scale.device)
(1,), 0.0, dtype=torch.float32, device=self._scale.device
) )
found_inf = torch.full((1,), 0.0, dtype=torch.float32, device=self._scale.device)
optimizer_state["found_inf_per_device"] = self._unscale_grads_( optimizer_state["found_inf_per_device"] = self._unscale_grads_(
optimizer, inv_scale, found_inf, False optimizer, inv_scale, found_inf, False
) )
optimizer_state["stage"] = OptState.UNSCALED optimizer_state["stage"] = OptState.UNSCALED
def update(self, new_scale=None): def update(self, new_scale=None):
""" """
Updates the scale factor. Updates the scale factor.
@ -171,6 +178,7 @@ def update(self, new_scale=None):
# To prepare for next iteration, clear the data collected from optimizers this iteration. # To prepare for next iteration, clear the data collected from optimizers this iteration.
self._per_optimizer_states = defaultdict(_refresh_per_optimizer_state) self._per_optimizer_states = defaultdict(_refresh_per_optimizer_state)
def gradscaler_init(): def gradscaler_init():
torch.xpu.amp.GradScaler = ipex.cpu.autocast._grad_scaler.GradScaler torch.xpu.amp.GradScaler = ipex.cpu.autocast._grad_scaler.GradScaler
torch.xpu.amp.GradScaler._unscale_grads_ = _unscale_grads_ torch.xpu.amp.GradScaler._unscale_grads_ = _unscale_grads_

View File

@ -1,45 +1,59 @@
import contextlib import contextlib
import importlib import importlib
import torch import torch
import intel_extension_for_pytorch as ipex # pylint: disable=import-error, unused-import import intel_extension_for_pytorch as ipex # pylint: disable=import-error, unused-import
# pylint: disable=protected-access, missing-function-docstring, line-too-long, unnecessary-lambda, no-else-return # pylint: disable=protected-access, missing-function-docstring, line-too-long, unnecessary-lambda, no-else-return
class CondFunc: # pylint: disable=missing-class-docstring
class CondFunc: # pylint: disable=missing-class-docstring
def __new__(cls, orig_func, sub_func, cond_func): def __new__(cls, orig_func, sub_func, cond_func):
self = super(CondFunc, cls).__new__(cls) self = super(CondFunc, cls).__new__(cls)
if isinstance(orig_func, str): if isinstance(orig_func, str):
func_path = orig_func.split('.') func_path = orig_func.split(".")
for i in range(len(func_path)-1, -1, -1): for i in range(len(func_path) - 1, -1, -1):
try: try:
resolved_obj = importlib.import_module('.'.join(func_path[:i])) resolved_obj = importlib.import_module(".".join(func_path[:i]))
break break
except ImportError: except ImportError:
pass pass
for attr_name in func_path[i:-1]: for attr_name in func_path[i:-1]:
resolved_obj = getattr(resolved_obj, attr_name) resolved_obj = getattr(resolved_obj, attr_name)
orig_func = getattr(resolved_obj, func_path[-1]) orig_func = getattr(resolved_obj, func_path[-1])
setattr(resolved_obj, func_path[-1], lambda *args, **kwargs: self(*args, **kwargs)) setattr(
resolved_obj,
func_path[-1],
lambda *args, **kwargs: self(*args, **kwargs),
)
self.__init__(orig_func, sub_func, cond_func) self.__init__(orig_func, sub_func, cond_func)
return lambda *args, **kwargs: self(*args, **kwargs) return lambda *args, **kwargs: self(*args, **kwargs)
def __init__(self, orig_func, sub_func, cond_func): def __init__(self, orig_func, sub_func, cond_func):
self.__orig_func = orig_func self.__orig_func = orig_func
self.__sub_func = sub_func self.__sub_func = sub_func
self.__cond_func = cond_func self.__cond_func = cond_func
