import torch, os, traceback, sys, warnings, shutil, numpy as np os.environ["no_proxy"] = "localhost, 127.0.0.1, ::1" import threading from time import sleep from subprocess import Popen import faiss from random import shuffle now_dir = os.getcwd() sys.path.append(now_dir) tmp = os.path.join(now_dir, "TEMP") shutil.rmtree(tmp, ignore_errors=True) shutil.rmtree("%s/runtime/Lib/site-packages/infer_pack" % (now_dir), ignore_errors=True) shutil.rmtree("%s/runtime/Lib/site-packages/uvr5_pack" % (now_dir), ignore_errors=True) os.makedirs(tmp, exist_ok=True) os.makedirs(os.path.join(now_dir, "logs"), exist_ok=True) os.makedirs(os.path.join(now_dir, "weights"), exist_ok=True) os.environ["TEMP"] = tmp warnings.filterwarnings("ignore") torch.manual_seed(114514) from i18n import I18nAuto import ffmpeg from MDXNet import MDXNetDereverb i18n = I18nAuto() i18n.print() # 判断是否有能用来训练和加速推理的N卡 ngpu = torch.cuda.device_count() gpu_infos = [] mem = [] if (not torch.cuda.is_available()) or ngpu == 0: if_gpu_ok = False else: if_gpu_ok = False for i in range(ngpu): gpu_name = torch.cuda.get_device_name(i) if ( "10" in gpu_name or "16" in gpu_name or "20" in gpu_name or "30" in gpu_name or "40" in gpu_name or "A2" in gpu_name.upper() or "A3" in gpu_name.upper() or "A4" in gpu_name.upper() or "P4" in gpu_name.upper() or "A50" in gpu_name.upper() or "70" in gpu_name or "80" in gpu_name or "90" in gpu_name or "M4" in gpu_name.upper() or "T4" in gpu_name.upper() or "TITAN" in gpu_name.upper() ): # A10#A100#V100#A40#P40#M40#K80#A4500 if_gpu_ok = True # 至少有一张能用的N卡 gpu_infos.append("%s\t%s" % (i, gpu_name)) mem.append( int( torch.cuda.get_device_properties(i).total_memory / 1024 / 1024 / 1024 + 0.4 ) ) if if_gpu_ok == True and len(gpu_infos) > 0: gpu_info = "\n".join(gpu_infos) default_batch_size = min(mem) // 2 else: gpu_info = i18n("很遗憾您这没有能用的显卡来支持您训练") default_batch_size = 1 gpus = "-".join([i[0] for i in gpu_infos]) from infer_pack.models import ( SynthesizerTrnMs256NSFsid, SynthesizerTrnMs256NSFsid_nono, SynthesizerTrnMs768NSFsid, SynthesizerTrnMs768NSFsid_nono, ) import soundfile as sf from fairseq import checkpoint_utils import gradio as gr import logging from vc_infer_pipeline import VC from config import Config from infer_uvr5 import _audio_pre_, _audio_pre_new from my_utils import load_audio from train.process_ckpt import show_info, change_info, merge, extract_small_model config = Config() # from trainset_preprocess_pipeline import PreProcess logging.getLogger("numba").setLevel(logging.WARNING) class ToolButton(gr.Button, gr.components.FormComponent): """Small button with single emoji as text, fits inside gradio forms""" def __init__(self, **kwargs): super().__init__(variant="tool", **kwargs) def get_block_name(self): return "button" hubert_model = None def load_hubert(): global hubert_model models, _, _ = checkpoint_utils.load_model_ensemble_and_task( ["hubert_base.pt"], suffix="", ) hubert_model = models[0] hubert_model = hubert_model.to(config.device) if config.is_half: hubert_model = hubert_model.half() else: hubert_model = hubert_model.float() hubert_model.eval() weight_root = "weights" weight_uvr5_root = "uvr5_weights" index_root = "logs" names = [] for name in os.listdir(weight_root): if name.endswith(".pth"): names.append(name) index_paths = [] for root, dirs, files in os.walk(index_root, topdown=False): for name in files: if name.endswith(".index") and "trained" not in name: index_paths.append("%s/%s" % (root, name)) uvr5_names = [] for name in os.listdir(weight_uvr5_root): if name.endswith(".pth") or "onnx" in name: uvr5_names.append(name.replace(".pth", "")) def vc_single( sid, input_audio_path, f0_up_key, f0_file, f0_method, file_index, file_index2, # file_big_npy, index_rate, filter_radius, resample_sr, rms_mix_rate, protect, ): # spk_item, input_audio0, vc_transform0,f0_file,f0method0 global tgt_sr, net_g, vc, hubert_model, version if input_audio_path is None: return "You need to upload an audio", None f0_up_key = int(f0_up_key) try: audio = load_audio(input_audio_path, 16000) audio_max = np.abs(audio).max() / 0.95 if audio_max > 1: audio /= audio_max times = [0, 0, 0] if hubert_model == None: load_hubert() if_f0 = cpt.get("f0", 1) file_index = ( ( file_index.strip(" ") .strip('"') .strip("\n") .strip('"') .strip(" ") .replace("trained", "added") ) if file_index != "" else file_index2 ) # 防止小白写错,自动帮他替换掉 # file_big_npy = ( # file_big_npy.strip(" ").strip('"').strip("\n").strip('"').strip(" ") # ) audio_opt = vc.pipeline( hubert_model, net_g, sid, audio, input_audio_path, times, f0_up_key, f0_method, file_index, # file_big_npy, index_rate, if_f0, filter_radius, tgt_sr, resample_sr, rms_mix_rate, version, protect, f0_file=f0_file, ) if resample_sr >= 16000 and tgt_sr != resample_sr: tgt_sr = resample_sr index_info = ( "Using index:%s." % file_index if os.path.exists(file_index) else "Index not used." ) return "Success.\n %s\nTime:\n npy:%ss, f0:%ss, infer:%ss" % ( index_info, times[0], times[1], times[2], ), (tgt_sr, audio_opt) except: info = traceback.format_exc() print(info) return info, (None, None) def vc_multi( sid, dir_path, opt_root, paths, f0_up_key, f0_method, file_index, file_index2, # file_big_npy, index_rate, filter_radius, resample_sr, rms_mix_rate, protect, format1, ): try: dir_path = ( dir_path.strip(" ").strip('"').strip("\n").strip('"').strip(" ") ) # 防止小白拷路径头尾带了空格和"和回车 opt_root = opt_root.strip(" ").strip('"').strip("\n").strip('"').strip(" ") os.makedirs(opt_root, exist_ok=True) try: if dir_path != "": paths = [os.path.join(dir_path, name) for name in os.listdir(dir_path)] else: paths = [path.name for path in paths] except: traceback.print_exc() paths = [path.name for path in paths] infos = [] for path in paths: info, opt = vc_single( sid, path, f0_up_key, None, f0_method, file_index, file_index2, # file_big_npy, index_rate, filter_radius, resample_sr, rms_mix_rate, protect, ) if "Success" in info: try: tgt_sr, audio_opt = opt sf.write( "%s/%s.