diff --git a/MDXNet.py b/MDXNet.py
new file mode 100644
index 0000000..02b37f7
--- /dev/null
+++ b/MDXNet.py
@@ -0,0 +1,198 @@
+import soundfile as sf
+import torch,pdb,time,argparse,os,warnings,sys,librosa
+import numpy as np
+import onnxruntime as ort
+from scipy.io.wavfile import write
+from tqdm import tqdm
+import torch
+import torch.nn as nn
+
+dim_c = 4
+class Conv_TDF_net_trim():
+ def __init__(self, device, model_name, target_name,
+ L, dim_f, dim_t, n_fft, hop=1024):
+ super(Conv_TDF_net_trim, self).__init__()
+
+ self.dim_f = dim_f
+ self.dim_t = 2 ** dim_t
+ self.n_fft = n_fft
+ self.hop = hop
+ self.n_bins = self.n_fft // 2 + 1
+ self.chunk_size = hop * (self.dim_t - 1)
+ self.window = torch.hann_window(window_length=self.n_fft, periodic=True).to(device)
+ self.target_name = target_name
+ self.blender = 'blender' in model_name
+
+ out_c = dim_c * 4 if target_name == '*' else dim_c
+ self.freq_pad = torch.zeros([1, out_c, self.n_bins - self.dim_f, self.dim_t]).to(device)
+
+ self.n = L // 2
+
+ def stft(self, x):
+ x = x.reshape([-1, self.chunk_size])
+ x = torch.stft(x, n_fft=self.n_fft, hop_length=self.hop, window=self.window, center=True, return_complex=True)
+ x = torch.view_as_real(x)
+ x = x.permute([0, 3, 1, 2])
+ x = x.reshape([-1, 2, 2, self.n_bins, self.dim_t]).reshape([-1, dim_c, self.n_bins, self.dim_t])
+ return x[:, :, :self.dim_f]
+
+ def istft(self, x, freq_pad=None):
+ freq_pad = self.freq_pad.repeat([x.shape[0], 1, 1, 1]) if freq_pad is None else freq_pad
+ x = torch.cat([x, freq_pad], -2)
+ c = 4 * 2 if self.target_name == '*' else 2
+ x = x.reshape([-1, c, 2, self.n_bins, self.dim_t]).reshape([-1, 2, self.n_bins, self.dim_t])
+ x = x.permute([0, 2, 3, 1])
+ x = x.contiguous()
+ x = torch.view_as_complex(x)
+ x = torch.istft(x, n_fft=self.n_fft, hop_length=self.hop, window=self.window, center=True)
+ return x.reshape([-1, c, self.chunk_size])
+def get_models(device, dim_f, dim_t, n_fft):
+ return Conv_TDF_net_trim(
+ device=device,
+ model_name='Conv-TDF', target_name='vocals',
+ L=11,
+ dim_f=dim_f, dim_t=dim_t,
+ n_fft=n_fft
+ )
+
+warnings.filterwarnings("ignore")
+cpu = torch.device('cpu')
+device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
+
+class Predictor:
+ def __init__(self,args):
+ self.args=args
+ self.model_ = get_models(device=cpu, dim_f=args.dim_f, dim_t=args.dim_t, n_fft=args.n_fft)
+ self.model = ort.InferenceSession(os.path.join(args.onnx,self.model_.target_name+'.onnx'), providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
+ print('onnx load done')
+ def demix(self, mix):
+ samples = mix.shape[-1]
+ margin = self.args.margin
+ chunk_size = self.args.chunks*44100
+ assert not margin == 0, 'margin cannot be zero!'
