1
0
mirror of synced 2024-11-28 01:10:56 +01:00

fix: MacOS 纯 CPU 推理时 Segmentation fault: 11

see: facebookresearch/faiss#2317 facebookresearch#2410
This commit is contained in:
源文雨 2023-04-10 18:28:39 +08:00
parent 6c7c1d933f
commit ff1a711cad
5 changed files with 39 additions and 21 deletions

View File

@ -129,10 +129,10 @@
"#@title 从谷歌云盘加载打包好的数据集到/content/dataset\n", "#@title 从谷歌云盘加载打包好的数据集到/content/dataset\n",
"\n", "\n",
"#@markdown 数据集位置\n", "#@markdown 数据集位置\n",
"DATASET = \"/content/drive/MyDrive/dataset/lulucall_48k.zip\" #@param {type:\"string\"}\n", "DATASET = \"/content/drive/MyDrive/dataset/lulu20230327_32k.zip\" #@param {type:\"string\"}\n",
"\n", "\n",
"!mkdir -p /content/dataset\n", "!mkdir -p /content/dataset\n",
"!unzip -d /content/dataset {DATASET}" "!unzip -d /content/dataset -B {DATASET}"
], ],
"metadata": { "metadata": {
"id": "Mwk7Q0Loqzjx" "id": "Mwk7Q0Loqzjx"
@ -140,13 +140,26 @@
"execution_count": null, "execution_count": null,
"outputs": [] "outputs": []
}, },
{
"cell_type": "code",
"source": [
"#@title 重命名数据集中的重名文件\n",
"!ls -a /content/dataset/\n",
"!rename 's/(\\w+)\\.(\\w+)~(\\d*)/$1_$3.$2/' /content/dataset/*.*~*"
],
"metadata": {
"id": "PDlFxWHWEynD"
},
"execution_count": null,
"outputs": []
},
{ {
"cell_type": "code", "cell_type": "code",
"source": [ "source": [
"#@title 启动web\n", "#@title 启动web\n",
"%cd /content/Retrieval-based-Voice-Conversion-WebUI\n", "%cd /content/Retrieval-based-Voice-Conversion-WebUI\n",
"%load_ext tensorboard\n", "# %load_ext tensorboard\n",
"%tensorboard --logdir /content/Retrieval-based-Voice-Conversion-WebUI/logs\n", "# %tensorboard --logdir /content/Retrieval-based-Voice-Conversion-WebUI/logs\n",
"!python3 infer-web.py --colab --pycmd python3" "!python3 infer-web.py --colab --pycmd python3"
], ],
"metadata": { "metadata": {
@ -164,7 +177,7 @@
"#@markdown 模型名\n", "#@markdown 模型名\n",
"MODELNAME = \"lulu\" #@param {type:\"string\"}\n", "MODELNAME = \"lulu\" #@param {type:\"string\"}\n",
"#@markdown 模型epoch\n", "#@markdown 模型epoch\n",
"MODELEPOCH = 7500 #@param {type:\"integer\"}\n", "MODELEPOCH = 9600 #@param {type:\"integer\"}\n",
"\n", "\n",
"!cp /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}/G_{MODELEPOCH}.pth /content/drive/MyDrive/{MODELNAME}_D_{MODELEPOCH}.pth\n", "!cp /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}/G_{MODELEPOCH}.pth /content/drive/MyDrive/{MODELNAME}_D_{MODELEPOCH}.pth\n",
"!cp /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}/D_{MODELEPOCH}.pth /content/drive/MyDrive/{MODELNAME}_G_{MODELEPOCH}.pth\n", "!cp /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}/D_{MODELEPOCH}.pth /content/drive/MyDrive/{MODELNAME}_G_{MODELEPOCH}.pth\n",
@ -188,7 +201,7 @@
"#@markdown 模型名\n", "#@markdown 模型名\n",
"MODELNAME = \"lulu\" #@param {type:\"string\"}\n", "MODELNAME = \"lulu\" #@param {type:\"string\"}\n",
"#@markdown 模型epoch\n", "#@markdown 模型epoch\n",
"MODELEPOCH = 6000 #@param {type:\"integer\"}\n", "MODELEPOCH = 7500 #@param {type:\"integer\"}\n",
"\n", "\n",
"!mkdir -p /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}\n", "!mkdir -p /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}\n",
"\n", "\n",
@ -241,7 +254,7 @@
"#@markdown 模型名\n", "#@markdown 模型名\n",
"MODELNAME = \"lulu\" #@param {type:\"string\"}\n", "MODELNAME = \"lulu\" #@param {type:\"string\"}\n",
"#@markdown 停止的epoch\n", "#@markdown 停止的epoch\n",
"MODELEPOCH = 2500 #@param {type:\"integer\"}\n", "MODELEPOCH = 3200 #@param {type:\"integer\"}\n",
"#@markdown 保存epoch间隔\n", "#@markdown 保存epoch间隔\n",
"EPOCHSAVE = 100 #@param {type:\"integer\"}\n", "EPOCHSAVE = 100 #@param {type:\"integer\"}\n",
"#@markdown 采样率\n", "#@markdown 采样率\n",
@ -262,7 +275,7 @@
"#@markdown 模型名\n", "#@markdown 模型名\n",
"MODELNAME = \"lulu\" #@param {type:\"string\"}\n", "MODELNAME = \"lulu\" #@param {type:\"string\"}\n",
"#@markdown 选中模型epoch\n", "#@markdown 选中模型epoch\n",
"MODELEPOCH = 7700 #@param {type:\"integer\"}\n", "MODELEPOCH = 9600 #@param {type:\"integer\"}\n",
"\n", "\n",
"!echo \"备份选中的模型。。。\"\n", "!echo \"备份选中的模型。。。\"\n",
"!cp /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}/G_{MODELEPOCH}.pth /content/{MODELNAME}_D_{MODELEPOCH}.pth\n", "!cp /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}/G_{MODELEPOCH}.pth /content/{MODELNAME}_D_{MODELEPOCH}.pth\n",
@ -292,7 +305,7 @@
"#@markdown 模型名\n", "#@markdown 模型名\n",
"MODELNAME = \"lulu\" #@param {type:\"string\"}\n", "MODELNAME = \"lulu\" #@param {type:\"string\"}\n",
"#@markdown 选中模型epoch\n", "#@markdown 选中模型epoch\n",
"MODELEPOCH = 7700 #@param {type:\"integer\"}\n", "MODELEPOCH = 9600 #@param {type:\"integer\"}\n",
"\n", "\n",
"!echo \"备份选中的模型。。。\"\n", "!echo \"备份选中的模型。。。\"\n",
"!cp /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}/G_{MODELEPOCH}.pth /content/{MODELNAME}_D_{MODELEPOCH}.pth\n", "!cp /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}/G_{MODELEPOCH}.pth /content/{MODELNAME}_D_{MODELEPOCH}.pth\n",

