1
0
mirror of synced 2025-01-19 17:28:42 +01:00
源文雨 13da7b3f96
fix #73: 伴奏人声分离时报错:FileNotFoundError (#74)
* fix #73: 伴奏人声分离时报错:FileNotFoundError

* Apply Code Formatter Change

---------

Co-authored-by: fumiama <fumiama@users.noreply.github.com>
2023-04-16 09:30:32 +00:00

121 lines
3.5 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import torch
import numpy as np
from tqdm import tqdm
import json
def load_data(file_name: str = "./uvr5_pack/name_params.json") -> dict:
with open(file_name, "r") as f:
data = json.load(f)
return data
def make_padding(width, cropsize, offset):
left = offset
roi_size = cropsize - left * 2
if roi_size == 0:
roi_size = cropsize
right = roi_size - (width % roi_size) + left
return left, right, roi_size
def inference(X_spec, device, model, aggressiveness, data):
"""
data dic configs
"""
def _execute(
X_mag_pad, roi_size, n_window, device, model, aggressiveness, is_half=True
):
model.eval()
with torch.no_grad():
preds = []
iterations = [n_window]
total_iterations = sum(iterations)
for i in tqdm(range(n_window)):
start = i * roi_size
X_mag_window = X_mag_pad[
None, :, :, start : start + data["window_size"]
]
X_mag_window = torch.from_numpy(X_mag_window)
if is_half:
X_mag_window = X_mag_window.half()
X_mag_window = X_mag_window.to(device)
pred = model.predict(X_mag_window, aggressiveness)
pred = pred.detach().cpu().numpy()
preds.append(pred[0])
pred = np.concatenate(preds, axis=2)
return pred
def preprocess(X_spec):
X_mag = np.abs(X_spec)
X_phase = np.angle(X_spec)
return X_mag, X_phase
X_mag, X_phase = preprocess(X_spec)
coef = X_mag.max()
X_mag_pre = X_mag / coef
n_frame = X_mag_pre.shape[2]
pad_l, pad_r, roi_size = make_padding(n_frame, data["window_size"], model.offset)
n_window = int(np.ceil(n_frame / roi_size))
X_mag_pad = np.pad(X_mag_pre, ((0, 0), (0, 0), (pad_l, pad_r)), mode="constant")
if list(model.state_dict().values())[0].dtype == torch.float16:
is_half = True
else:
is_half = False
pred = _execute(
X_mag_pad, roi_size, n_window, device, model, aggressiveness, is_half
)
pred = pred[:, :, :n_frame]
if data["tta"]:
pad_l += roi_size // 2
pad_r += roi_size // 2
n_window += 1
X_mag_pad = np.pad(X_mag_pre, ((0, 0), (0, 0), (pad_l, pad_r)), mode="constant")
pred_tta = _execute(
X_mag_pad, roi_size, n_window, device, model, aggressiveness, is_half
)
pred_tta = pred_tta[:, :, roi_size // 2 :]
pred_tta = pred_tta[:, :, :n_frame]
return (pred + pred_tta) * 0.5 * coef, X_mag, np.exp(1.0j * X_phase)
else:
return pred * coef, X_mag, np.exp(1.0j * X_phase)
def _get_name_params(model_path, model_hash):
data = load_data()
flag = False
ModelName = model_path
for type in list(data):
for model in list(data[type][0]):
for i in range(len(data[type][0][model])):
if str(data[type][0][model][i]["hash_name"]) == model_hash:
flag = True
elif str(data[type][0][model][i]["hash_name"]) in ModelName:
flag = True
if flag:
model_params_auto = data[type][0][model][i]["model_params"]
param_name_auto = data[type][0][model][i]["param_name"]
if type == "equivalent":
return param_name_auto, model_params_auto
else:
flag = False
return param_name_auto, model_params_auto