320 lines
11 KiB
Python
320 lines
11 KiB
Python
import os
|
||
import torch
|
||
|
||
# os.system("wget -P cvec/ https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/hubert_base.pt")
|
||
import gradio as gr
|
||
import librosa
|
||
import numpy as np
|
||
import logging
|
||
from fairseq import checkpoint_utils
|
||
from vc_infer_pipeline import VC
|
||
import traceback
|
||
from config import Config
|
||
from lib.infer_pack.models import (
|
||
SynthesizerTrnMs256NSFsid,
|
||
SynthesizerTrnMs256NSFsid_nono,
|
||
SynthesizerTrnMs768NSFsid,
|
||
SynthesizerTrnMs768NSFsid_nono,
|
||
)
|
||
from i18n import I18nAuto
|
||
|
||
logging.getLogger("numba").setLevel(logging.WARNING)
|
||
logging.getLogger("markdown_it").setLevel(logging.WARNING)
|
||
logging.getLogger("urllib3").setLevel(logging.WARNING)
|
||
logging.getLogger("matplotlib").setLevel(logging.WARNING)
|
||
|
||
i18n = I18nAuto()
|
||
i18n.print()
|
||
|
||
config = Config()
|
||
|
||
weight_root = "weights"
|
||
weight_uvr5_root = "uvr5_weights"
|
||
index_root = "logs"
|
||
names = []
|
||
hubert_model = None
|
||
for name in os.listdir(weight_root):
|
||
if name.endswith(".pth"):
|
||
names.append(name)
|
||
index_paths = []
|
||
for root, dirs, files in os.walk(index_root, topdown=False):
|
||
for name in files:
|
||
if name.endswith(".index") and "trained" not in name:
|
||
index_paths.append("%s/%s" % (root, name))
|
||
|
||
|
||
def get_vc(sid):
|
||
global n_spk, tgt_sr, net_g, vc, cpt, version
|
||
if sid == "" or sid == []:
|
||
global hubert_model
|
||
if hubert_model != None: # 考虑到轮询, 需要加个判断看是否 sid 是由有模型切换到无模型的
|
||
print("clean_empty_cache")
|
||
del net_g, n_spk, vc, hubert_model, tgt_sr # ,cpt
|
||
hubert_model = net_g = n_spk = vc = hubert_model = tgt_sr = None
|
||
if torch.cuda.is_available():
|
||
torch.cuda.empty_cache()
|
||
###楼下不这么折腾清理不干净
|
||
if_f0 = cpt.get("f0", 1)
|
||
version = cpt.get("version", "v1")
|
||
if version == "v1":
|
||
if if_f0 == 1:
|
||
net_g = SynthesizerTrnMs256NSFsid(
|
||
*cpt["config"], is_half=config.is_half
|
||
)
|
||
else:
|
||
net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
|
||
elif version == "v2":
|
||
if if_f0 == 1:
|
||
net_g = SynthesizerTrnMs768NSFsid(
|
||
*cpt["config"], is_half=config.is_half
|
||
)
|
||
else:
|
||
net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"])
|
||
del net_g, cpt
|
||
if torch.cuda.is_available():
|
||
torch.cuda.empty_cache()
|
||
cpt = None
|
||
return {"visible": False, "__type__": "update"}
|
||
person = "%s/%s" % (weight_root, sid)
|
||
print("loading %s" % person)
|
||
cpt = torch.load(person, map_location="cpu")
|
||
tgt_sr = cpt["config"][-1]
|
||
cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] # n_spk
|
||
if_f0 = cpt.get("f0", 1)
|
||
version = cpt.get("version", "v1")
|
||
if version == "v1":
|
||
if if_f0 == 1:
|
||
net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=config.is_half)
|
||
else:
|
||
net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
|
||
elif version == "v2":
|
||
if if_f0 == 1:
|
||
net_g = SynthesizerTrnMs768NSFsid(*cpt["config"], is_half=config.is_half)
|
||
else:
|
||
net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"])
|
||
del net_g.enc_q
|
||
print(net_g.load_state_dict(cpt["weight"], strict=False))
|
||
net_g.eval().to(config.device)
|
||
if config.is_half:
|
||
net_g = net_g.half()
|
||
else:
|
||
net_g = net_g.float()
|
||
vc = VC(tgt_sr, config)
|
||
n_spk = cpt["config"][-3]
|
||
return {"visible": True, "maximum": n_spk, "__type__": "update"}
|
||
|
||
|
||
def load_hubert():
|
||
global hubert_model