%s" % (opt_root, os.path.basename(path), format1), audio_opt, tgt_sr, ) except: info += traceback.format_exc() infos.append("%s->%s" % (os.path.basename(path), info)) yield "\n".join(infos) yield "\n".join(infos) except: yield traceback.format_exc() def uvr(model_name, inp_root, save_root_vocal, paths, save_root_ins, agg, format0): infos = [] try: inp_root = inp_root.strip(" ").strip('"').strip("\n").strip('"').strip(" ") save_root_vocal = ( save_root_vocal.strip(" ").strip('"').strip("\n").strip('"').strip(" ") ) save_root_ins = ( save_root_ins.strip(" ").strip('"').strip("\n").strip('"').strip(" ") ) if model_name == "onnx_dereverb_By_FoxJoy": pre_fun = MDXNetDereverb(15) else: func = _audio_pre_ if "DeEcho" not in model_name else _audio_pre_new pre_fun = func( agg=int(agg), model_path=os.path.join(weight_uvr5_root, model_name + ".pth"), device=config.device, is_half=config.is_half, ) if inp_root != "": paths = [os.path.join(inp_root, name) for name in os.listdir(inp_root)] else: paths = [path.name for path in paths] for path in paths: inp_path = os.path.join(inp_root, path) need_reformat = 1 done = 0 try: info = ffmpeg.probe(inp_path, cmd="ffprobe") if ( info["streams"][0]["channels"] == 2 and info["streams"][0]["sample_rate"] == "44100" ): need_reformat = 0 pre_fun._path_audio_( inp_path, save_root_ins, save_root_vocal, format0 ) done = 1 except: need_reformat = 1 traceback.print_exc() if need_reformat == 1: tmp_path = "%s/%s.reformatted.wav" % (tmp, os.path.basename(inp_path)) os.system( "ffmpeg -i %s -vn -acodec pcm_s16le -ac 2 -ar 44100 %s -y" % (inp_path, tmp_path) ) inp_path = tmp_path try: if done == 0: pre_fun._path_audio_( inp_path, save_root_ins, save_root_vocal, format0 ) infos.append("%s->Success" % (os.path.basename(inp_path))) yield "\n".join(infos) except: infos.append( "%s->%s" % (os.path.basename(inp_path), traceback.format_exc()) ) yield "\n".join(infos) except: infos.append(traceback.format_exc()) yield "\n".join(infos) finally: try: if model_name == "onnx_dereverb_By_FoxJoy": del pre_fun.pred.model del pre_fun.pred.model_ else: del pre_fun.model del pre_fun except: traceback.print_exc() print("clean_empty_cache") if torch.cuda.is_available(): torch.cuda.empty_cache() yield "\n".join(infos) # 一个选项卡全局只能有一个音色 def get_vc(sid): global n_spk, tgt_sr, net_g, vc, cpt, version if sid == "" or sid == []: global hubert_model if hubert_model != None: # 考虑到轮询, 需要加个判断看是否 sid 是由有模型切换到无模型的 print("clean_empty_cache") del net_g, n_spk, vc, hubert_model, tgt_sr # ,cpt hubert_model = net_g = n_spk = vc = hubert_model = tgt_sr = None if torch.cuda.is_available(): torch.cuda.empty_cache() ###楼下不这么折腾清理不干净 if_f0 = cpt.get("f0", 1) version = cpt.get("version", "v1") if version == "v1": if if_f0 == 1: net_g = SynthesizerTrnMs256NSFsid( *cpt["config"], is_half=config.is_half ) else: net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"]) elif version == "v2": if if_f0 == 1: net_g = SynthesizerTrnMs768NSFsid( *cpt["config"], is_half=config.is_half ) else: net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"]) del net_g, cpt if torch.cuda.is_available(): torch.cuda.empty_cache() cpt = None return {"visible": False, "__type__": "update"} person = "%s/%s" % (weight_root, sid) print("loading %s" % person) cpt = torch.load(person, map_location="cpu") tgt_sr = cpt["config"][-1] cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] # n_spk if_f0 = cpt.get("f0", 1) version = cpt.get("version", "v1") if version == "v1": if if_f0 == 1: net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=config.is_half) else: net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"]) elif version == "v2": if if_f0 == 1: net_g = SynthesizerTrnMs768NSFsid(*cpt["config"], is_half=config.is_half) else: net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"]) del net_g.enc_q print(net_g.load_state_dict(cpt["weight"], strict=False)) net_g.eval().to(config.device) if config.is_half: net_g = net_g.half() else: net_g = net_g.float() vc = VC(tgt_sr, config) n_spk = cpt["config"][-3] return {"visible": True, "maximum": n_spk, "__type__": "update"} def change_choices(): names = [] for name in os.listdir(weight_root): if name.endswith(".pth"): names.append(name) index_paths = [] for root, dirs, files in os.walk(index_root, topdown=False): for name in files: if name.endswith(".index") and "trained" not in name: index_paths.append("%s/%s" % (root, name)) return {"choices": sorted(names), "__type__": "update"}, { "choices": sorted(index_paths), "__type__": "update", } def clean(): return {"value": "", "__type__": "update"} sr_dict = { "32k": 32000, "40k": 40000, "48k": 48000, } def if_done(done, p): while 1: if p.poll() == None: sleep(0.5) else: break done[0] = True def if_done_multi(done, ps): while 1: # poll==None代表进程未结束 # 只要有一个进程未结束都不停 flag = 1 for p in ps: if p.poll() == None: flag = 0 sleep(0.5) break if flag == 1: break done[0] = True def preprocess_dataset(trainset_dir, exp_dir, sr, n_p): sr = sr_dict[sr] os.makedirs("%s/logs/%s" % (now_dir, exp_dir), exist_ok=True) f = open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir), "w") f.close() cmd = ( config.python_cmd + " trainset_preprocess_pipeline_print.py %s %s %s %s/logs/%s " % (trainset_dir, sr, n_p, now_dir, exp_dir) + str(config.noparallel) ) print(cmd) p = Popen(cmd, shell=True) # , stdin=PIPE, stdout=PIPE,stderr=PIPE,cwd=now_dir ###煞笔gr, popen read都非得全跑完了再一次性读取, 不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读 done = [False] threading.Thread( target=if_done, args=( done, p, ), ).start() while 1: with open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir), "r") as f: yield (f.read()) sleep(1) if done[0] == True: break with open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir), "r") as f: log = f.read() print(log) yield log # but2.click(extract_f0,[gpus6,np7,f0method8,if_f0_3,trainset_dir4],[info2]) def extract_f0_feature(gpus, n_p, f0method, if_f0, exp_dir, version19): gpus = gpus.split("-") os.makedirs("%s/logs/%s" % (now_dir, exp_dir), exist_ok=True) f = open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "w") f.close() if if_f0: cmd = config.python_cmd + " extract_f0_print.py %s/logs/%s %s %s" % ( now_dir, exp_dir, n_p, f0method, ) print(cmd) p = Popen(cmd, shell=True, cwd=now_dir) # , stdin=PIPE, stdout=PIPE,stderr=PIPE ###煞笔gr, popen read都非得全跑完了再一次性读取, 不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读 done = [False] threading.Thread( target=if_done, args=( done, p, ), ).start() while 1: with open( "%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r" ) as f: yield (f.read()) sleep(1) if done[0] == True: break with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r") as f: log = f.read() print(log) yield log ####对不同part分别开多进程 """ n_part=int(sys.argv[1]) i_part=int(sys.argv[2]) i_gpu=sys.argv[3] exp_dir=sys.argv[4] os.environ["CUDA_VISIBLE_DEVICES"]=str(i_gpu) """ leng = len(gpus) ps = [] for idx, n_g in enumerate(gpus): cmd = ( config.python_cmd + " extract_feature_print.py %s %s %s %s %s/logs/%s %s" % ( config.device, leng, idx, n_g, now_dir, exp_dir, version19, ) ) print(cmd) p = Popen( cmd, shell=True, cwd=now_dir ) # , shell=True, stdin=PIPE, stdout=PIPE, stderr=PIPE, cwd=now_dir ps.append(p) ###煞笔gr, popen read都非得全跑完了再一次性读取, 不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读 done = [False] threading.Thread( target=if_done_multi, args=( done, ps, ), ).start() while 1: with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r") as f: yield (f.read()) sleep(1) if done[0] == True: break with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r") as f: log = f.read() print(log) yield log def change_sr2(sr2, if_f0_3, version19): vis_v = True if sr2 == "40k" else False if sr2 != "40k": version19 = "v1" path_str = "" if version19 == "v1" else "_v2" version_state = {"visible": vis_v, "__type__": "update"} if vis_v == False: version_state["value"] = "v1" f0_str = "f0" if if_f0_3 else "" return ( "pretrained%s/%sG%s.pth" % (path_str, f0_str, sr2), "pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2), version_state, ) def change_version19(sr2, if_f0_3, version19): path_str = "" if version19 == "v1" else "_v2" f0_str = "f0" if if_f0_3 else "" return "pretrained%s/%sG%s.pth" % ( path_str, f0_str, sr2, ), "pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2) def change_f0(if_f0_3, sr2, version19): # f0method8,pretrained_G14,pretrained_D15 path_str = "" if version19 == "v1" else "_v2" if if_f0_3: return ( {"visible": True, "__type__": "update"}, "pretrained%s/f0G%s.pth" % (path_str, sr2), "pretrained%s/f0D%s.pth" % (path_str, sr2), ) return ( {"visible": False, "__type__": "update"}, "pretrained%s/G%s.pth" % (path_str, sr2), "pretrained%s/D%s.pth" % (path_str, sr2), ) # but3.click(click_train,[exp_dir1,sr2,if_f0_3,save_epoch10,total_epoch11,batch_size12,if_save_latest13,pretrained_G14,pretrained_D15,gpus16]) def click_train( exp_dir1, sr2, if_f0_3, spk_id5, save_epoch10, total_epoch11, batch_size12, if_save_latest13, pretrained_G14, pretrained_D15, gpus16, if_cache_gpu17, if_save_every_weights18, version19, ): # 生成filelist exp_dir = "%s/logs/%s" % (now_dir, exp_dir1) os.makedirs(exp_dir, exist_ok=True) gt_wavs_dir = "%s/0_gt_wavs" % (exp_dir) feature_dir = ( "%s/3_feature256" % (exp_dir) if version19 == "v1" else "%s/3_feature768" % (exp_dir) ) if if_f0_3: f0_dir = "%s/2a_f0" % (exp_dir) f0nsf_dir = "%s/2b-f0nsf" % (exp_dir) names = ( set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)]) & set([name.split(".")[0] for name in os.listdir(feature_dir)]) & set([name.split(".")[0] for name in os.listdir(f0_dir)]) & set([name.split(".")[0] for name in os.listdir(f0nsf_dir)]) ) else: names = set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)]) & set( [name.split(".")[0] for name in os.listdir(feature_dir)] ) opt = [] for name in names: if if_f0_3: opt.append( "%s/%s.wav|%s/%s.npy|%s/%s.wav.npy|%s/%s.wav.npy|%s" % ( gt_wavs_dir.replace("\\", "\\\\"), name, feature_dir.replace("\\", "\\\\"), name, f0_dir.replace("\\", "\\\\"), name, f0nsf_dir.replace("\\", "\\\\"), name, spk_id5, ) ) else: opt.append( "%s/%s.wav|%s/%s.npy|%s" % ( gt_wavs_dir.replace("\\", "\\\\"), name, feature_dir.replace("\\", "\\\\"), name, spk_id5, ) ) fea_dim = 256 if version19 == "v1" else 768 if if_f0_3: for _ in range(2): opt.append( "%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature%s/mute.npy|%s/logs/mute/2a_f0/mute.wav.npy|%s/logs/mute/2b-f0nsf/mute.wav.npy|%s" % (now_dir, sr2, now_dir, fea_dim, now_dir, now_dir, spk_id5) ) else: for _ in range(2): opt.append( "%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature%s/mute.npy|%s" % (now_dir, sr2, now_dir, fea_dim, spk_id5) ) shuffle(opt) with open("%s/filelist.txt" % exp_dir, "w") as f: f.write("\n".join(opt)) print("write filelist done") # 生成config#无需生成config # cmd = python_cmd + " train_nsf_sim_cache_sid_load_pretrain.py -e mi-test -sr 40k -f0 1 -bs 4 -g 0 -te 10 -se 5 -pg pretrained/f0G40k.pth -pd