View File

@ -9,7 +9,7 @@ import faiss
ncpu=cpu_count() ncpu=cpu_count()
ngpu=torch.cuda.device_count() ngpu=torch.cuda.device_count()
gpu_infos=[] gpu_infos=[]
if(torch.cuda.is_available()==False or ngpu==0):if_gpu_ok=False if((not torch.cuda.is_available()) or ngpu==0):if_gpu_ok=False
else: else:
if_gpu_ok = False if_gpu_ok = False
for i in range(ngpu): for i in range(ngpu):
@ -140,7 +140,7 @@ def uvr(model_name,inp_root,save_root_vocal,paths,save_root_ins):
except: except:
traceback.print_exc() traceback.print_exc()
print("clean_empty_cache") print("clean_empty_cache")
torch.cuda.empty_cache() if torch.cuda.is_available(): torch.cuda.empty_cache()
yield "\n".join(infos) yield "\n".join(infos)
#一个选项卡全局只能有一个音色 #一个选项卡全局只能有一个音色
@ -152,7 +152,7 @@ def get_vc(sid):
print("clean_empty_cache") print("clean_empty_cache")
del net_g, n_spk, vc, hubert_model,tgt_sr#,cpt del net_g, n_spk, vc, hubert_model,tgt_sr#,cpt
hubert_model = net_g=n_spk=vc=hubert_model=tgt_sr=None hubert_model = net_g=n_spk=vc=hubert_model=tgt_sr=None
torch.cuda.empty_cache() if torch.cuda.is_available(): torch.cuda.empty_cache()
###楼下不这么折腾清理不干净 ###楼下不这么折腾清理不干净
if_f0 = cpt.get("f0", 1) if_f0 = cpt.get("f0", 1)
if (if_f0 == 1): if (if_f0 == 1):
@ -160,7 +160,7 @@ def get_vc(sid):
else: else:
net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"]) net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
del net_g,cpt del net_g,cpt
torch.cuda.empty_cache() if torch.cuda.is_available(): torch.cuda.empty_cache()
cpt=None cpt=None
return {"visible": False, "__type__": "update"} return {"visible": False, "__type__": "update"}
person = "%s/%s" % (weight_root, sid) person = "%s/%s" % (weight_root, sid)