+ if margin > chunk_size:
+ margin = chunk_size
+
+ segmented_mix = {}
+
+ if self.args.chunks == 0 or samples < chunk_size:
+ chunk_size = samples
+
+ counter = -1
+ for skip in range(0, samples, chunk_size):
+ counter+=1
+
+ s_margin = 0 if counter == 0 else margin
+ end = min(skip+chunk_size+margin, samples)
+
+ start = skip-s_margin
+
+ segmented_mix[skip] = mix[:,start:end].copy()
+ if end == samples:
+ break
+
+ sources = self.demix_base(segmented_mix, margin_size=margin)
+ '''
+ mix:(2,big_sample)
+ segmented_mix:offset->(2,small_sample)
+ sources:(1,2,big_sample)
+ '''
+ return sources
+ def demix_base(self, mixes, margin_size):
+ chunked_sources = []
+ progress_bar = tqdm(total=len(mixes))
+ progress_bar.set_description("Processing")
+ for mix in mixes:
+ cmix = mixes[mix]
+ sources = []
+ n_sample = cmix.shape[1]
+ model=self.model_
+ trim = model.n_fft//2
+ gen_size = model.chunk_size-2*trim
+ pad = gen_size - n_sample%gen_size
+ mix_p = np.concatenate((np.zeros((2,trim)), cmix, np.zeros((2,pad)), np.zeros((2,trim))), 1)
+ mix_waves = []
+ i = 0
+ while i < n_sample + pad:
+ waves = np.array(mix_p[:, i:i+model.chunk_size])
+ mix_waves.append(waves)
+ i += gen_size
+ mix_waves = torch.tensor(mix_waves, dtype=torch.float32).to(cpu)
+ with torch.no_grad():
+ _ort = self.model
+ spek = model.stft(mix_waves)
+ if self.args.denoise:
+ spec_pred = -_ort.run(None, {'input': -spek.cpu().numpy()})[0]*0.5+_ort.run(None, {'input': spek.cpu().numpy()})[0]*0.5
+ tar_waves = model.istft(torch.tensor(spec_pred))
+ else:
+ tar_waves = model.istft(torch.tensor(_ort.run(None, {'input': spek.cpu().numpy()})[0]))
+ tar_signal = tar_waves[:,:,trim:-trim].transpose(0,1).reshape(2, -1).numpy()[:, :-pad]
+
+ start = 0 if mix == 0 else margin_size
+ end = None if mix == list(mixes.keys())[::-1][0] else -margin_size
+ if margin_size == 0:
+ end = None
+ sources.append(tar_signal[:,start:end])
+
+ progress_bar.update(1)
+
+ chunked_sources.append(sources)
+ _sources = np.concatenate(chunked_sources, axis=-1)
+ # del self.model
+ progress_bar.close()
+ return _sources
+ def prediction(self, m,vocal_root,others_root):
+ os.makedirs(vocal_root,exist_ok=True)
+ os.makedirs(others_root,exist_ok=True)
+ basename = os.path.basename(m)
+ mix, rate = librosa.load(m, mono=False, sr=44100)
+ if mix.ndim == 1:
+ mix = np.asfortranarray([mix,mix])
+ mix = mix.T
+ sources = self.demix(mix.T)
+ opt=sources[0].T
+ sf.write("%s/%s_main_vocal.wav"%(vocal_root,basename), mix-opt, rate)
+ sf.write("%s/%s_others.wav"%(others_root,basename), opt , rate)
+
+class MDXNetDereverb():
+ def __init__(self,chunks):
+ self.onnx="uvr5_weights/onnx_dereverb_By_FoxJoy"
+ self.shifts=10#'Predict with randomised equivariant stabilisation'
+ self.mixing="min_mag"#['default','min_mag','max_mag']