def __call__(self, *args, **kwargs): def __call__(self, *args, **kwargs):
if not self.__cond_func or self.__cond_func(self.__orig_func, *args, **kwargs): if not self.__cond_func or self.__cond_func(self.__orig_func, *args, **kwargs):
return self.__sub_func(self.__orig_func, *args, **kwargs) return self.__sub_func(self.__orig_func, *args, **kwargs)
else: else:
return self.__orig_func(*args, **kwargs) return self.__orig_func(*args, **kwargs)
_utils = torch.utils.data._utils _utils = torch.utils.data._utils
def _shutdown_workers(self): def _shutdown_workers(self):
if torch.utils.data._utils is None or torch.utils.data._utils.python_exit_status is True or torch.utils.data._utils.python_exit_status is None: if (
torch.utils.data._utils is None
or torch.utils.data._utils.python_exit_status is True
or torch.utils.data._utils.python_exit_status is None
):
return return
if hasattr(self, "_shutdown") and not self._shutdown: if hasattr(self, "_shutdown") and not self._shutdown:
self._shutdown = True self._shutdown = True
try: try:
if hasattr(self, '_pin_memory_thread'): if hasattr(self, "_pin_memory_thread"):
self._pin_memory_thread_done_event.set() self._pin_memory_thread_done_event.set()
self._worker_result_queue.put((None, None)) self._worker_result_queue.put((None, None))
self._pin_memory_thread.join() self._pin_memory_thread.join()
@ -49,145 +63,292 @@ def _shutdown_workers(self):
for worker_id in range(len(self._workers)): for worker_id in range(len(self._workers)):
if self._persistent_workers or self._workers_status[worker_id]: if self._persistent_workers or self._workers_status[worker_id]:
self._mark_worker_as_unavailable(worker_id, shutdown=True) self._mark_worker_as_unavailable(worker_id, shutdown=True)
for w in self._workers: # pylint: disable=invalid-name for w in self._workers: # pylint: disable=invalid-name
w.join(timeout=torch.utils.data._utils.MP_STATUS_CHECK_INTERVAL) w.join(timeout=torch.utils.data._utils.MP_STATUS_CHECK_INTERVAL)
for q in self._index_queues: # pylint: disable=invalid-name for q in self._index_queues: # pylint: disable=invalid-name
q.cancel_join_thread() q.cancel_join_thread()
q.close() q.close()
finally: finally:
if self._worker_pids_set: if self._worker_pids_set:
torch.utils.data._utils.signal_handling._remove_worker_pids(id(self)) torch.utils.data._utils.signal_handling._remove_worker_pids(id(self))
self._worker_pids_set = False self._worker_pids_set = False
for w in self._workers: # pylint: disable=invalid-name for w in self._workers: # pylint: disable=invalid-name
if w.is_alive(): if w.is_alive():
w.terminate() w.terminate()
class DummyDataParallel(torch.nn.Module): # pylint: disable=missing-class-docstring, unused-argument, too-few-public-methods
def __new__(cls, module, device_ids=None, output_device=None, dim=0): # pylint: disable=unused-argument class DummyDataParallel(
torch.nn.Module
): # pylint: disable=missing-class-docstring, unused-argument, too-few-public-methods
def __new__(
cls, module, device_ids=None, output_device=None, dim=0
): # pylint: disable=unused-argument
if isinstance(device_ids, list) and len(device_ids) > 1: if isinstance(device_ids, list) and len(device_ids) > 1:
print("IPEX backend doesn't support DataParallel on multiple XPU devices") print("IPEX backend doesn't support DataParallel on multiple XPU devices")
return module.to("xpu") return module.to("xpu")
def return_null_context(*args, **kwargs): # pylint: disable=unused-argument