View File

@ -104,7 +104,7 @@ for idx,name in enumerate(["冬之花clip1.wav",]):##
"padding_mask": padding_mask.to(device), "padding_mask": padding_mask.to(device),
"output_layer": 9, # layer 9 "output_layer": 9, # layer 9
} }
torch.cuda.synchronize() if torch.cuda.is_available(): torch.cuda.synchronize()
t0=ttime() t0=ttime()
with torch.no_grad(): with torch.no_grad():
logits = model.extract_features(**inputs) logits = model.extract_features(**inputs)
@ -116,13 +116,13 @@ for idx,name in enumerate(["冬之花clip1.wav",]):##
feats = torch.from_numpy(big_npy[I.squeeze()].astype("float16")).unsqueeze(0).to(device) feats = torch.from_numpy(big_npy[I.squeeze()].astype("float16")).unsqueeze(0).to(device)
feats=F.interpolate(feats.permute(0,2,1),scale_factor=2).permute(0,2,1) feats=F.interpolate(feats.permute(0,2,1),scale_factor=2).permute(0,2,1)
torch.cuda.synchronize() if torch.cuda.is_available(): torch.cuda.synchronize()
t1=ttime() t1=ttime()
# p_len = min(feats.shape[1],10000,pitch.shape[0])#太大了爆显存 # p_len = min(feats.shape[1],10000,pitch.shape[0])#太大了爆显存
p_len = min(feats.shape[1],10000)# p_len = min(feats.shape[1],10000)#
pitch, pitchf = get_f0(audio, p_len,f0_up_key) pitch, pitchf = get_f0(audio, p_len,f0_up_key)
p_len = min(feats.shape[1],10000,pitch.shape[0])#太大了爆显存 p_len = min(feats.shape[1],10000,pitch.shape[0])#太大了爆显存
torch.cuda.synchronize() if torch.cuda.is_available(): torch.cuda.synchronize()
t2=ttime() t2=ttime()
feats = feats[:,:p_len, :] feats = feats[:,:p_len, :]
pitch = pitch[:p_len] pitch = pitch[:p_len]
@ -133,7 +133,7 @@ for idx,name in enumerate(["冬之花clip1.wav",]):##
pitchf = torch.FloatTensor(pitchf).unsqueeze(0).to(device) pitchf = torch.FloatTensor(pitchf).unsqueeze(0).to(device)
with torch.no_grad(): with torch.no_grad():
audio = net_g.infer(feats, p_len,pitch,pitchf,sid)[0][0, 0].data.cpu().float().numpy()#nsf audio = net_g.infer(feats, p_len,pitch,pitchf,sid)[0][0, 0].data.cpu().float().numpy()#nsf
torch.cuda.synchronize() if torch.cuda.is_available(): torch.cuda.synchronize()
t3=ttime() t3=ttime()
ta0+=(t1-t0) ta0+=(t1-t0)
ta1+=(t2-t1) ta1+=(t2-t1)

View File

@ -4,7 +4,7 @@ scipy==1.9.3
librosa==0.9.2 librosa==0.9.2
llvmlite==0.39.0 llvmlite==0.39.0
fairseq==0.12.2 fairseq==0.12.2
faiss-cpu==1.7.2 faiss-cpu==1.7.0
gradio gradio
Cython Cython
future>=0.18.3 future>=0.18.3