+ self.chunks=chunks
+ self.margin=44100
+ self.dim_t=9
+ self.dim_f=3072
+ self.n_fft=6144
+ self.denoise=True
+ self.pred=Predictor(self)
+
+ def _path_audio_(self,input,vocal_root,others_root):
+ self.pred.prediction(input,vocal_root,others_root)
+
+if __name__ == '__main__':
+ dereverb=MDXNetDereverb(15)
+ from time import time as ttime
+ t0=ttime()
+ dereverb._path_audio_(
+ "雪雪伴奏对消HP5.wav",
+ "vocal",
+ "others",
+ )
+ t1=ttime()
+ print(t1-t0)
+
+
+'''
+
+runtime\python.exe MDXNet.py
+
+6G:
+15/9:0.8G->6.8G
+14:0.8G->6.5G
+25:炸
+
+half15:0.7G->6.6G,22.69s
+fp32-15:0.7G->6.6G,20.85s
+
+'''
\ No newline at end of file
diff --git a/infer-web.py b/infer-web.py
index 2d5739b..8596da6 100644
--- a/infer-web.py
+++ b/infer-web.py
@@ -21,6 +21,7 @@ warnings.filterwarnings("ignore")
torch.manual_seed(114514)
from i18n import I18nAuto
import ffmpeg
+from MDXNet import MDXNetDereverb
i18n = I18nAuto()
i18n.print()
@@ -82,7 +83,7 @@ import gradio as gr
import logging
from vc_infer_pipeline import VC
from config import Config
-from infer_uvr5 import _audio_pre_
+from infer_uvr5 import _audio_pre_,_audio_pre_new
from my_utils import load_audio
from train.process_ckpt import show_info, change_info, merge, extract_small_model
@@ -133,7 +134,7 @@ for root, dirs, files in os.walk(index_root, topdown=False):
index_paths.append("%s/%s" % (root, name))
uvr5_names = []
for name in os.listdir(weight_uvr5_root):
- if name.endswith(".pth"):
+ if name.endswith(".pth")or "onnx"in name:
uvr5_names.append(name.replace(".pth", ""))
@@ -150,6 +151,7 @@ def vc_single(
filter_radius,
resample_sr,
rms_mix_rate,
+ protect
): # spk_item, input_audio0, vc_transform0,f0_file,f0method0
global tgt_sr, net_g, vc, hubert_model, version
if input_audio_path is None:
@@ -197,6 +199,7 @@ def vc_single(
resample_sr,
rms_mix_rate,
version,
+ protect,
f0_file=f0_file,
)
if resample_sr >= 16000 and tgt_sr != resample_sr:
@@ -232,6 +235,7 @@ def vc_multi(
filter_radius,
resample_sr,
rms_mix_rate,
+ protect
):
try:
dir_path = (
@@ -262,6 +266,7 @@ def vc_multi(
filter_radius,
resample_sr,
rms_mix_rate,
+ protect
)
if "Success" in info:
try:
@@ -288,12 +293,16 @@ def uvr(model_name, inp_root, save_root_vocal, paths, save_root_ins, agg):
save_root_ins = (
save_root_ins.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
)
- pre_fun = _audio_pre_(
- agg=int(agg),
- model_path=os.path.join(weight_uvr5_root, model_name + ".pth"),
- device=config.device,
- is_half=config.is_half,
- )
+ if(model_name=="onnx_dereverb_By_FoxJoy"):
+ pre_fun=MDXNetDereverb(15)
+ else:
+ func=_audio_pre_ if "DeEcho"not in model_name else _audio_pre_new
+ pre_fun = func(
+ agg=int(agg),
+ model_path=os.path.join(weight_uvr5_root, model_name + ".pth"),
+ device=config.device,
