1
0
mirror of synced 2024-11-27 17:00:54 +01:00

Format code (#1162)

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
This commit is contained in:
github-actions[bot] 2023-09-02 11:50:52 +08:00 committed by GitHub
parent a86806b01a
commit dace5a6f99
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
18 changed files with 53 additions and 12 deletions

View File

@ -718,7 +718,9 @@ if __name__ == "__main__":
sd.default.device[1] = output_device_indices[ sd.default.device[1] = output_device_indices[
output_devices.index(output_device) output_devices.index(output_device)
] ]
logger.info("Input device:" + str(sd.default.device[0]) + ":" + str(input_device)) logger.info(
"Input device:" + str(sd.default.device[0]) + ":" + str(input_device)
)
logger.info( logger.info(
"Output device:" + str(sd.default.device[1]) + ":" + str(output_device) "Output device:" + str(sd.default.device[1]) + ":" + str(output_device)
) )

View File

@ -1,5 +1,6 @@
import math import math
import logging import logging
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
import numpy as np import numpy as np
@ -615,7 +616,9 @@ class SynthesizerTrnMs256NSFsid(nn.Module):
inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
) )
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels) self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
logger.debug("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim) logger.debug(
"gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim
)
def remove_weight_norm(self): def remove_weight_norm(self):
self.dec.remove_weight_norm() self.dec.remove_weight_norm()
@ -731,7 +734,9 @@ class SynthesizerTrnMs768NSFsid(nn.Module):
inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
) )
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels) self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
logger.debug("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim) logger.debug(
"gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim
)
def remove_weight_norm(self): def remove_weight_norm(self):
self.dec.remove_weight_norm() self.dec.remove_weight_norm()
@ -844,7 +849,9 @@ class SynthesizerTrnMs256NSFsid_nono(nn.Module):
inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
) )
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels) self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
logger.debug("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim) logger.debug(
"gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim
)
def remove_weight_norm(self): def remove_weight_norm(self):
self.dec.remove_weight_norm() self.dec.remove_weight_norm()
@ -950,7 +957,9 @@ class SynthesizerTrnMs768NSFsid_nono(nn.Module):
inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
) )
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels) self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
logger.debug("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim) logger.debug(
"gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim
)
def remove_weight_norm(self): def remove_weight_norm(self):
self.dec.remove_weight_norm() self.dec.remove_weight_norm()

View File

@ -1,5 +1,6 @@
import math import math
import logging import logging
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
import numpy as np import numpy as np
@ -619,7 +620,9 @@ class SynthesizerTrnMsNSFsidM(nn.Module):
) )
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels) self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
self.speaker_map = None self.speaker_map = None
logger.debug("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim) logger.debug(
"gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim
)
def remove_weight_norm(self): def remove_weight_norm(self):
self.dec.remove_weight_norm() self.dec.remove_weight_norm()

View File

@ -4,6 +4,7 @@ import onnxruntime
import soundfile import soundfile
import logging import logging
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)

View File

@ -1,6 +1,7 @@
import os import os
import traceback import traceback
import logging import logging
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
import numpy as np import numpy as np

View File

@ -2,6 +2,7 @@ import torch
import torch.utils.data import torch.utils.data
from librosa.filters import mel as librosa_mel_fn from librosa.filters import mel as librosa_mel_fn
import logging import logging
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
MAX_WAV_VALUE = 32768.0 MAX_WAV_VALUE = 32768.0

View File

@ -1,6 +1,7 @@
import os import os
import sys import sys
import logging import logging
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
now_dir = os.getcwd() now_dir = os.getcwd()

View File

@ -1,5 +1,6 @@
import os import os
import logging import logging
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
import librosa import librosa

View File

@ -1,6 +1,7 @@
import os import os
import traceback import traceback
import logging import logging
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
import ffmpeg import ffmpeg

View File

@ -1,5 +1,6 @@
import os import os
import logging import logging
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
import librosa import librosa

View File

@ -1,5 +1,6 @@
import traceback import traceback
import logging import logging
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
import numpy as np import numpy as np
@ -52,8 +53,16 @@ class VC:
if not sid: if not sid:
if self.hubert_model is not None: # 考虑到轮询, 需要加个判断看是否 sid 是由有模型切换到无模型的 if self.hubert_model is not None: # 考虑到轮询, 需要加个判断看是否 sid 是由有模型切换到无模型的
logger.info("Clean model cache") logger.info("Clean model cache")
del self.net_g, self.n_spk, self.vc, self.hubert_model, self.tgt_sr # ,cpt del (
self.hubert_model = self.net_g = self.n_spk = self.vc = self.hubert_model = self.tgt_sr = None self.net_g,
self.n_spk,
self.vc,
self.hubert_model,
self.tgt_sr,
) # ,cpt
self.hubert_model = (
self.net_g
) = self.n_spk = self.vc = self.hubert_model = self.tgt_sr = None
if torch.cuda.is_available(): if torch.cuda.is_available():
torch.cuda.empty_cache() torch.cuda.empty_cache()
###楼下不这么折腾清理不干净 ###楼下不这么折腾清理不干净

View File

@ -2,6 +2,7 @@ import os
import sys import sys
import traceback import traceback
import logging import logging
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
from functools import lru_cache from functools import lru_cache
@ -267,9 +268,7 @@ class Pipeline(object):
with torch.no_grad(): with torch.no_grad():
hasp = pitch is not None and pitchf is not None hasp = pitch is not None and pitchf is not None
arg = (feats, p_len, pitch, pitchf, sid) if hasp else (feats, p_len, sid) arg = (feats, p_len, pitch, pitchf, sid) if hasp else (feats, p_len, sid)
audio1 = ( audio1 = (net_g.infer(*arg)[0][0, 0]).data.cpu().float().numpy()
(net_g.infer(*arg)[0][0, 0]).data.cpu().float().numpy()
)
del hasp, arg del hasp, arg
del feats, p_len, padding_mask del feats, p_len, padding_mask
if torch.cuda.is_available(): if torch.cuda.is_available():

View File

@ -2,6 +2,7 @@ import os
from fairseq import checkpoint_utils from fairseq import checkpoint_utils
def get_index_path_from_model(sid): def get_index_path_from_model(sid):
return next( return next(
( (

View File

@ -2,6 +2,7 @@
# Fill in the path of the model to be queried and the root directory of the reference models, and this script will return the similarity between the model to be queried and all reference models. # Fill in the path of the model to be queried and the root directory of the reference models, and this script will return the similarity between the model to be queried and all reference models.
import os import os
import logging import logging
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
import torch import torch

View File

@ -4,6 +4,7 @@
""" """
import os import os
import logging import logging
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
import parselmouth import parselmouth

View File

@ -4,6 +4,7 @@
import os import os
import traceback import traceback
import logging import logging
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
from multiprocessing import cpu_count from multiprocessing import cpu_count

View File

@ -3,6 +3,7 @@
""" """
import os import os
import logging import logging
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
import faiss import faiss

View File

@ -2,6 +2,7 @@ import os
import sys import sys
import traceback import traceback
import logging import logging
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
from time import time as ttime from time import time as ttime
@ -341,5 +342,11 @@ class RVC:
.float() .float()
) )
t5 = ttime() t5 = ttime()
logger.info("Spent time: fea = %s, index = %s, f0 = %s, model = %s", t2 - t1, t3 - t2, t4 - t3, t5 - t4) logger.info(
"Spent time: fea = %s, index = %s, f0 = %s, model = %s",
t2 - t1,
t3 - t2,
t4 - t3,
t5 - t4,
)
return infered_audio return infered_audio