def return_null_context(*args, **kwargs): # pylint: disable=unused-argument
return contextlib.nullcontext() return contextlib.nullcontext()
def check_device(device): def check_device(device):
return bool((isinstance(device, torch.device) and device.type == "cuda") or (isinstance(device, str) and "cuda" in device) or isinstance(device, int)) return bool(
(isinstance(device, torch.device) and device.type == "cuda")
or (isinstance(device, str) and "cuda" in device)
or isinstance(device, int)
)
def return_xpu(device): def return_xpu(device):
return f"xpu:{device[-1]}" if isinstance(device, str) and ":" in device else f"xpu:{device}" if isinstance(device, int) else torch.device("xpu") if isinstance(device, torch.device) else "xpu" return (
f"xpu:{device[-1]}"
if isinstance(device, str) and ":" in device
else f"xpu:{device}"
if isinstance(device, int)
else torch.device("xpu")
if isinstance(device, torch.device)
else "xpu"
)
def ipex_no_cuda(orig_func, *args, **kwargs): def ipex_no_cuda(orig_func, *args, **kwargs):
torch.cuda.is_available = lambda: False torch.cuda.is_available = lambda: False
orig_func(*args, **kwargs) orig_func(*args, **kwargs)
torch.cuda.is_available = torch.xpu.is_available torch.cuda.is_available = torch.xpu.is_available
original_autocast = torch.autocast original_autocast = torch.autocast
def ipex_autocast(*args, **kwargs): def ipex_autocast(*args, **kwargs):
if len(args) > 0 and args[0] == "cuda": if len(args) > 0 and args[0] == "cuda":
return original_autocast("xpu", *args[1:], **kwargs) return original_autocast("xpu", *args[1:], **kwargs)
else: else:
return original_autocast(*args, **kwargs) return original_autocast(*args, **kwargs)
original_torch_cat = torch.cat original_torch_cat = torch.cat
def torch_cat(tensor, *args, **kwargs): def torch_cat(tensor, *args, **kwargs):
if len(tensor) == 3 and (tensor[0].dtype != tensor[1].dtype or tensor[2].dtype != tensor[1].dtype): if len(tensor) == 3 and (
return original_torch_cat([tensor[0].to(tensor[1].dtype), tensor[1], tensor[2].to(tensor[1].dtype)], *args, **kwargs) tensor[0].dtype != tensor[1].dtype or tensor[2].dtype != tensor[1].dtype
):
return original_torch_cat(
[tensor[0].to(tensor[1].dtype), tensor[1], tensor[2].to(tensor[1].dtype)],
*args,
**kwargs,
)
else: else:
return original_torch_cat(tensor, *args, **kwargs) return original_torch_cat(tensor, *args, **kwargs)
original_interpolate = torch.nn.functional.interpolate original_interpolate = torch.nn.functional.interpolate
def interpolate(tensor, size=None, scale_factor=None, mode='nearest', align_corners=None, recompute_scale_factor=None, antialias=False): # pylint: disable=too-many-arguments
def interpolate(
tensor,
size=None,
scale_factor=None,
mode="nearest",
align_corners=None,
recompute_scale_factor=None,
antialias=False,
): # pylint: disable=too-many-arguments
if antialias or align_corners is not None: if antialias or align_corners is not None:
return_device = tensor.device return_device = tensor.device
return_dtype = tensor.dtype return_dtype = tensor.dtype
return original_interpolate(tensor.to("cpu", dtype=torch.float32), size=size, scale_factor=scale_factor, mode=mode, return original_interpolate(
align_corners=align_corners, recompute_scale_factor=recompute_scale_factor, antialias=antialias).to(return_device, dtype=return_dtype) tensor.to("cpu", dtype=torch.float32),
size=size,
scale_factor=scale_factor,
mode=mode,
align_corners=align_corners,
recompute_scale_factor=recompute_scale_factor,