+ is_half=config.is_half,
+ )
if inp_root != "":
paths = [os.path.join(inp_root, name) for name in os.listdir(inp_root)]
else:
@@ -336,8 +345,12 @@ def uvr(model_name, inp_root, save_root_vocal, paths, save_root_ins, agg):
yield "\n".join(infos)
finally:
try:
- del pre_fun.model
- del pre_fun
+ if (model_name == "onnx_dereverb_By_FoxJoy"):
+ del pre_fun.pred.model
+ del pre_fun.pred.model_
+ else:
+ del pre_fun.model
+ del pre_fun
except:
traceback.print_exc()
print("clean_empty_cache")
@@ -790,7 +803,7 @@ def train_index(exp_dir1, version19):
faiss.write_index(
index,
"%s/trained_IVF%s_Flat_nprobe_%s_%s_%s.index"
- % (exp_dir, n_ivf, index_ivf.nprobe, exp_dir1, version19),
+ % (exp_dir, n_ivf, index_ivf.nprobe,exp_dir1, version19),
)
# faiss.write_index(index, '%s/trained_IVF%s_Flat_FastScan_%s.index'%(exp_dir,n_ivf,version19))
infos.append("adding")
@@ -801,11 +814,11 @@ def train_index(exp_dir1, version19):
faiss.write_index(
index,
"%s/added_IVF%s_Flat_nprobe_%s_%s_%s.index"
- % (exp_dir, n_ivf, index_ivf.nprobe, exp_dir1, version19),
+ % (exp_dir, n_ivf, index_ivf.nprobe,exp_dir1, version19),
)
infos.append(
"成功构建索引,added_IVF%s_Flat_nprobe_%s_%s_%s.index"
- % (n_ivf, index_ivf.nprobe, exp_dir1, version19)
+ % (n_ivf, index_ivf.nprobe,exp_dir1, version19)
)
# faiss.write_index(index, '%s/added_IVF%s_Flat_FastScan_%s.index'%(exp_dir,n_ivf,version19))
# infos.append("成功构建索引,added_IVF%s_Flat_FastScan_%s.index"%(n_ivf,version19))
@@ -1030,7 +1043,7 @@ def train1key(
faiss.write_index(
index,
"%s/trained_IVF%s_Flat_nprobe_%s_%s_%s.index"
- % (model_log_dir, n_ivf, index_ivf.nprobe, exp_dir1, version19),
+ % (model_log_dir, n_ivf, index_ivf.nprobe,exp_dir1, version19),
)
yield get_info_str("adding index")
batch_size_add = 8192
@@ -1039,11 +1052,11 @@ def train1key(
faiss.write_index(
index,
"%s/added_IVF%s_Flat_nprobe_%s_%s_%s.index"
- % (model_log_dir, n_ivf, index_ivf.nprobe, exp_dir1, version19),
+ % (model_log_dir, n_ivf, index_ivf.nprobe,exp_dir1, version19),
)
yield get_info_str(
"成功构建索引, added_IVF%s_Flat_nprobe_%s_%s_%s.index"
- % (n_ivf, index_ivf.nprobe, exp_dir1, version19)
+ % (n_ivf, index_ivf.nprobe, exp_dir1,version19)
)
yield get_info_str(i18n("全流程结束!"))
@@ -1161,8 +1174,8 @@ with gr.Blocks() as app:
value="E:\\codes\\py39\\test-20230416b\\todo-songs\\冬之花clip1.wav",
)
f0method0 = gr.Radio(
- label=i18n("选择音高提取算法,输入歌声可用pm提速,harvest低音好但巨慢无比"),
- choices=["pm", "harvest"],
+ label=i18n("选择音高提取算法,输入歌声可用pm提速,harvest低音好但巨慢无比,crepe效果好但吃GPU"),
+ choices=["pm", "harvest","crepe"],
value="pm",
interactive=True,
)
@@ -1197,9 +1210,10 @@ with gr.Blocks() as app:
minimum=0,
maximum=1,
label=i18n("检索特征占比"),
- value=0.76,
+ value=0.88,
interactive=True,
)
+ with gr.Column():
resample_sr0 = gr.Slider(
minimum=0,
maximum=48000,
