import os, sys import faiss, torch, traceback, parselmouth, numpy as np, torchcrepe, torch.nn as nn, pyworld import fairseq from lib.infer_pack.models import ( SynthesizerTrnMs256NSFsid, SynthesizerTrnMs256NSFsid_nono, SynthesizerTrnMs768NSFsid, SynthesizerTrnMs768NSFsid_nono, ) from time import time as ttime import torch.nn.functional as F import scipy.signal as signal now_dir = os.getcwd() sys.path.append(now_dir) from config import defaultconfig as config from multiprocessing import Manager as M mm = M() if config.dml == True: def forward_dml(ctx, x, scale): ctx.scale = scale res = x.clone().detach() return res fairseq.modules.grad_multiply.GradMultiply.forward = forward_dml # config.device=torch.device("cpu")########强制cpu测试 # config.is_half=False########强制cpu测试 class RVC: def __init__( self, key, pth_path, index_path, index_rate, n_cpu, inp_q, opt_q, device ) -> None: """ 初始化 """ try: global config self.inp_q = inp_q self.opt_q = opt_q # device="cpu"########强制cpu测试 self.device = device self.f0_up_key = key self.time_step = 160 / 16000 * 1000 self.f0_min = 50 self.f0_max = 1100 self.f0_mel_min = 1127 * np.log(1 + self.f0_min / 700) self.f0_mel_max = 1127 * np.log(1 + self.f0_max / 700) self.sr = 16000 self.window = 160 self.n_cpu = n_cpu if index_rate != 0: self.index = faiss.read_index(index_path) self.big_npy = self.index.reconstruct_n(0, self.index.ntotal) print("index search enabled") self.index_rate = index_rate models, _, _ = fairseq.checkpoint_utils.load_model_ensemble_and_task( ["hubert_base.pt"], suffix="", ) hubert_model = models[0] hubert_model = hubert_model.to(config.device) if config.is_half: hubert_model = hubert_model.half() else: hubert_model = hubert_model.float() hubert_model.eval() self.model = hubert_model cpt = torch.load(pth_path, map_location="cpu") self.tgt_sr = cpt["config"][-1] cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] self.if_f0 = cpt.get("f0", 1) self.version = cpt.get("version", "v1") if self.version == "v1": if self.if_f0 == 1: self.net_g = SynthesizerTrnMs256NSFsid( *cpt["config"], is_half=config.is_half ) else: self.net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"]) elif self.version == "v2": if self.if_f0 == 1: self.net_g = SynthesizerTrnMs768NSFsid( *cpt["config"], is_half=config.is_half ) else: self.net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"]) del self.net_g.enc_q print(self.net_g.load_state_dict(cpt["weight"], strict=False)) self.net_g.eval().to(device) # print(2333333333,device,config.device,self.device)#net_g是device,hubert是config.device if config.is_half: self.net_g = self.net_g.half() else: self.net_g = self.net_g.float() self.is_half = config.is_half except: print(traceback.format_exc()) def get_f0_post(self, f0): f0_min = self.f0_min f0_max = self.f0_max f0_mel_min = 1127 * np.log(1 + f0_min / 700) f0_mel_max = 1127 * np.log(1 + f0_max / 700) f0bak = f0.copy() f0_mel = 1127 * np.log(1 + f0 / 700) f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / ( f0_mel_max - f0_mel_min ) + 1 f0_mel[f0_mel <= 1] = 1 f0_mel[f0_mel > 255] = 255 f0_coarse = np.rint(f0_mel).astype(np.int32) return f0_coarse, f0bak def get_f0(self, x, f0_up_key, n_cpu, method="harvest"): n_cpu = int(n_cpu) if method == "crepe": return self.get_f0_crepe(x, f0_up_key) if method == "rmvpe": return self.get_f0_rmvpe(x, f0_up_key) if method == "pm": p_len = x.shape[0] // 160 f0 = ( parselmouth.Sound(x, 16000) .to_pitch_ac( time_step=0.01, voicing_threshold=0.6, pitch_floor=50, pitch_ceiling=1100, ) .selected_array["frequency"] ) pad_size = (p_len - len(f0) + 1) // 2 if pad_size > 0 or p_len - len(f0) - pad_size > 0: # print(pad_size, p_len - len(f0) - pad_size) f0 = np.pad( f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant" ) f0 *= pow(2, f0_up_key / 12) return self.get_f0_post(f0) if n_cpu == 1: f0, t = pyworld.harvest( x.astype(np.double), fs=16000, f0_ceil=1100, f0_floor=50, frame_period=10, ) f0 = signal.medfilt(f0, 3) f0 *= pow(2, f0_up_key / 12) return self.get_f0_post(f0) f0bak = np.zeros(x.shape[0] // 160, dtype=np.float64) length = len(x) part_length = int(length / n_cpu / 160) * 160 ts = ttime() res_f0 = mm.dict() for idx in range(n_cpu): tail = part_length * (idx + 1) + 320 if idx == 0: self.inp_q.put((idx, x[:tail], res_f0, n_cpu, ts)) else: self.inp_q.put( (idx, x[part_length * idx - 320 : tail], res_f0, n_cpu, ts) ) while 1: res_ts = self.opt_q.get() if res_ts == ts: break f0s = [i[1] for i in sorted(res_f0.items(), key=lambda x: x[0])] for idx, f0 in enumerate(f0s): if idx == 0: f0 = f0[:-3] elif idx != n_cpu - 1: f0 = f0[2:-3] else: f0 = f0[2:-1] f0bak[ part_length * idx // 160 : part_length * idx // 160 + f0.shape[0] ] = f0 f0bak = signal.medfilt(f0bak, 3) f0bak *= pow(2, f0_up_key / 12) return self.get_f0_post(f0bak) def get_f0_crepe(self, x, f0_up_key): if self.device.type == "privateuseone": ###不支持dml,cpu又太慢用不成,拿pm顶替 return self.get_f0(x, f0_up_key, 1, "pm") audio = torch.tensor(np.copy(x))[None].float() # print("using crepe,device:%s"%self.device) f0, pd = torchcrepe.predict( audio, self.sr, 160, self.f0_min, self.f0_max, "full", batch_size=512, # device=self.device if self.device.type!="privateuseone" else "cpu",###crepe不用半精度全部是全精度所以不愁###cpu延迟高到没法用 device=self.device, return_periodicity=True, ) pd = torchcrepe.filter.median(pd, 3) f0 = torchcrepe.filter.mean(f0, 3) f0[pd < 0.1] = 0 f0 = f0[0].cpu().numpy() f0 *= pow(2, f0_up_key / 12) return self.get_f0_post(f0) def get_f0_rmvpe(self, x, f0_up_key): if hasattr(self, "model_rmvpe") == False: from lib.rmvpe import RMVPE print("loading rmvpe model") self.model_rmvpe = RMVPE( # "rmvpe.pt", is_half=self.is_half if self.device.type!="privateuseone" else False, device=self.device if self.device.type!="privateuseone"else "cpu"####dml时强制对rmvpe用cpu跑 # "rmvpe.pt", is_half=False, device=self.device####dml配置 # "rmvpe.pt", is_half=False, device="cpu"####锁定cpu配置 "rmvpe.pt", is_half=self.is_half, device=self.device, ####正常逻辑 ) # self.model_rmvpe = RMVPE("aug2_58000_half.pt", is_half=self.is_half, device=self.device) f0 = self.model_rmvpe.infer_from_audio(x, thred=0.03) f0 *= pow(2, f0_up_key / 12) return self.get_f0_post(f0) def infer( self, feats: torch.Tensor, indata: np.ndarray, rate1, rate2, cache_pitch, cache_pitchf, f0method, ) -> np.ndarray: feats = feats.view(1, -1) if config.is_half: feats = feats.half() else: feats = feats.float() feats = feats.to(self.device) t1 = ttime() with torch.no_grad(): padding_mask = torch.BoolTensor(feats.shape).to(self.device).fill_(False) inputs = { "source": feats, "padding_mask": padding_mask, "output_layer": 9 if self.version == "v1" else 12, } logits = self.model.extract_features(**inputs) feats = ( self.model.final_proj(logits[0]) if self.version == "v1" else logits[0] ) t2 = ttime() try: if hasattr(self, "index") and self.index_rate != 0: leng_replace_head = int(rate1 * feats[0].shape[0]) npy = feats[0][-leng_replace_head:].cpu().numpy().astype("float32") score, ix = self.index.search(npy, k=8) weight = np.square(1 / score) weight /= weight.sum(axis=1, keepdims=True) npy = np.sum(self.big_npy[ix] * np.expand_dims(weight, axis=2), axis=1) if config.is_half: npy = npy.astype("float16") feats[0][-leng_replace_head:] = ( torch.from_numpy(npy).unsqueeze(0).to(self.device) * self.index_rate + (1 - self.index_rate) * feats[0][-leng_replace_head:] ) else: print("index search FAIL or disabled") except: traceback.print_exc() print("index search FAIL") feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1) t3 = ttime() if self.if_f0 == 1: pitch, pitchf = self.get_f0(indata, self.f0_up_key, self.n_cpu, f0method) cache_pitch[:] = np.append(cache_pitch[pitch[:-1].shape[0] :], pitch[:-1]) cache_pitchf[:] = np.append( cache_pitchf[pitchf[:-1].shape[0] :], pitchf[:-1] ) p_len = min(feats.shape[1], 13000, cache_pitch.shape[0]) else: cache_pitch, cache_pitchf = None, None p_len = min(feats.shape[1], 13000) t4 = ttime() feats = feats[:, :p_len, :] if self.if_f0 == 1: cache_pitch = cache_pitch[:p_len] cache_pitchf = cache_pitchf[:p_len] cache_pitch = torch.LongTensor(cache_pitch).unsqueeze(0).to(self.device) cache_pitchf = torch.FloatTensor(cache_pitchf).unsqueeze(0).to(self.device) p_len = torch.LongTensor([p_len]).to(self.device) ii = 0 # sid sid = torch.LongTensor([ii]).to(self.device) with torch.no_grad(): if self.if_f0 == 1: # print(12222222222,feats.device,p_len.device,cache_pitch.device,cache_pitchf.device,sid.device,rate2) infered_audio = ( self.net_g.infer( feats, p_len, cache_pitch, cache_pitchf, sid, rate2 )[0][0, 0] .data.cpu() .float() ) else: infered_audio = ( self.net_g.infer(feats, p_len, sid, rate2)[0][0, 0] .data.cpu() .float() ) t5 = ttime() print("time->fea-index-f0-model:", t2 - t1, t3 - t2, t4 - t3, t5 - t4) return infered_audio