antialias=antialias,
).to(return_device, dtype=return_dtype)
else: else:
return original_interpolate(tensor, size=size, scale_factor=scale_factor, mode=mode, return original_interpolate(
align_corners=align_corners, recompute_scale_factor=recompute_scale_factor, antialias=antialias) tensor,
size=size,
scale_factor=scale_factor,
mode=mode,
align_corners=align_corners,
recompute_scale_factor=recompute_scale_factor,
antialias=antialias,
)
original_linalg_solve = torch.linalg.solve original_linalg_solve = torch.linalg.solve
def linalg_solve(A, B, *args, **kwargs): # pylint: disable=invalid-name
def linalg_solve(A, B, *args, **kwargs): # pylint: disable=invalid-name
if A.device != torch.device("cpu") or B.device != torch.device("cpu"): if A.device != torch.device("cpu") or B.device != torch.device("cpu"):
return_device = A.device return_device = A.device
return original_linalg_solve(A.to("cpu"), B.to("cpu"), *args, **kwargs).to(return_device) return original_linalg_solve(A.to("cpu"), B.to("cpu"), *args, **kwargs).to(
return_device
)
else: else:
return original_linalg_solve(A, B, *args, **kwargs) return original_linalg_solve(A, B, *args, **kwargs)
def ipex_hijacks(): def ipex_hijacks():
CondFunc('torch.Tensor.to', CondFunc(
lambda orig_func, self, device=None, *args, **kwargs: orig_func(self, return_xpu(device), *args, **kwargs), "torch.Tensor.to",
lambda orig_func, self, device=None, *args, **kwargs: check_device(device)) lambda orig_func, self, device=None, *args, **kwargs: orig_func(
CondFunc('torch.Tensor.cuda', self, return_xpu(device), *args, **kwargs
lambda orig_func, self, device=None, *args, **kwargs: orig_func(self, return_xpu(device), *args, **kwargs), ),
lambda orig_func, self, device=None, *args, **kwargs: check_device(device)) lambda orig_func, self, device=None, *args, **kwargs: check_device(device),
CondFunc('torch.empty', )
lambda orig_func, *args, device=None, **kwargs: orig_func(*args, device=return_xpu(device), **kwargs), CondFunc(
lambda orig_func, *args, device=None, **kwargs: check_device(device)) "torch.Tensor.cuda",
CondFunc('torch.load', lambda orig_func, self, device=None, *args, **kwargs: orig_func(
lambda orig_func, *args, map_location=None, **kwargs: orig_func(*args, return_xpu(map_location), **kwargs), self, return_xpu(device), *args, **kwargs
lambda orig_func, *args, map_location=None, **kwargs: map_location is None or check_device(map_location)) ),
CondFunc('torch.randn', lambda orig_func, self, device=None, *args, **kwargs: check_device(device),
lambda orig_func, *args, device=None, **kwargs: orig_func(*args, device=return_xpu(device), **kwargs), )
lambda orig_func, *args, device=None, **kwargs: check_device(device)) CondFunc(
CondFunc('torch.ones', "torch.empty",
lambda orig_func, *args, device=None, **kwargs: orig_func(*args, device=return_xpu(device), **kwargs), lambda orig_func, *args, device=None, **kwargs: orig_func(
lambda orig_func, *args, device=None, **kwargs: check_device(device)) *args, device=return_xpu(device), **kwargs
CondFunc('torch.zeros', ),
lambda orig_func, *args, device=None, **kwargs: orig_func(*args, device=return_xpu(device), **kwargs), lambda orig_func, *args, device=None, **kwargs: check_device(device),
lambda orig_func, *args, device=None, **kwargs: check_device(device)) )
CondFunc('torch.tensor', CondFunc(
lambda orig_func, *args, device=None, **kwargs: orig_func(*args, device=return_xpu(device), **kwargs), "torch.load",