@@ -1215,9 +1229,17 @@ with gr.Blocks() as app:
value=1,
interactive=True,
)
+ protect0 = gr.Slider(
+ minimum=0,
+ maximum=0.5,
+ label=i18n("保护清辅音和呼吸声,防止电音撕裂等artifact,拉满0.5不开启,调低加大保护力度但可能降低索引效果"),
+ value=0.33,
+ step=0.01,
+ interactive=True,
+ )
f0_file = gr.File(label=i18n("F0曲线文件, 可选, 一行一个音高, 代替默认F0及升降调"))
but0 = gr.Button(i18n("转换"), variant="primary")
- with gr.Column():
+ with gr.Row():
vc_output1 = gr.Textbox(label=i18n("输出信息"))
vc_output2 = gr.Audio(label=i18n("输出音频(右下角三个点,点了可以下载)"))
but0.click(
@@ -1235,6 +1257,7 @@ with gr.Blocks() as app:
filter_radius0,
resample_sr0,
rms_mix_rate0,
+ protect0
],
[vc_output1, vc_output2],
)
@@ -1249,8 +1272,8 @@ with gr.Blocks() as app:
)
opt_input = gr.Textbox(label=i18n("指定输出文件夹"), value="opt")
f0method1 = gr.Radio(
- label=i18n("选择音高提取算法,输入歌声可用pm提速,harvest低音好但巨慢无比"),
- choices=["pm", "harvest"],
+ label=i18n("选择音高提取算法,输入歌声可用pm提速,harvest低音好但巨慢无比,crepe效果好但吃GPU"),
+ choices=["pm", "harvest","crepe"],
value="pm",
interactive=True,
)
@@ -1285,6 +1308,7 @@ with gr.Blocks() as app:
value=1,
interactive=True,
)
+ with gr.Column():
resample_sr1 = gr.Slider(
minimum=0,
maximum=48000,
@@ -1300,6 +1324,14 @@ with gr.Blocks() as app:
value=1,
interactive=True,
)
+ protect1 = gr.Slider(
+ minimum=0,
+ maximum=0.5,
+ label=i18n("保护清辅音和呼吸声,防止电音撕裂等artifact,拉满0.5不开启,调低加大保护力度但可能降低索引效果"),
+ value=0.33,
+ step=0.01,
+ interactive=True,
+ )
with gr.Column():
dir_input = gr.Textbox(
label=i18n("输入待处理音频文件夹路径(去文件管理器地址栏拷就行了)"),
@@ -1308,8 +1340,9 @@ with gr.Blocks() as app:
inputs = gr.File(
file_count="multiple", label=i18n("也可批量输入音频文件, 二选一, 优先读文件夹")
)
- but1 = gr.Button(i18n("转换"), variant="primary")
- vc_output3 = gr.Textbox(label=i18n("输出信息"))
+ with gr.Row():
+ but1 = gr.Button(i18n("转换"), variant="primary")
+ vc_output3 = gr.Textbox(label=i18n("输出信息"))
but1.click(
vc_multi,
[
@@ -1326,14 +1359,26 @@ with gr.Blocks() as app:
filter_radius1,
resample_sr1,
rms_mix_rate1,
+ protect1
],
[vc_output3],
)
- with gr.TabItem(i18n("伴奏人声分离")):
+ with gr.TabItem(i18n("伴奏人声分离&去混响&去回声")):
with gr.Group():
gr.Markdown(
value=i18n(
- "人声伴奏分离批量处理, 使用UVR5模型.
不带和声用HP2, 带和声且提取的人声不需要和声用HP5
合格的文件夹路径格式举例: E:\\codes\\py39\\vits_vc_gpu\\白鹭霜华测试样例(去文件管理器地址栏拷就行了)"
+ "人声伴奏分离批量处理, 使用UVR5模型。
"
+ "合格的文件夹路径格式举例: E:\\codes\\py39\\vits_vc_gpu\\白鹭霜华测试样例(去文件管理器地址栏拷就行了)。
"
+ "模型分为三类:
"
+ "1、保留人声:不带和声的音频选这个,对主人声保留比HP5更好。内置HP2和HP3两个模型,HP3可能轻微漏伴奏但对主人声保留比HP2稍微好一丁点;
"
+ "2、仅保留主人声:带和声的音频选这个,对主人声可能有削弱。内置HP5一个模型;
"
+ "3、去混响、去延迟模型(by FoxJoy):
"
+ " (1)MDX-Net:对于双通道混响是最好的选择,不能去除单通道混响;
"
+ " (234)DeEcho:去除延迟效果。Aggressive比Normal去除得更彻底,DeReverb额外去除混响,可去除单声道混响,但是对高频重的板式混响去不干净。
"
+ "去混响/去延迟,附:
"
+ "1、DeEcho-DeReverb模型的耗时是另外2个DeEcho模型的接近2倍;
"
+ "2、MDX-Net-Dereverb模型挺慢的;
"
+ "3、个人推荐的最干净的配置是先MDX-Net再DeEcho-Aggressive。"
)
)
with gr.Row():
@@ -1384,7 +1429,7 @@ with gr.Blocks() as app:
exp_dir1 = gr.Textbox(label=i18n("输入实验名"), value="mi-test")
sr2 = gr.Radio(
label=i18n("目标采样率"),
- choices=["32k", "40k", "48k"],
+ choices=["40k", "48k"],
value="40k",
interactive=True,
)
diff --git a/infer_uvr5.py b/infer_uvr5.py
index 4aada2d..4948d17 100644
--- a/infer_uvr5.py
+++ b/infer_uvr5.py
@@ -1,5 +1,7 @@
import os, sys, torch, warnings, pdb
-
+now_dir = os.getcwd()
+sys.path.append(now_dir)
+from json import load as ll
warnings.filterwarnings("ignore")
import librosa
import importlib
@@ -10,7 +12,8 @@ from uvr5_pack.lib_v5 import spec_utils
from uvr5_pack.utils import _get_name_params, inference
from uvr5_pack.lib_v5.model_param_init import ModelParameters
from scipy.io import wavfile
-
+from uvr5_pack.lib_v5.nets_new import CascadedNet
+from uvr5_pack.lib_v5 import nets_61968KB as nets
class _audio_pre_:
def __init__(self, agg, model_path, device, is_half):
@@ -25,28 +28,7 @@ class _audio_pre_:
"agg": agg,
"high_end_process": "mirroring",
}
- nn_arch_sizes = [
- 31191, # default
- 33966,
- 61968,
- 123821,
- 123812,
- 537238, # custom
- ]
- self.nn_architecture = list("{}KB".format(s) for s in nn_arch_sizes)
- model_size = math.ceil(os.stat(model_path).st_size / 1024)
- nn_architecture = "{}KB".format(
- min(nn_arch_sizes, key=lambda x: abs(x - model_size))
- )
- nets = importlib.import_module(
- "uvr5_pack.lib_v5.nets"
- + f"_{nn_architecture}".replace("_{}KB".format(nn_arch_sizes[0]), ""),
- package=None,
- )
- model_hash = hashlib.md5(open(model_path, "rb").read()).hexdigest()
- param_name, model_params_d = _get_name_params(model_path, model_hash)
-
- mp = ModelParameters(model_params_d)
+ mp = ModelParameters("uvr5_pack/lib_v5/modelparams/4band_v2.json")
model = nets.CascadedASPPNet(mp.param["bins"] * 2)
cpk = torch.load(model_path, map_location="cpu")
model.load_state_dict(cpk)
@@ -164,12 +146,148 @@ class _audio_pre_:
(np.array(wav_vocals) * 32768).astype("int16"),
)
+class _audio_pre_new:
+ def __init__(self, agg, model_path, device, is_half):
+ self.model_path = model_path
+ self.device = device
+ self.data = {
+ # Processing Options
+ "postprocess": False,
+ "tta": False,
+ # Constants
+ "window_size": 512,
+ "agg": agg,
+ "high_end_process": "mirroring",
+ }
+ mp=ModelParameters("uvr5_pack/lib_v5/modelparams/4band_v3.json")
+ nout=64 if "DeReverb"in model_path else 48
+ model = CascadedNet(mp.param["bins"] * 2,nout)
+ cpk = torch.load(model_path, map_location="cpu")
+ model.load_state_dict(cpk)
+ model.eval()
+ if is_half:
+ model = model.half().to(device)
+ else:
+ model = model.to(device)
+
+ self.mp = mp
+ self.model = model
+
+ def _path_audio_(self, music_file, vocal_root=None, ins_root=None):#3个VR模型vocal和ins是反的
+ if ins_root is None and vocal_root is None:
+ return "No save root."