pretrained/f0D40k.pth -l 1 -c 0" print("use gpus:", gpus16) if gpus16: cmd = ( config.python_cmd + " train_nsf_sim_cache_sid_load_pretrain.py -e %s -sr %s -f0 %s -bs %s -g %s -te %s -se %s -pg %s -pd %s -l %s -c %s -sw %s -v %s" % ( exp_dir1, sr2, 1 if if_f0_3 else 0, batch_size12, gpus16, total_epoch11, save_epoch10, pretrained_G14, pretrained_D15, 1 if if_save_latest13 == i18n("是") else 0, 1 if if_cache_gpu17 == i18n("是") else 0, 1 if if_save_every_weights18 == i18n("是") else 0, version19, ) ) else: cmd = ( config.python_cmd + " train_nsf_sim_cache_sid_load_pretrain.py -e %s -sr %s -f0 %s -bs %s -te %s -se %s -pg %s -pd %s -l %s -c %s -sw %s -v %s" % ( exp_dir1, sr2, 1 if if_f0_3 else 0, batch_size12, total_epoch11, save_epoch10, pretrained_G14, pretrained_D15, 1 if if_save_latest13 == i18n("是") else 0, 1 if if_cache_gpu17 == i18n("是") else 0, 1 if if_save_every_weights18 == i18n("是") else 0, version19, ) ) print(cmd) p = Popen(cmd, shell=True, cwd=now_dir) p.wait() return "训练结束, 您可查看控制台训练日志或实验文件夹下的train.log" # but4.click(train_index, [exp_dir1], info3) def train_index(exp_dir1, version19): exp_dir = "%s/logs/%s" % (now_dir, exp_dir1) os.makedirs(exp_dir, exist_ok=True) feature_dir = ( "%s/3_feature256" % (exp_dir) if version19 == "v1" else "%s/3_feature768" % (exp_dir) ) if os.path.exists(feature_dir) == False: return "请先进行特征提取!" listdir_res = list(os.listdir(feature_dir)) if len(listdir_res) == 0: return "请先进行特征提取!" npys = [] for name in sorted(listdir_res): phone = np.load("%s/%s" % (feature_dir, name)) npys.append(phone) big_npy = np.concatenate(npys, 0) big_npy_idx = np.arange(big_npy.shape[0]) np.random.shuffle(big_npy_idx) big_npy = big_npy[big_npy_idx] np.save("%s/total_fea.npy" % exp_dir, big_npy) # n_ivf = big_npy.shape[0] // 39 n_ivf = min(int(16 * np.sqrt(big_npy.shape[0])), big_npy.shape[0] // 39) infos = [] infos.append("%s,%s" % (big_npy.shape, n_ivf)) yield "\n".join(infos) index = faiss.index_factory(256 if version19 == "v1" else 768, "IVF%s,Flat" % n_ivf) # index = faiss.index_factory(256if version19=="v1"else 768, "IVF%s,PQ128x4fs,RFlat"%n_ivf) infos.append("training") yield "\n".join(infos) index_ivf = faiss.extract_index_ivf(index) # index_ivf.nprobe = 1 index.train(big_npy) faiss.write_index( index, "%s/trained_IVF%s_Flat_nprobe_%s_%s_%s.index" % (exp_dir, n_ivf, index_ivf.nprobe, exp_dir1, version19), ) # faiss.write_index(index, '%s/trained_IVF%s_Flat_FastScan_%s.index'%(exp_dir,n_ivf,version19)) infos.append("adding") yield "\n".join(infos) batch_size_add = 8192 for i in range(0, big_npy.shape[0], batch_size_add): index.add(big_npy[i : i + batch_size_add]) faiss.write_index( index, "%s/added_IVF%s_Flat_nprobe_%s_%s_%s.index" % (exp_dir, n_ivf, index_ivf.nprobe, exp_dir1, version19), ) infos.append( "成功构建索引,added_IVF%s_Flat_nprobe_%s_%s_%s.index" % (n_ivf, index_ivf.nprobe, exp_dir1, version19) ) # faiss.write_index(index, '%s/added_IVF%s_Flat_FastScan_%s.index'%(exp_dir,n_ivf,version19)) # infos.append("成功构建索引,added_IVF%s_Flat_FastScan_%s.index"%(n_ivf,version19)) yield "\n".join(infos) # but5.click(train1key, [exp_dir1, sr2, if_f0_3, trainset_dir4, spk_id5, gpus6, np7, f0method8, save_epoch10, total_epoch11, batch_size12, if_save_latest13, pretrained_G14, pretrained_D15, gpus16, if_cache_gpu17], info3) def train1key( exp_dir1, sr2, if_f0_3, trainset_dir4, spk_id5, np7, f0method8, save_epoch10, total_epoch11, batch_size12, if_save_latest13, pretrained_G14, pretrained_D15, gpus16, if_cache_gpu17, if_save_every_weights18, version19, ): infos = [] def get_info_str(strr): infos.append(strr) return "\n".join(infos) model_log_dir = "%s/logs/%s" % (now_dir, exp_dir1) preprocess_log_path = "%s/preprocess.log" % model_log_dir extract_f0_feature_log_path = "%s/extract_f0_feature.log" % model_log_dir gt_wavs_dir = "%s/0_gt_wavs" % model_log_dir feature_dir = ( "%s/3_feature256" % model_log_dir if version19 == "v1" else "%s/3_feature768" % model_log_dir ) os.makedirs(model_log_dir, exist_ok=True) #########step1:处理数据 open(preprocess_log_path, "w").close() cmd = ( config.python_cmd + " trainset_preprocess_pipeline_print.py %s %s %s %s " % (trainset_dir4, sr_dict[sr2], np7, model_log_dir) + str(config.noparallel) ) yield get_info_str(i18n("step1:正在处理数据")) yield get_info_str(cmd) p = Popen(cmd, shell=True) p.wait() with open(preprocess_log_path, "r") as f: print(f.read()) #########step2a:提取音高 open(extract_f0_feature_log_path, "w") if if_f0_3: yield get_info_str("step2a:正在提取音高") cmd = config.python_cmd + " extract_f0_print.py %s %s %s" % ( model_log_dir, np7, f0method8, ) yield get_info_str(cmd) p = Popen(cmd, shell=True, cwd=now_dir) p.wait() with open(extract_f0_feature_log_path, "r") as f: print(f.read()) else: yield get_info_str(i18n("step2a:无需提取音高")) #######step2b:提取特征 yield get_info_str(i18n("step2b:正在提取特征")) gpus = gpus16.split("-") leng = len(gpus) ps = [] for idx, n_g in enumerate(gpus): cmd = config.python_cmd + " extract_feature_print.py %s %s %s %s %s %s" % ( config.device, leng, idx, n_g, model_log_dir, version19, ) yield get_info_str(cmd) p = Popen( cmd, shell=True, cwd=now_dir ) # , shell=True, stdin=PIPE, stdout=PIPE, stderr=PIPE, cwd=now_dir ps.append(p) for p in ps: p.wait() with open(extract_f0_feature_log_path, "r") as f: print(f.read()) #######step3a:训练模型 yield get_info_str(i18n("step3a:正在训练模型")) # 生成filelist if if_f0_3: f0_dir = "%s/2a_f0" % model_log_dir f0nsf_dir = "%s/2b-f0nsf" % model_log_dir names = ( set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)]) & set([name.split(".")[0] for name in os.listdir(feature_dir)]) & set([name.split(".")[0] for name in os.listdir(f0_dir)]) & set([name.split(".")