1
0
mirror of synced 2024-11-27 17:00:54 +01:00

Format code (#330)

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
This commit is contained in:
github-actions[bot] 2023-05-21 19:19:53 +08:00 committed by GitHub
parent 067731db9b
commit cfd9848128
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
6 changed files with 39 additions and 22 deletions

View File

@ -2,6 +2,7 @@ import argparse
import torch
from multiprocessing import cpu_count
def config_file_change_fp32():
for config_file in ["32k.json", "40k.json", "48k.json"]:
with open(f"configs/{config_file}", "r") as f:
@ -13,6 +14,7 @@ def config_file_change_fp32():
with open("trainset_preprocess_pipeline_print.py", "w") as f:
f.write(strr)
class Config:
def __init__(self):
self.device = "cuda:0"

View File

@ -52,4 +52,3 @@ if __name__ == "__main__":
input_names=input_names,
output_names=output_names,
)

38
gui.py
View File

@ -1,4 +1,4 @@
'''
"""
0416后的更新
引入config中half
重建npy而不用填写
@ -9,11 +9,13 @@
int16
增加无索引支持
f0算法改harvest(怎么看就只有这个会影响CPU占用)但是不这么改效果不好
'''
"""
import os, sys, traceback
now_dir = os.getcwd()
sys.path.append(now_dir)
from config import Config
is_half = Config().is_half
import PySimpleGUI as sg
import sounddevice as sd
@ -26,7 +28,12 @@ import torchaudio.transforms as tat
import scipy.signal as signal
# import matplotlib.pyplot as plt
from infer_pack.models import SynthesizerTrnMs256NSFsid, SynthesizerTrnMs256NSFsid_nono,SynthesizerTrnMs768NSFsid,SynthesizerTrnMs768NSFsid_nono
from infer_pack.models import (
SynthesizerTrnMs256NSFsid,
SynthesizerTrnMs256NSFsid_nono,
SynthesizerTrnMs768NSFsid,
SynthesizerTrnMs768NSFsid_nono,
)
from i18n import I18nAuto
i18n = I18nAuto()
@ -63,7 +70,7 @@ class RVC:
)
self.model = models[0]
self.model = self.model.to(device)
if(is_half==True):
if is_half == True:
self.model = self.model.half()
else:
self.model = self.model.float()
@ -75,18 +82,22 @@ class RVC:
self.version = cpt.get("version", "v1")
if version == "v1":
if if_f0 == 1:
self.net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=config.is_half)
self.net_g = SynthesizerTrnMs256NSFsid(
*cpt["config"], is_half=config.is_half
)
else:
self.net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
elif version == "v2":
if if_f0 == 1:
self.net_g = SynthesizerTrnMs768NSFsid(*cpt["config"], is_half=config.is_half)
self.net_g = SynthesizerTrnMs768NSFsid(
*cpt["config"], is_half=config.is_half
)
else:
self.net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"])
del self.net_g.enc_q
print(self.net_g.load_state_dict(cpt["weight"], strict=False))
self.net_g.eval().to(device)
if(is_half==True):
if is_half == True:
self.net_g = self.net_g.half()
else:
self.net_g = self.net_g.float()
@ -151,15 +162,18 @@ class RVC:
####索引优化
try:
if hasattr(self, "index") and hasattr(self, "big_npy") and self.index_rate != 0:
if (
hasattr(self, "index")
and hasattr(self, "big_npy")
and self.index_rate != 0
):
npy = feats[0].cpu().numpy().astype("float32")
score, ix = self.index.search(npy, k=8)
weight = np.square(1 / score)
weight /= weight.sum(axis=1, keepdims=True)
npy = np.sum(
self.big_npy[ix] * np.expand_dims(weight, axis=2), axis=1
)
if(is_half==True):npy=npy.astype("float16")
npy = np.sum(self.big_npy[ix] * np.expand_dims(weight, axis=2), axis=1)
if is_half == True:
npy = npy.astype("float16")
feats = (
torch.from_numpy(npy).unsqueeze(0).to(device) * self.index_rate
+ (1 - self.index_rate) * feats

View File

@ -1069,6 +1069,8 @@ def change_info_(ckpt_path):
from infer_pack.models_onnx import SynthesizerTrnMsNSFsidM
def export_onnx(ModelPath, ExportedPath, MoeVS=True):
cpt = torch.load(ModelPath, map_location="cpu")
cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] # n_spk