+ name = os.path.basename(music_file)
+ if ins_root is not None:
+ os.makedirs(ins_root, exist_ok=True)
+ if vocal_root is not None:
+ os.makedirs(vocal_root, exist_ok=True)
+ X_wave, y_wave, X_spec_s, y_spec_s = {}, {}, {}, {}
+ bands_n = len(self.mp.param["band"])
+ # print(bands_n)
+ for d in range(bands_n, 0, -1):
+ bp = self.mp.param["band"][d]
+ if d == bands_n: # high-end band
+ (
+ X_wave[d],
+ _,
+ ) = librosa.core.load( # 理论上librosa读取可能对某些音频有bug,应该上ffmpeg读取,但是太麻烦了弃坑
+ music_file,
+ bp["sr"],
+ False,
+ dtype=np.float32,
+ res_type=bp["res_type"],
+ )
+ if X_wave[d].ndim == 1:
+ X_wave[d] = np.asfortranarray([X_wave[d], X_wave[d]])
+ else: # lower bands
+ X_wave[d] = librosa.core.resample(
+ X_wave[d + 1],
+ self.mp.param["band"][d + 1]["sr"],
+ bp["sr"],
+ res_type=bp["res_type"],
+ )
+ # Stft of wave source
+ X_spec_s[d] = spec_utils.wave_to_spectrogram_mt(
+ X_wave[d],
+ bp["hl"],
+ bp["n_fft"],
+ self.mp.param["mid_side"],
+ self.mp.param["mid_side_b2"],
+ self.mp.param["reverse"],
+ )
+ # pdb.set_trace()
+ if d == bands_n and self.data["high_end_process"] != "none":
+ input_high_end_h = (bp["n_fft"] // 2 - bp["crop_stop"]) + (
+ self.mp.param["pre_filter_stop"] - self.mp.param["pre_filter_start"]
+ )
+ input_high_end = X_spec_s[d][
+ :, bp["n_fft"] // 2 - input_high_end_h : bp["n_fft"] // 2, :
+ ]
+
+ X_spec_m = spec_utils.combine_spectrograms(X_spec_s, self.mp)
+ aggresive_set = float(self.data["agg"] / 100)
+ aggressiveness = {
+ "value": aggresive_set,
+ "split_bin": self.mp.param["band"][1]["crop_stop"],
+ }
+ with torch.no_grad():
+ pred, X_mag, X_phase = inference(
+ X_spec_m, self.device, self.model, aggressiveness, self.data
+ )
+ # Postprocess
+ if self.data["postprocess"]:
+ pred_inv = np.clip(X_mag - pred, 0, np.inf)
+ pred = spec_utils.mask_silence(pred, pred_inv)
+ y_spec_m = pred * X_phase
+ v_spec_m = X_spec_m - y_spec_m
+
+ if ins_root is not None:
+ if self.data["high_end_process"].startswith("mirroring"):
+ input_high_end_ = spec_utils.mirroring(
+ self.data["high_end_process"], y_spec_m, input_high_end, self.mp
+ )
+ wav_instrument = spec_utils.cmb_spectrogram_to_wave(
+ y_spec_m, self.mp, input_high_end_h, input_high_end_
+ )
+ else:
+ wav_instrument = spec_utils.cmb_spectrogram_to_wave(y_spec_m, self.mp)
+ print("%s instruments done" % name)
+ wavfile.write(
+ os.path.join(
+ ins_root, "main_vocal_{}_{}.wav".format(name, self.data["agg"])
+ ),
+ self.mp.param["sr"],
+ (np.array(wav_instrument) * 32768).astype("int16"),
+ ) #
+ if vocal_root is not None:
+ if self.data["high_end_process"].startswith("mirroring"):
+ input_high_end_ = spec_utils.mirroring(
+ self.data["high_end_process"], v_spec_m, input_high_end, self.mp
+ )
+ wav_vocals = spec_utils.cmb_spectrogram_to_wave(
+ v_spec_m, self.mp, input_high_end_h, input_high_end_
+ )
+ else:
+ wav_vocals = spec_utils.cmb_spectrogram_to_wave(v_spec_m, self.mp)
+ print("%s vocals done" % name)
+ wavfile.write(
+ os.path.join(
+ vocal_root, "others_{}_{}.wav".format(name, self.data["agg"])
+ ),
+ self.mp.param["sr"],
+ (np.array(wav_vocals) * 32768).astype("int16"),
+ )
+
if __name__ == "__main__":
device = "cuda"
is_half = True
- model_path = "uvr5_weights/2_HP-UVR.pth"
- pre_fun = _audio_pre_(model_path=model_path, device=device, is_half=True)
- audio_path = "神女劈观.aac"
+ # model_path = "uvr5_weights/2_HP-UVR.pth"
+ # model_path = "uvr5_weights/VR-DeEchoDeReverb.pth"
+ # model_path = "uvr5_weights/VR-DeEchoNormal.pth"