lambda orig_func, *args, device=None, **kwargs: check_device(device)) lambda orig_func, *args, map_location=None, **kwargs: orig_func(
CondFunc('torch.linspace', *args, return_xpu(map_location), **kwargs
lambda orig_func, *args, device=None, **kwargs: orig_func(*args, device=return_xpu(device), **kwargs), ),
lambda orig_func, *args, device=None, **kwargs: check_device(device)) lambda orig_func, *args, map_location=None, **kwargs: map_location is None
or check_device(map_location),
)
CondFunc(
"torch.randn",
lambda orig_func, *args, device=None, **kwargs: orig_func(
*args, device=return_xpu(device), **kwargs
),
lambda orig_func, *args, device=None, **kwargs: check_device(device),
)
CondFunc(
"torch.ones",
lambda orig_func, *args, device=None, **kwargs: orig_func(
*args, device=return_xpu(device), **kwargs
),
lambda orig_func, *args, device=None, **kwargs: check_device(device),
)
CondFunc(
"torch.zeros",
lambda orig_func, *args, device=None, **kwargs: orig_func(
*args, device=return_xpu(device), **kwargs
),
lambda orig_func, *args, device=None, **kwargs: check_device(device),
)
CondFunc(
"torch.tensor",
lambda orig_func, *args, device=None, **kwargs: orig_func(
*args, device=return_xpu(device), **kwargs
),
lambda orig_func, *args, device=None, **kwargs: check_device(device),
)
CondFunc(
"torch.linspace",
lambda orig_func, *args, device=None, **kwargs: orig_func(
*args, device=return_xpu(device), **kwargs
),
lambda orig_func, *args, device=None, **kwargs: check_device(device),
)
CondFunc('torch.Generator', CondFunc(
"torch.Generator",
lambda orig_func, device=None: torch.xpu.Generator(device), lambda orig_func, device=None: torch.xpu.Generator(device),
lambda orig_func, device=None: device is not None and device != torch.device("cpu") and device != "cpu") lambda orig_func, device=None: device is not None
and device != torch.device("cpu")
and device != "cpu",
)
CondFunc('torch.batch_norm', CondFunc(
lambda orig_func, input, weight, bias, *args, **kwargs: orig_func(input, "torch.batch_norm",
weight if weight is not None else torch.ones(input.size()[1], device=input.device), lambda orig_func, input, weight, bias, *args, **kwargs: orig_func(
bias if bias is not None else torch.zeros(input.size()[1], device=input.device), *args, **kwargs), input,
lambda orig_func, input, *args, **kwargs: input.device != torch.device("cpu")) weight
CondFunc('torch.instance_norm', if weight is not None
lambda orig_func, input, weight, bias, *args, **kwargs: orig_func(input, else torch.ones(input.size()[1], device=input.device),
weight if weight is not None else torch.ones(input.size()[1], device=input.device), bias
bias if bias is not None else torch.zeros(input.size()[1], device=input.device), *args, **kwargs), if bias is not None
lambda orig_func, input, *args, **kwargs: input.device != torch.device("cpu")) else torch.zeros(input.size()[1], device=input.device),
*args,
**kwargs,
),
lambda orig_func, input, *args, **kwargs: input.device != torch.device("cpu"),
)
CondFunc(
"torch.instance_norm",
lambda orig_func, input, weight, bias, *args, **kwargs: orig_func(
input,
weight
if weight is not None
else torch.ones(input.size()[1], device=input.device),
bias
if bias is not None
else torch.zeros(input.size()[1], device=input.device),
*args,
**kwargs,
),
lambda orig_func, input, *args, **kwargs: input.device != torch.device("cpu"),
)
#Functions with dtype errors: # Functions with dtype errors:
CondFunc('torch.nn.modules.GroupNorm.forward', CondFunc(
lambda orig_func, self, input: orig_func(self, input.to(self.weight.data.dtype)), "torch.nn.modules.GroupNorm.forward",
lambda orig_func, self, input: input.dtype != self.weight.data.dtype) lambda orig_func, self, input: orig_func(
CondFunc('torch.nn.modules.linear.Linear.forward', self, input.to(self.weight.data.dtype)
lambda orig_func, self, input: orig_func(self, input.to(self.weight.data.dtype)), ),
lambda orig_func, self, input: input.dtype != self.weight.data.dtype) lambda orig_func, self, input: input.dtype != self.weight.data.dtype,
CondFunc('torch.nn.modules.conv.Conv2d.forward', )
lambda orig_func, self, input: orig_func(self, input.to(self.weight.data.dtype)), CondFunc(
lambda orig_func, self, input: input.dtype != self.weight.data.dtype) "torch.nn.modules.linear.Linear.forward",
CondFunc('torch.nn.functional.layer_norm', lambda orig_func, self, input: orig_func(
lambda orig_func, input, normalized_shape=None, weight=None, *args, **kwargs: self, input.to(self.weight.data.dtype)
orig_func(input.to(weight.data.dtype), normalized_shape, weight, *args, **kwargs), ),
lambda orig_func, input, normalized_shape=None, weight=None, *args, **kwargs: lambda orig_func, self, input: input.dtype != self.weight.data.dtype,
weight is not None and input.dtype != weight.data.dtype) )
CondFunc(
"torch.nn.modules.conv.Conv2d.forward",
lambda orig_func, self, input: orig_func(
self, input.to(self.weight.data.dtype)
),
lambda orig_func, self, input: input.dtype != self.weight.data.dtype,
)
CondFunc(
"torch.nn.functional.layer_norm",
lambda orig_func, input, normalized_shape=None, weight=None, *args, **kwargs: orig_func(
input.to(weight.data.dtype), normalized_shape, weight, *args, **kwargs
),
lambda orig_func, input, normalized_shape=None, weight=None, *args, **kwargs: weight
is not None
and input.dtype != weight.data.dtype,
)
#Diffusers Float64 (ARC GPUs doesn't support double or Float64): # Diffusers Float64 (ARC GPUs doesn't support double or Float64):
if not torch.xpu.has_fp64_dtype(): if not torch.xpu.has_fp64_dtype():
CondFunc('torch.from_numpy', CondFunc(
lambda orig_func, ndarray: orig_func(ndarray.astype('float32')), "torch.from_numpy",
lambda orig_func, ndarray: ndarray.dtype == float) lambda orig_func, ndarray: orig_func(ndarray.astype("float32")),
lambda orig_func, ndarray: ndarray.dtype == float,
)
#Broken functions when torch.cuda.is_available is True: # Broken functions when torch.cuda.is_available is True:
CondFunc('torch.utils.data.dataloader._BaseDataLoaderIter.__init__', CondFunc(
"torch.utils.data.dataloader._BaseDataLoaderIter.__init__",
lambda orig_func, *args, **kwargs: ipex_no_cuda(orig_func, *args, **kwargs), lambda orig_func, *args, **kwargs: ipex_no_cuda(orig_func, *args, **kwargs),
lambda orig_func, *args, **kwargs: True) lambda orig_func, *args, **kwargs: True,
)
#Functions that make compile mad with CondFunc: # Functions that make compile mad with CondFunc:
torch.utils.data.dataloader._MultiProcessingDataLoaderIter._shutdown_workers = _shutdown_workers torch.utils.data.dataloader._MultiProcessingDataLoaderIter._shutdown_workers = (
_shutdown_workers
)
torch.nn.DataParallel = DummyDataParallel torch.nn.DataParallel = DummyDataParallel
torch.autocast = ipex_autocast torch.autocast = ipex_autocast
torch.cat = torch_cat torch.cat = torch_cat

View File

@ -17,12 +17,15 @@ n_gpus = len(hps.gpus.split("-"))
