1
0
mirror of synced 2025-01-18 17:14:05 +01:00

Format code (#1162)

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
This commit is contained in:
github-actions[bot] 2023-09-02 11:50:52 +08:00 committed by GitHub
parent a86806b01a
commit dace5a6f99
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
18 changed files with 53 additions and 12 deletions

View File

@ -718,7 +718,9 @@ if __name__ == "__main__":
sd.default.device[1] = output_device_indices[
output_devices.index(output_device)
]
logger.info("Input device:" + str(sd.default.device[0]) + ":" + str(input_device))
logger.info(
"Input device:" + str(sd.default.device[0]) + ":" + str(input_device)
)
logger.info(
"Output device:" + str(sd.default.device[1]) + ":" + str(output_device)
)

View File

@ -1,5 +1,6 @@
import math
import logging
logger = logging.getLogger(__name__)
import numpy as np
@ -615,7 +616,9 @@ class SynthesizerTrnMs256NSFsid(nn.Module):
inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
)
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
logger.debug("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
logger.debug(
"gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim
)
def remove_weight_norm(self):
self.dec.remove_weight_norm()
@ -731,7 +734,9 @@ class SynthesizerTrnMs768NSFsid(nn.Module):
inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
)
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
logger.debug("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
logger.debug(
"gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim
)
def remove_weight_norm(self):
self.dec.remove_weight_norm()
@ -844,7 +849,9 @@ class SynthesizerTrnMs256NSFsid_nono(nn.Module):
inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
)
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
logger.debug("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
logger.debug(
"gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim
)
def remove_weight_norm(self):
self.dec.remove_weight_norm()
@ -950,7 +957,9 @@ class SynthesizerTrnMs768NSFsid_nono(nn.Module):
inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
)
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
logger.debug("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
logger.debug(
"gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim
)
def remove_weight_norm(self):
self.dec.remove_weight_norm()

View File

@ -1,5 +1,6 @@
import math
import logging
logger = logging.getLogger(__name__)
import numpy as np
@ -619,7 +620,9 @@ class SynthesizerTrnMsNSFsidM(nn.Module):
)
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
self.speaker_map = None
logger.debug("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
logger.debug(
"gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim
)
def remove_weight_norm(self):
self.dec.remove_weight_norm()

View File

@ -4,6 +4,7 @@ import onnxruntime
import soundfile
import logging
logger = logging.getLogger(__name__)

View File

@ -1,6 +1,7 @@
import os
import traceback
import logging
logger = logging.getLogger(__name__)
import numpy as np

View File

@ -2,6 +2,7 @@ import torch
import torch.utils.data
from librosa.filters import mel as librosa_mel_fn
import logging
logger = logging.getLogger(__name__)
MAX_WAV_VALUE = 32768.0

View File

@ -1,6 +1,7 @@
import os
import sys
import logging
logger = logging.getLogger(__name__)
now_dir = os.getcwd()

View File

@ -1,5 +1,6 @@
import os
import logging
logger = logging.getLogger(__name__)
import librosa

View File

@ -1,6 +1,7 @@
import os
import traceback
import logging
logger = logging.getLogger(__name__)
import ffmpeg

View File

@ -1,5 +1,6 @@
import os
import logging
logger = logging.getLogger(__name__)
import librosa

View File

@ -1,5 +1,6 @@
import traceback
import logging
logger = logging.getLogger(__name__)
import numpy as np
@ -52,8 +53,16 @@ class VC:
if not sid:
if self.hubert_model is not None: # 考虑到轮询, 需要加个判断看是否 sid 是由有模型切换到无模型的
logger.info("Clean model cache")
del self.net_g, self.n_spk, self.vc, self.hubert_model, self.tgt_sr # ,cpt
self.hubert_model = self.net_g = self.n_spk = self.vc = self.hubert_model = self.tgt_sr = None
del (
self.net_g,
self.n_spk,
self.vc,
self.hubert_model,
self.tgt_sr,
) # ,cpt
self.hubert_model = (
self.net_g
) = self.n_spk = self.vc = self.hubert_model = self.tgt_sr = None
if torch.cuda.is_available():
torch.cuda.empty_cache()
###楼下不这么折腾清理不干净

View File

@ -2,6 +2,7 @@ import os
import sys
import traceback
import logging
logger = logging.getLogger(__name__)
from functools import lru_cache
@ -267,9 +268,7 @@ class Pipeline(object):
with torch.no_grad():
hasp = pitch is not None and pitchf is not None
arg = (feats, p_len, pitch, pitchf, sid) if hasp else (feats, p_len, sid)
audio1 = (
(net_g.infer(*arg)[0][0, 0]).data.cpu().float().numpy()
)
audio1 = (net_g.infer(*arg)[0][0, 0]).data.cpu().float().numpy()
del hasp, arg
del feats, p_len, padding_mask
if torch.cuda.is_available():

View File

@ -2,6 +2,7 @@ import os
from fairseq import checkpoint_utils
def get_index_path_from_model(sid):
return next(
(

View File

@ -2,6 +2,7 @@
# Fill in the path of the model to be queried and the root directory of the reference models, and this script will return the similarity between the model to be queried and all reference models.
import os
import logging
logger = logging.getLogger(__name__)
import torch

View File

@ -4,6 +4,7 @@
"""
import os
import logging
logger = logging.getLogger(__name__)
import parselmouth

View File

@ -4,6 +4,7 @@
import os
import traceback
import logging
logger = logging.getLogger(__name__)
from multiprocessing import cpu_count

View File

@ -3,6 +3,7 @@
"""
import os
import logging
logger = logging.getLogger(__name__)
import faiss

View File

@ -2,6 +2,7 @@ import os
import sys
import traceback
import logging
logger = logging.getLogger(__name__)
from time import time as ttime
@ -341,5 +342,11 @@ class RVC:
.float()
)
t5 = ttime()
logger.info("Spent time: fea = %s, index = %s, f0 = %s, model = %s", t2 - t1, t3 - t2, t4 - t3, t5 - t4)
logger.info(
"Spent time: fea = %s, index = %s, f0 = %s, model = %s",
t2 - t1,
t3 - t2,
t4 - t3,
t5 - t4,
)
return infered_audio