+ model_path = "uvr5_weights/DeEchoNormal.pth"
+ # pre_fun = _audio_pre_(model_path=model_path, device=device, is_half=True,agg=10)
+ pre_fun = _audio_pre_new(model_path=model_path, device=device, is_half=True,agg=10)
+ audio_path = "雪雪伴奏对消HP5.wav"
save_path = "opt"
pre_fun._path_audio_(audio_path, save_path, save_path)
diff --git a/vc_infer_pipeline.py b/vc_infer_pipeline.py
index a8f0540..f45d4c8 100644
--- a/vc_infer_pipeline.py
+++ b/vc_infer_pipeline.py
@@ -2,7 +2,7 @@ import numpy as np, parselmouth, torch, pdb
from time import time as ttime
import torch.nn.functional as F
import scipy.signal as signal
-import pyworld, os, traceback, faiss, librosa
+import pyworld, os, traceback, faiss, librosa,torchcrepe
from scipy import signal
from functools import lru_cache
@@ -103,6 +103,27 @@ class VC(object):
f0 = cache_harvest_f0(input_audio_path, self.sr, f0_max, f0_min, 10)
if filter_radius > 2:
f0 = signal.medfilt(f0, 3)
+ elif f0_method == "crepe":
+ model = "full"
+ # Pick a batch size that doesn't cause memory errors on your gpu
+ batch_size = 512
+ # Compute pitch using first gpu
+ audio = torch.tensor(np.copy(x))[None].float()
+ f0, pd = torchcrepe.predict(
+ audio,
+ self.sr,
+ self.window,
+ f0_min,
+ f0_max,
+ model,
+ batch_size=batch_size,
+ device=self.device,
+ return_periodicity=True,
+ )
+ pd = torchcrepe.filter.median(pd, 3)
+ f0 = torchcrepe.filter.mean(f0, 3)
+ f0[pd < 0.1] = 0
+ f0 = f0[0].cpu().numpy()
f0 *= pow(2, f0_up_key / 12)
# with open("test.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
tf0 = self.sr // self.window # 每秒f0点数
@@ -141,6 +162,7 @@ class VC(object):
big_npy,
index_rate,
version,
+ protect
): # ,file_index,file_big_npy
feats = torch.from_numpy(audio0)
if self.is_half:
@@ -162,7 +184,8 @@ class VC(object):
with torch.no_grad():
logits = model.extract_features(**inputs)
feats = model.final_proj(logits[0]) if version == "v1" else logits[0]
-
+ if(protect<0.5):
+ feats0=feats.clone()
if (
isinstance(index, type(None)) == False
and isinstance(big_npy, type(None)) == False
@@ -188,6 +211,8 @@ class VC(object):
)
feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1)
+ if(protect<0.5):
+ feats0 = F.interpolate(feats0.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1)
t1 = ttime()
p_len = audio0.shape[0] // self.window
if feats.shape[1] < p_len:
@@ -195,6 +220,14 @@ class VC(object):
if pitch != None and pitchf != None:
pitch = pitch[:, :p_len]
pitchf = pitchf[:, :p_len]
+
+ if(protect<0.5):
+ pitchff = pitchf.clone()
+ pitchff[pitchf > 0] = 1
+ pitchff[pitchf < 1] = protect
+ pitchff = pitchff.unsqueeze(-1)
+ feats = feats * pitchff + feats0 * (1 - pitchff)
+ feats=feats.to(feats0.dtype)
p_len = torch.tensor([p_len], device=self.device).long()
with torch.no_grad():
if pitch != None and pitchf != None:
@@ -235,6 +268,7 @@ class VC(object):
resample_sr,
rms_mix_rate,
version,
+ protect,
f0_file=None,
):
if (
@@ -322,6 +356,7 @@ class VC(object):
big_npy,
index_rate,
version,
+ protect
)[self.t_pad_tgt : -self.t_pad_tgt]
)
else:
@@ -338,6 +373,7 @@ class VC(object):
big_npy,
index_rate,
version,
+ protect
)[self.t_pad_tgt : -self.t_pad_tgt]
)
s = t
@@ -355,6 +391,7 @@ class VC(object):
big_npy,
index_rate,
version,
+ protect
)[self.t_pad_tgt : -self.t_pad_tgt]
)
else:
@@ -371,6 +408,7 @@ class VC(object):
big_npy,
index_rate,
version,
+ protect
)[self.t_pad_tgt : -self.t_pad_tgt]
)
audio_opt = np.concatenate(audio_opt)