View File

@ -72,6 +72,7 @@ class VC(object):
"output_layer": 9, # layer 9 "output_layer": 9, # layer 9
} }
t0 = ttime() t0 = ttime()
print("vc npy start time:", t0)
with torch.no_grad(): with torch.no_grad():
logits = model.extract_features(**inputs) logits = model.extract_features(**inputs)
feats = model.final_proj(logits[0]) feats = model.final_proj(logits[0])
@ -79,13 +80,14 @@ class VC(object):
if(isinstance(index,type(None))==False and isinstance(big_npy,type(None))==False and index_rate!=0): if(isinstance(index,type(None))==False and isinstance(big_npy,type(None))==False and index_rate!=0):
npy = feats[0].cpu().numpy() npy = feats[0].cpu().numpy()
if(self.is_half==True):npy=npy.astype("float32") if(self.is_half==True):npy=npy.astype("float32")
D, I = index.search(npy, 1) _, I = index.search(npy, 1)
npy=big_npy[I.squeeze()] npy=big_npy[I.squeeze()]
if(self.is_half==True):npy=npy.astype("float16") if(self.is_half==True):npy=npy.astype("float16")
feats = torch.from_numpy(npy).unsqueeze(0).to(self.device)*index_rate + (1-index_rate)*feats feats = torch.from_numpy(npy).unsqueeze(0).to(self.device)*index_rate + (1-index_rate)*feats
feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1) feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1)
t1 = ttime() t1 = ttime()
print("vc infer start time:", t1)
p_len = audio0.shape[0]//self.window p_len = audio0.shape[0]//self.window
if(feats.shape[1]<p_len): if(feats.shape[1]<p_len):
p_len=feats.shape[1] p_len=feats.shape[1]
@ -99,8 +101,9 @@ class VC(object):
else: else:
audio1 = (net_g.infer(feats, p_len, sid)[0][0, 0] * 32768).data.cpu().float().numpy().astype(np.int16) audio1 = (net_g.infer(feats, p_len, sid)[0][0, 0] * 32768).data.cpu().float().numpy().astype(np.int16)
del feats,p_len,padding_mask del feats,p_len,padding_mask
torch.cuda.empty_cache() if torch.cuda.is_available(): torch.cuda.empty_cache()
t2 = ttime() t2 = ttime()
print("vc infer end time:", t2)
times[0] += (t1 - t0) times[0] += (t1 - t0)
times[2] += (t2 - t1) times[2] += (t2 - t1)
return audio1 return audio1
@ -125,6 +128,7 @@ class VC(object):
audio_opt=[] audio_opt=[]
t=None t=None
t1=ttime() t1=ttime()
print("f0 start time:", t1)
audio_pad = np.pad(audio, (self.t_pad, self.t_pad), mode='reflect') audio_pad = np.pad(audio, (self.t_pad, self.t_pad), mode='reflect')
p_len=audio_pad.shape[0]//self.window p_len=audio_pad.shape[0]//self.window
inp_f0=None inp_f0=None
@ -146,6 +150,7 @@ class VC(object):
pitch = torch.tensor(pitch,device=self.device).unsqueeze(0).long() pitch = torch.tensor(pitch,device=self.device).unsqueeze(0).long()
pitchf = torch.tensor(pitchf,device=self.device).unsqueeze(0).float() pitchf = torch.tensor(pitchf,device=self.device).unsqueeze(0).float()
t2=ttime() t2=ttime()
print("f0 end time:", t2)
times[1] += (t2 - t1) times[1] += (t2 - t1)
for t in opt_ts: for t in opt_ts:
t=t//self.window*self.window t=t//self.window*self.window
@ -160,5 +165,5 @@ class VC(object):
audio_opt.append(self.vc(model,net_g,sid,audio_pad[t:],None,None,times,index,big_npy,index_rate)[self.t_pad_tgt:-self.t_pad_tgt]) audio_opt.append(self.vc(model,net_g,sid,audio_pad[t:],None,None,times,index,big_npy,index_rate)[self.t_pad_tgt:-self.t_pad_tgt])
audio_opt=np.concatenate(audio_opt) audio_opt=np.concatenate(audio_opt)
del pitch,pitchf,sid del pitch,pitchf,sid
torch.cuda.empty_cache() if torch.cuda.is_available(): torch.cuda.empty_cache()
return audio_opt return audio_opt