[0] for name in os.listdir(f0nsf_dir)]) ) else: names = set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)]) & set( [name.split(".")[0] for name in os.listdir(feature_dir)] ) opt = [] for name in names: if if_f0_3: opt.append( "%s/%s.wav|%s/%s.npy|%s/%s.wav.npy|%s/%s.wav.npy|%s" % ( gt_wavs_dir.replace("\\", "\\\\"), name, feature_dir.replace("\\", "\\\\"), name, f0_dir.replace("\\", "\\\\"), name, f0nsf_dir.replace("\\", "\\\\"), name, spk_id5, ) ) else: opt.append( "%s/%s.wav|%s/%s.npy|%s" % ( gt_wavs_dir.replace("\\", "\\\\"), name, feature_dir.replace("\\", "\\\\"), name, spk_id5, ) ) fea_dim = 256 if version19 == "v1" else 768 if if_f0_3: for _ in range(2): opt.append( "%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature%s/mute.npy|%s/logs/mute/2a_f0/mute.wav.npy|%s/logs/mute/2b-f0nsf/mute.wav.npy|%s" % (now_dir, sr2, now_dir, fea_dim, now_dir, now_dir, spk_id5) ) else: for _ in range(2): opt.append( "%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature%s/mute.npy|%s" % (now_dir, sr2, now_dir, fea_dim, spk_id5) ) shuffle(opt) with open("%s/filelist.txt" % model_log_dir, "w") as f: f.write("\n".join(opt)) yield get_info_str("write filelist done") if gpus16: cmd = ( config.python_cmd + " train_nsf_sim_cache_sid_load_pretrain.py -e %s -sr %s -f0 %s -bs %s -g %s -te %s -se %s -pg %s -pd %s -l %s -c %s -sw %s -v %s" % ( exp_dir1, sr2, 1 if if_f0_3 else 0, batch_size12, gpus16, total_epoch11, save_epoch10, pretrained_G14, pretrained_D15, 1 if if_save_latest13 == i18n("是") else 0, 1 if if_cache_gpu17 == i18n("是") else 0, 1 if if_save_every_weights18 == i18n("是") else 0, version19, ) ) else: cmd = ( config.python_cmd + " train_nsf_sim_cache_sid_load_pretrain.py -e %s -sr %s -f0 %s -bs %s -te %s -se %s -pg %s -pd %s -l %s -c %s -sw %s -v %s" % ( exp_dir1, sr2, 1 if if_f0_3 else 0, batch_size12, total_epoch11, save_epoch10, pretrained_G14, pretrained_D15, 1 if if_save_latest13 == i18n("是") else 0, 1 if if_cache_gpu17 == i18n("是") else 0, 1 if if_save_every_weights18 == i18n("是") else 0, version19, ) ) yield get_info_str(cmd) p = Popen(cmd, shell=True, cwd=now_dir) p.wait() yield get_info_str(i18n("训练结束, 您可查看控制台训练日志或实验文件夹下的train.log")) #######step3b:训练索引 npys = [] listdir_res = list(os.listdir(feature_dir)) for name in sorted(listdir_res): phone = np.load("%s/%s" % (feature_dir, name)) npys.append(phone) big_npy = np.concatenate(npys, 0) big_npy_idx = np.arange(big_npy.shape[0]) np.random.shuffle(big_npy_idx) big_npy = big_npy[big_npy_idx] np.save("%s/total_fea.npy" % model_log_dir, big_npy) # n_ivf = big_npy.shape[0] // 39 n_ivf = min(int(16 * np.sqrt(big_npy.shape[0])), big_npy.shape[0] // 39) yield get_info_str("%s,%s" % (big_npy.shape, n_ivf)) index = faiss.index_factory(256 if version19 == "v1" else 768, "IVF%s,Flat" % n_ivf) yield get_info_str("training index") index_ivf = faiss.extract_index_ivf(index) # index_ivf.nprobe = 1 index.train(big_npy) faiss.write_index( index, "%s/trained_IVF%s_Flat_nprobe_%s_%s_%s.index" % (model_log_dir, n_ivf, index_ivf.nprobe, exp_dir1, version19), ) yield get_info_str("adding index") batch_size_add = 8192 for i in range(0, big_npy.shape[0], batch_size_add): index.add(big_npy[i : i + batch_size_add]) faiss.write_index( index, "%s/added_IVF%s_Flat_nprobe_%s_%s_%s.index" % (model_log_dir, n_ivf, index_ivf.nprobe, exp_dir1, version19), ) yield get_info_str( "成功构建索引, added_IVF%s_Flat_nprobe_%s_%s_%s.index" % (n_ivf, index_ivf.nprobe, exp_dir1, version19) ) yield get_info_str(i18n("全流程结束!")) # ckpt_path2.change(change_info_,[ckpt_path2],[sr__,if_f0__]) def change_info_(ckpt_path): if ( os.path.exists(ckpt_path.replace(os.path.basename(ckpt_path), "train.log")) == False ): return {"__type__": "update"}, {"__type__": "update"}, {"__type__": "update"} try: with open( ckpt_path.replace(os.path.basename(ckpt_path), "train.log"), "r" ) as f: info = eval(f.read().strip("\n").split("\n")[0].split("\t")[-1]) sr, f0 = info["sample_rate"], info["if_f0"] version = "v2" if ("version" in info and info["version"] == "v2") else "v1" return sr, str(f0), version except: traceback.print_exc() return {"__type__": "update"}, {"__type__": "update"}, {"__type__": "update"} from infer_pack.models_onnx import SynthesizerTrnMsNSFsidM def export_onnx(ModelPath, ExportedPath, MoeVS=True): cpt = torch.load(ModelPath, map_location="cpu") cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] # n_spk hidden_channels = cpt["config"][-2] # hidden_channels,为768Vec做准备 test_phone = torch.rand(1, 200, hidden_channels) # hidden unit test_phone_lengths = torch.tensor([200]).long() # hidden unit 长度(貌似没啥用) test_pitch = torch.randint(size=(1, 200), low=5, high=255) # 基频(单位赫兹) test_pitchf = torch.rand(1, 200) # nsf基频 test_ds = torch.LongTensor([0]) # 说话人ID test_rnd = torch.rand(1, 192, 200) # 噪声(加入随机因子) device = "cpu" # 导出时设备(不影响使用模型) net_g = SynthesizerTrnMsNSFsidM( *cpt["config"], is_half=False ) # fp32导出(C++要支持fp16必须手动将内存重新排列所以暂时不用fp16) net_g.load_state_dict(cpt["weight"], strict=False) input_names = ["phone", "phone_lengths", "pitch", "pitchf", "ds", "rnd"] output_names = [ "audio", ] # net_g.construct_spkmixmap(n_speaker) 多角色混合轨道导出 torch.onnx.export( net_g, ( test_phone.to(device), test_phone_lengths.to(device), test_pitch.to(device), test_pitchf.to(device), test_ds.to(device), test_rnd.to(device), ), ExportedPath, dynamic_axes={ "phone": [1], "pitch": [1], "pitchf": [1], "rnd": [2], }, do_constant_folding=False, opset_version=16, verbose=False, input_names=input_names, output_names=output_names, ) return "Finished" with gr.Blocks() as app: gr.Markdown( value=i18n( "本软件以MIT协议开源, 作者不对软件具备任何控制力, 使用软件者、传播软件导出的声音者自负全责.