from random import randint, shuffle from random import randint, shuffle
import torch import torch
try: try:
import intel_extension_for_pytorch as ipex # pylint: disable=import-error, unused-import import intel_extension_for_pytorch as ipex # pylint: disable=import-error, unused-import
if torch.xpu.is_available(): if torch.xpu.is_available():
from infer.modules.ipex import ipex_init from infer.modules.ipex import ipex_init
from infer.modules.ipex.gradscaler import gradscaler_init from infer.modules.ipex.gradscaler import gradscaler_init
from torch.xpu.amp import autocast from torch.xpu.amp import autocast
GradScaler = gradscaler_init() GradScaler = gradscaler_init()
ipex_init() ipex_init()
else: else:

View File

@ -288,14 +288,13 @@ class VC:
tgt_sr, tgt_sr,
) )
else: else:
path = "%s/%s.%s" % (opt_root, os.path.basename(path), format1) path = "%s/%s.%s" % (
opt_root,
os.path.basename(path),
format1,
)
with BytesIO() as wavf: with BytesIO() as wavf:
sf.write( sf.write(wavf, audio_opt, tgt_sr, format="wav")
wavf,
audio_opt,
tgt_sr,
format="wav"
)
wavf.seek(0, 0) wavf.seek(0, 0)
with open(path, "wb") as outf: with open(path, "wb") as outf:
wav2(wavf, outf, format1) wav2(wavf, outf, format1)

View File

@ -288,14 +288,13 @@ class VC:
tgt_sr, tgt_sr,
) )
else: else:
path = "%s/%s.%s" % (opt_root, os.path.basename(path), format1) path = "%s/%s.%s" % (
opt_root,
os.path.basename(path),
format1,
)
with BytesIO() as wavf: with BytesIO() as wavf:
sf.write( sf.write(wavf, audio_opt, tgt_sr, format="wav")
wavf,
audio_opt,
tgt_sr,
format="wav"
)
wavf.seek(0, 0) wavf.seek(0, 0)
with open(path, "wb") as outf: with open(path, "wb") as outf:
wav2(wavf, outf, format1) wav2(wavf, outf, format1)

View File

@ -357,19 +357,13 @@ class RVC:
with torch.no_grad(): with torch.no_grad():
if self.if_f0 == 1: if self.if_f0 == 1:
# print(12222222222,feats.device,p_len.device,cache_pitch.device,cache_pitchf.device,sid.device,rate2) # print(12222222222,feats.device,p_len.device,cache_pitch.device,cache_pitchf.device,sid.device,rate2)
infered_audio = ( infered_audio = self.net_g.infer(
self.net_g.infer( feats, p_len, cache_pitch, cache_pitchf, sid, rate
feats, p_len, cache_pitch, cache_pitchf, sid, rate )[0][0, 0].data.float()
)[0][0, 0]
.data
.float()
)
else: else:
infered_audio = ( infered_audio = self.net_g.infer(feats, p_len, sid, rate)[0][
self.net_g.infer(feats, p_len, sid, rate)[0][0, 0] 0, 0
.data ].data.float()
.float()
)
t5 = ttime() t5 = ttime()
logger.info( logger.info(
"Spent time: fea = %.2fs, index = %.2fs, f0 = %.2fs, model = %.2fs", "Spent time: fea = %.2fs, index = %.2fs, f0 = %.2fs, model = %.2fs",

View File

@ -3,7 +3,9 @@ from torch.types import Number
@torch.no_grad() @torch.no_grad()
def amp_to_db(x: torch.Tensor, eps=torch.finfo(torch.float64).eps, top_db=40) -> torch.Tensor: def amp_to_db(
x: torch.Tensor, eps=torch.finfo(torch.float64).eps, top_db=40
) -> torch.Tensor:
""" """
Convert the input tensor from amplitude to decibel scale. Convert the input tensor from amplitude to decibel scale.
@ -40,7 +42,9 @@ def temperature_sigmoid(x: torch.Tensor, x0: float, temp_coeff: float) -> torch.
@torch.no_grad() @torch.no_grad()
def linspace(start: Number, stop: Number, num: int = 50, endpoint: bool = True, **kwargs) -> torch.Tensor: def linspace(
start: Number, stop: Number, num: int = 50, endpoint: bool = True, **kwargs
) -> torch.Tensor:
""" """
Generate a linearly spaced 1-D tensor. Generate a linearly spaced 1-D tensor.