如不认可该条款, 则不能使用或引用软件包内任何代码和文件. 详见根目录使用需遵守的协议-LICENSE.txt." ) ) with gr.Tabs(): with gr.TabItem(i18n("模型推理")): with gr.Row(): sid0 = gr.Dropdown(label=i18n("推理音色"), choices=sorted(names)) refresh_button = gr.Button(i18n("刷新音色列表和索引路径"), variant="primary") clean_button = gr.Button(i18n("卸载音色省显存"), variant="primary") spk_item = gr.Slider( minimum=0, maximum=2333, step=1, label=i18n("请选择说话人id"), value=0, visible=False, interactive=True, ) clean_button.click(fn=clean, inputs=[], outputs=[sid0]) sid0.change( fn=get_vc, inputs=[sid0], outputs=[spk_item], ) with gr.Group(): gr.Markdown( value=i18n("男转女推荐+12key, 女转男推荐-12key, 如果音域爆炸导致音色失真也可以自己调整到合适音域. ") ) with gr.Row(): with gr.Column(): vc_transform0 = gr.Number( label=i18n("变调(整数, 半音数量, 升八度12降八度-12)"), value=0 ) input_audio0 = gr.Textbox( label=i18n("输入待处理音频文件路径(默认是正确格式示例)"), value="E:\\codes\\py39\\test-20230416b\\todo-songs\\冬之花clip1.wav", ) f0method0 = gr.Radio( label=i18n( "选择音高提取算法,输入歌声可用pm提速,harvest低音好但巨慢无比,crepe效果好但吃GPU" ), choices=["pm", "harvest", "crepe"], value="pm", interactive=True, ) filter_radius0 = gr.Slider( minimum=0, maximum=7, label=i18n(">=3则使用对harvest音高识别的结果使用中值滤波,数值为滤波半径,使用可以削弱哑音"), value=3, step=1, interactive=True, ) with gr.Column(): file_index1 = gr.Textbox( label=i18n("特征检索库文件路径,为空则使用下拉的选择结果"), value="", interactive=True, ) file_index2 = gr.Dropdown( label=i18n("自动检测index路径,下拉式选择(dropdown)"), choices=sorted(index_paths), interactive=True, ) refresh_button.click( fn=change_choices, inputs=[], outputs=[sid0, file_index2] ) # file_big_npy1 = gr.Textbox( # label=i18n("特征文件路径"), # value="E:\\codes\py39\\vits_vc_gpu_train\\logs\\mi-test-1key\\total_fea.npy", # interactive=True, # ) index_rate1 = gr.Slider( minimum=0, maximum=1, label=i18n("检索特征占比"), value=0.88, interactive=True, ) with gr.Column(): resample_sr0 = gr.Slider( minimum=0, maximum=48000, label=i18n("后处理重采样至最终采样率,0为不进行重采样"), value=0, step=1, interactive=True, ) rms_mix_rate0 = gr.Slider( minimum=0, maximum=1, label=i18n("输入源音量包络替换输出音量包络融合比例,越靠近1越使用输出包络"), value=1, interactive=True, ) protect0 = gr.Slider( minimum=0, maximum=0.5, label=i18n( "保护清辅音和呼吸声,防止电音撕裂等artifact,拉满0.5不开启,调低加大保护力度但可能降低索引效果" ), value=0.33, step=0.01, interactive=True, ) f0_file = gr.File(label=i18n("F0曲线文件, 可选, 一行一个音高, 代替默认F0及升降调")) but0 = gr.Button(i18n("转换"), variant="primary") with gr.Row(): vc_output1 = gr.Textbox(label=i18n("输出信息")) vc_output2 = gr.Audio(label=i18n("输出音频(右下角三个点,点了可以下载)")) but0.click( vc_single, [ spk_item, input_audio0, vc_transform0, f0_file, f0method0, file_index1, file_index2, # file_big_npy1, index_rate1, filter_radius0, resample_sr0, rms_mix_rate0, protect0, ], [vc_output1, vc_output2], ) with gr.Group(): gr.Markdown( value=i18n("批量转换, 输入待转换音频文件夹, 或上传多个音频文件, 在指定文件夹(默认opt)下输出转换的音频. ") ) with gr.Row(): with gr.Column(): vc_transform1 = gr.Number( label=i18n("变调(整数, 半音数量, 升八度12降八度-12)"), value=0 ) opt_input = gr.Textbox(label=i18n("指定输出文件夹"), value="opt") f0method1 = gr.Radio( label=i18n( "选择音高提取算法,输入歌声可用pm提速,harvest低音好但巨慢无比,crepe效果好但吃GPU" ), choices=["pm", "harvest", "crepe"], value="pm", interactive=True, ) filter_radius1 = gr.Slider( minimum=0, maximum=7, label=i18n(">=3则使用对harvest音高识别的结果使用中值滤波,数值为滤波半径,使用可以削弱哑音"), value=3, step=1, interactive=True, ) with gr.Column(): file_index3 = gr.Textbox( label=i18n("特征检索库文件路径,为空则使用下拉的选择结果"), value="", interactive=True, ) file_index4 = gr.Dropdown( label=i18n("自动检测index路径,下拉式选择(dropdown)"), choices=sorted(index_paths), interactive=True, ) # file_big_npy2 = gr.Textbox( # label=i18n("特征文件路径"), # value="E:\\codes\\py39\\vits_vc_gpu_train\\logs\\mi-test-1key\\total_fea.npy", # interactive=True, # ) index_rate2 = gr.Slider( minimum=0, maximum=1, label=i18n("检索特征占比"), value=1, interactive=True, ) with gr.Column(): resample_sr1 = gr.Slider( minimum=0, maximum=48000, label=i18n("后处理重采样至最终采样率,0为不进行重采样"), value=0, step=1, interactive=True, ) rms_mix_rate1 = gr.Slider( minimum=0, maximum=1, label=i18n("输入源音量包络替换输出音量包络融合比例,越靠近1越使用输出包络"), value=1, interactive=True, ) protect1 = gr.Slider( minimum=0, maximum=0.5, label=i18n( "保护清辅音和呼吸声,防止电音撕裂等artifact,拉满0.5不开启,调低加大保护力度但可能降低索引效果" ), value=0.33, step=0.01, interactive=True, ) with gr.Column(): dir_input = gr.Textbox( label=i18n("输入待处理音频文件夹路径(去文件管理器地址栏拷就行了)"), value="E:\codes\py39\\test-20230416b\\todo-songs", ) inputs = gr.File( file_count="multiple", label=i18n("也可批量输入音频文件, 二选一, 优先读文件夹") ) with gr.Row(): format1 = gr.Radio( label=i18n("导出文件格式"), choices=["wav", "flac", "mp3", "m4a"], value="flac", interactive=True, ) but1 = gr.Button(i18n("转换"), variant="primary") vc_output3 = gr.Textbox(label=i18n("输出信息")) but1.click( vc_multi, [ spk_item, dir_input, opt_input, inputs, vc_transform1, f0method1, file_index3, file_index4, # file_big_npy2, index_rate2, filter_radius1, resample_sr1, rms_mix_rate1, protect1, format1, ], [vc_output3], ) with gr.TabItem(i18n("伴奏人声分离&去混响&去回声")): with gr.Group(): gr.Markdown( value=i18n( "人声伴奏分离批量处理, 使用UVR5模型。
" "合格的文件夹路径格式举例: E:\\codes\\py39\\vits_vc_gpu\\白鹭霜华测试样例(去文件管理器地址栏拷就行了)。
" "模型分为三类:
" "1、保留人声:不带和声的音频选这个,对主人声保留比HP5更好。内置HP2和HP3两个模型,HP3可能轻微漏伴奏但对主人声保留比HP2稍微好一丁点;
" "2、仅保留主人声:带和声的音频选这个,对主人声可能有削弱。内置HP5一个模型;
" "3、去混响、去延迟模型(by FoxJoy):
" "  (1)MDX-Net:对于双通道混响是最好的选择,不能去除单通道混响;
" " (234)DeEcho:去除延迟效果。Aggressive比Normal去除得更彻底,DeReverb额外去除混响,可去除单声道混响,但是对高频重的板式混响去不干净。
" "去混响/去延迟,附:
" "1、DeEcho-DeReverb模型的耗时是另外2个DeEcho模型的接近2倍;
" "2、MDX-Net-Dereverb模型挺慢的;
" "3、个人推荐的最干净的配置是先MDX-Net再DeEcho-Aggressive。" ) ) with gr.Row(): with gr.Column(): dir_wav_input = gr.Textbox( label=i18n("输入待处理音频文件夹路径"), value="E:\\codes\\py39\\test-20230416b\\todo-songs\\todo-songs", ) wav_inputs = gr.File( file_count="multiple", label=i18n("也可批量输入音频文件, 二选一, 优先读文件夹") ) with gr.Column(): model_choose = gr.Dropdown(label=i18n("模型"), choices=uvr5_names) agg = gr.Slider( minimum=0, maximum=20, step=1, label="人声提取激进程度", value=10, interactive=True, visible=False, # 先不开放调整 ) opt_vocal_root = gr.Textbox( label=i18n("指定输出主人声文件夹"), value="opt" ) opt_ins_root = gr.Textbox( label=i18n("指定输出非主人声文件夹"), value="opt" ) format0 = gr.Radio( label=i18n("导出文件格式"), choices=["wav", "flac", "mp3", "m4a"], value="flac", interactive=True, ) but2 = gr.Button(i18n("转换"), variant="primary") vc_output4 = gr.Textbox(label=i18n("输出信息")) but2.click( uvr, [ model_choose, dir_wav_input, opt_vocal_root, wav_inputs, opt_ins_root, agg, format0, ], [vc_output4], ) with gr.TabItem(i18n("训练")): gr.Markdown( value=i18n( "step1: 填写实验配置. 实验数据放在logs下, 每个实验一个文件夹, 需手工输入实验名路径, 内含实验配置, 日志, 训练得到的模型文件. " ) ) with gr.Row(): exp_dir1 = gr.Textbox(label=i18n("输入实验名"), value="mi-test") sr2 = gr.Radio( label=i18n("目标采样率"), choices=["40k", "48k"], value="40k", interactive=True, ) if_f0_3 = gr.Radio( label=i18n("模型是否带音高指导(唱歌一定要, 语音可以不要)"), choices=[True, False], value=True, interactive=True, ) version19 = gr.Radio( label=i18n("版本(目前仅40k支持了v2)"), choices=["v1", "v2"], value="v1", interactive=True, visible=True, ) np7 = gr.Slider( minimum=0, maximum=config.n_cpu, step=1, label=i18n("提取音高和处理数据使用的CPU进程数"), value=config.n_cpu, interactive=True, ) with gr.Group(): # 暂时单人的, 后面支持最多4人的#数据处理 gr.Markdown( value=i18n( "step2a: 自动遍历训练文件夹下所有可解码成音频的文件并进行切片归一化, 在实验目录下生成2个wav文件夹; 暂时只支持单人训练. " ) ) with gr.Row(): trainset_dir4 = gr.Textbox( label=i18n("输入训练文件夹路径"), value="E:\\语音音频+标注\\米津玄师\\src" ) spk_id5 = gr.Slider( minimum=0, maximum=4, step=1, label=i18n("请指定说话人id"), value=0, interactive=True, ) but1 = gr.Button(i18n("处理数据"), variant="primary") info1 = gr.Textbox(label=i18n("输出信息"), value="") but1.click( preprocess_dataset, [trainset_dir4, exp_dir1, sr2, np7], [info1] ) with gr.Group(): gr.Markdown(value=i18n("step2b: 使用CPU提取音高(如果模型带音高), 使用GPU提取特征(选择卡号)")) with gr.Row(): with gr.Column(): gpus6 = gr.Textbox( label=i18n("以-分隔输入使用的卡号, 例如 0-1-2 使用卡0和卡1和卡2"), value=gpus, interactive=True, ) gpu_info9 = gr.Textbox(label=i18n("显卡信息"), value=gpu_info) with gr.Column(): f0method8 = gr.Radio( label=i18n( "选择音高提取算法:输入歌声可用pm提速,高质量语音但CPU差可用dio提速,harvest质量更好但慢" ), choices=["pm", "harvest", "dio"], value="harvest", interactive=True, ) but2 = gr.Button(i18n("特征提取"), variant="primary") info2 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=8) but2.click( extract_f0_feature, [gpus6, np7, f0method8, if_f0_3, exp_dir1, version19], [info2], ) with gr.Group(): gr.Markdown(value=i18n("step3: 填写训练设置, 开始训练模型和索引")) with gr.Row(): save_epoch10 = gr.Slider( minimum=0, maximum=50, step=1, label=i18n("保存频率save_every_epoch"), value=5, interactive=True, ) total_epoch11 = gr.Slider( minimum=0, maximum=1000, step=1, label=i18n("总训练轮数total_epoch"), value=20, interactive=True, ) batch_size12 = gr.Slider( minimum=1, maximum=40, step=1, label=i18n("每张显卡的batch_size"), value=default_batch_size, interactive=True, ) if_save_latest13 = gr.Radio( label=i18n("是否仅保存最新的ckpt文件以节省硬盘空间"), choices=[i18n("是"), i18n("否")], value=i18n("否"), interactive=True, ) if_cache_gpu17 = gr.Radio( label=i18n( "是否缓存所有训练集至显存. 10min以下小数据可缓存以加速训练, 大数据缓存会炸显存也加不了多少速" ), choices=[i18n("是"), i18n("否")], value=i18n("否"), interactive=True, ) if_save_every_weights18 = gr.Radio( label=i18n("是否在每次保存时间点将最终小模型保存至weights文件夹"), choices=[i18n("是"), i18n("否")], value=i18n("否"), interactive=True, ) with gr.Row(): pretrained_G14 = gr.Textbox( label=i18n("加载预训练底模G路径"), value="pretrained/f0G40k.pth", interactive=True, ) pretrained_D15 = gr.Textbox( label=i18n("加载预训练底模D路径"), value="pretrained/f0D40k.pth", interactive=True, ) sr2.change( change_sr2, [sr2, if_f0_3, version19], [pretrained_G14, pretrained_D15, version19], ) version19.change( change_version19, [sr2, if_f0_3, version19], [pretrained_G14, pretrained_D15], ) if_f0_3.change( change_f0, [if_f0_3, sr2, version19], [f0method8, pretrained_G14, pretrained_D15], ) gpus16 = gr.Textbox( label=i18n("以-分隔输入使用的卡号, 例如 0-1-2 使用卡0和卡1和卡2"), value=gpus, interactive=True, ) but3 = gr.Button(i18n("训练模型"), variant="primary") but4 = gr.Button(i18n("训练特征索引"), variant="primary") but5 = gr.Button(i18n("一键训练"), variant="primary") info3 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=10) but3.click( click_train, [ exp_dir1, sr2, if_f0_3, spk_id5, save_epoch10, total_epoch11, batch_size12, if_save_latest13, pretrained_G14, pretrained_D15, gpus16, if_cache_gpu17, if_save_every_weights18, version19, ], info3, ) but4.click(train_index, [exp_dir1, version19], info3) but5.click( train1key, [ exp_dir1, sr2, if_f0_3, trainset_dir4, spk_id5, np7, f0method8, save_epoch10, total_epoch11, batch_size12, if_save_latest13, pretrained_G14, pretrained_D15, gpus16, if_cache_gpu17, if_save_every_weights18, version19, ], info3, ) with gr.TabItem(i18n("ckpt处理")): with gr.Group(): gr.Markdown(value=i18n("模型融合, 可用于测试音色融合")) with gr.Row(): ckpt_a = gr.Textbox(label=i18n("A模型路径"), value="", interactive=True) ckpt_b = gr.Textbox(label=i18n("B模型路径"), value="", interactive=True) alpha_a = gr.Slider( minimum=0, maximum=1, label=i18n("A模型权重"), value=0.5, interactive=True, ) with gr.Row(): sr_ = gr.Radio( label=i18n("目标采样率"), choices=["32k", "40k", "48k"], value="40k", interactive=True, ) if_f0_ = gr.Radio( label=i18n("模型是否带音高指导"), choices=[i18n("是"), i18n("否")], value=i18n("是"), interactive=True, ) info__ = gr.Textbox( label=i18n("要置入的模型信息"), value="", max_lines=8, interactive=True ) name_to_save0 = gr.Textbox( label=i18n("保存的模型名不带后缀"), value="", max_lines=1, interactive=True, ) version_2 = gr.Radio( label=i18n("模型版本型号"), choices=["v1", "v2"], value="v1", interactive=True, ) with gr.Row(): but6 = gr.Button(i18n("融合"), variant="primary") info4 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=8) but6.click( merge, [ ckpt_a, ckpt_b, alpha_a, sr_, if_f0_, info__, name_to_save0, version_2, ], info4, ) # def merge(path1,path2,alpha1,sr,f0,info): with gr.Group(): gr.Markdown(value=i18n("修改模型信息(仅支持weights文件夹下提取的小模型文件)")) with gr.Row(): ckpt_path0 = gr.Textbox( label=i18n("模型路径"), value="", interactive=True ) info_ = gr.Textbox( label=i18n("要改的模型信息"), value="", max_lines=8, interactive=True ) name_to_save1 = gr.Textbox( label=i18n("保存的文件名, 默认空为和源文件同名"), value="", max_lines=8, interactive=True, ) with gr.Row(): but7 = gr.Button(i18n("修改"), variant="primary") info5 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=8) but7.click(change_info, [ckpt_path0, info_, name_to_save1], info5) with gr.Group(): gr.Markdown(value=i18n("查看模型信息(仅支持weights文件夹下提取的小模型文件)")) with gr.Row(): ckpt_path1 = gr.Textbox( label=i18n("模型路径"), value="", interactive=True ) but8 = gr.Button(i18n("查看"), variant="primary") info6 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=8) but8.click(show_info, [ckpt_path1], info6) with gr.Group(): gr.Markdown( value=i18n( "模型提取(输入logs文件夹下大文件模型路径),适用于训一半不想训了模型没有自动提取保存小文件模型,或者想测试中间模型的情况" ) ) with gr.Row(): ckpt_path2 = gr.Textbox( label=i18n("模型路径"), value="E:\\codes\\py39\\logs\\mi-test_f0_48k\\G_23333.pth", interactive=True, ) save_name = gr.Textbox( label=i18n("保存名"), value="", interactive=True ) sr__ = gr.Radio( label=i18n("目标采样率"), choices=["32k", "40k", "48k"], value="40k", interactive=True, ) if_f0__ = gr.Radio( label=i18n("模型是否带音高指导,1是0否"), choices=["1", "0"], value="1", interactive=True, ) version_1 = gr.Radio( label=i18n("模型版本型号"), choices=["v1", "v2"], value="v1", interactive=True, ) info___ = gr.Textbox( label=i18n("要置入的模型信息"), value="", max_lines=8, interactive=True ) but9 = gr.Button(i18n("提取"), variant="primary") info7 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=8) ckpt_path2.change( change_info_, [ckpt_path2], [sr__, if_f0__, version_1] ) but9.click( extract_small_model, [ckpt_path2, save_name, sr__, if_f0__, info___, version_1], info7, ) with gr.TabItem(i18n("Onnx导出")): with gr.Row(): ckpt_dir = gr.Textbox(label=i18n("RVC模型路径"), value="", interactive=True) with gr.Row(): onnx_dir = gr.Textbox( label=i18n("Onnx输出路径"), value="", interactive=True ) with gr.Row(): moevs = gr.Checkbox(label=i18n("MoeVS模型"), value=True) infoOnnx = gr.Label(label="Null") with gr.Row(): butOnnx = gr.Button(i18n("导出Onnx模型"), variant="primary") butOnnx.click(export_onnx, [ckpt_dir, onnx_dir, moevs], infoOnnx) tab_faq = i18n("常见问题解答") with gr.TabItem(tab_faq): try: if tab_faq == "常见问题解答": with open("docs/faq.md", "r", encoding="utf8") as f: info = f.read() else: with open("docs/faq_en.md", "r", encoding="utf8") as f: info = f.read() gr.Markdown(value=info) except: gr.Markdown(traceback.format_exc()) # with gr.TabItem(i18n("招募音高曲线前端编辑器")): # gr.Markdown(value=i18n("加开发群联系我xxxxx")) # with gr.TabItem(i18n("点击查看交流、问题反馈群号")): # gr.Markdown(value=i18n("xxxxx")) if config.iscolab: app.queue(concurrency_count=511, max_size=1022).launch(share=True) else: app.queue(concurrency_count=511, max_size=1022).launch( server_name="0.0.0.0", inbrowser=not config.noautoopen, server_port=config.listen_port, quiet=True, )