|
||
models, _, _ = checkpoint_utils.load_model_ensemble_and_task(
|
||
["hubert_base.pt"],
|
||
suffix="",
|
||
)
|
||
hubert_model = models[0]
|
||
hubert_model = hubert_model.to(config.device)
|
||
if config.is_half:
|
||
hubert_model = hubert_model.half()
|
||
else:
|
||
hubert_model = hubert_model.float()
|
||
hubert_model.eval()
|
||
|
||
|
||
def vc_single(
|
||
sid,
|
||
input_audio_path,
|
||
f0_up_key,
|
||
f0_file,
|
||
f0_method,
|
||
file_index,
|
||
file_index2,
|
||
# file_big_npy,
|
||
index_rate,
|
||
filter_radius,
|
||
resample_sr,
|
||
rms_mix_rate,
|
||
protect,
|
||
): # spk_item, input_audio0, vc_transform0,f0_file,f0method0
|
||
global tgt_sr, net_g, vc, hubert_model, version
|
||
if input_audio_path is None:
|
||
return "You need to upload an audio", None
|
||
f0_up_key = int(f0_up_key)
|
||
try:
|
||
audio = input_audio_path[1] / 32768.0
|
||
if len(audio.shape) == 2:
|
||
audio = np.mean(audio, -1)
|
||
audio = librosa.resample(audio, orig_sr=input_audio_path[0], target_sr=16000)
|
||
audio_max = np.abs(audio).max() / 0.95
|
||
if audio_max > 1:
|
||
audio /= audio_max
|
||
times = [0, 0, 0]
|
||
if hubert_model == None:
|
||
load_hubert()
|
||
if_f0 = cpt.get("f0", 1)
|
||
file_index = (
|
||
(
|
||
file_index.strip(" ")
|
||
.strip('"')
|
||
.strip("\n")
|
||
.strip('"')
|
||
.strip(" ")
|
||
.replace("trained", "added")
|
||
)
|
||
if file_index != ""
|
||
else file_index2
|
||
) # 防止小白写错,自动帮他替换掉
|
||
# file_big_npy = (
|
||
# file_big_npy.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
|
||
# )
|
||
audio_opt = vc.pipeline(
|
||
hubert_model,
|
||
net_g,
|
||
sid,
|
||
audio,
|
||
input_audio_path,
|
||
times,
|
||
f0_up_key,
|
||
f0_method,
|
||
file_index,
|
||
# file_big_npy,
|
||
index_rate,
|
||
if_f0,
|
||
filter_radius,
|
||
tgt_sr,
|
||
resample_sr,
|
||
rms_mix_rate,
|
||
version,
|
||
protect,
|
||
f0_file=f0_file,
|
||
)
|
||
if resample_sr >= 16000 and tgt_sr != resample_sr:
|
||
tgt_sr = resample_sr
|
||
index_info = (
|
||
"Using index:%s." % file_index
|
||
if os.path.exists(file_index)
|
||
else "Index not used."
|
||
)
|
||
return "Success.\n %s\nTime:\n npy:%ss, f0:%ss, infer:%ss" % (
|
||
index_info,
|
||
times[0],
|
||
times[1],
|
||
times[2],
|
||
), (tgt_sr, audio_opt)
|
||
except:
|
||
info = traceback.format_exc()
|
||
print(info)
|
||
return info, (None, None)
|
||
|
||
|
||
app = gr.Blocks()
|
||
with app:
|
||
with gr.Tabs():
|
||
with gr.TabItem("在线demo"):
|
||
gr.Markdown(
|
||
value="""
|
||
RVC 在线demo
|
||
"""
|
||
)
|
||
sid = gr.Dropdown(label=i18n("推理音色"), choices=sorted(names))
|
||
with gr.Column():
|
||
spk_item = gr.Slider(
|
||
minimum=0,
|
||
maximum=2333,
|
||
step=1,
|
||
label=i18n("请选择说话人id"),
|
||
value=0,
|
||
visible=False,
|
||
interactive=True,
|
||
)
|
||
sid.change(
|
||
fn=get_vc,
|
||
inputs=[sid],
|
||
outputs=[spk_item],
|
||
)
|
||
gr.Markdown(
|
||
value=i18n("男转女推荐+12key, 女转男推荐-12key, 如果音域爆炸导致音色失真也可以自己调整到合适音域. ")
|
||
)
|
||
vc_input3 = gr.Audio(label="上传音频(长度小于90秒)")
|
||
vc_transform0 = gr.Number(label=i18n("变调(整数, 半音数量, 升八度12降八度-12)"), value=0)
|
||
f0method0 = gr.Radio(
|
||
label=i18n("选择音高提取算法,输入歌声可用pm提速,harvest低音好但巨慢无比,crepe效果好但吃GPU"),
|
||
choices=["pm", "harvest", "crepe"],
|
||
value="pm",
|
||
interactive=True,
|
||
)
|
||
filter_radius0 = gr.Slider(
|
||
minimum=0,
|
||
maximum=7,
|
||
label=i18n(">=3则使用对harvest音高识别的结果使用中值滤波,数值为滤波半径,使用可以削弱哑音"),
|
||
value=3,
|
||
step=1,
|
||
interactive=True,
|
||
)
|
||
with gr.Column():
|
||
file_index1 = gr.Textbox(
|
||
label=i18n("特征检索库文件路径,为空则使用下拉的选择结果"),
|
||
value="",
|
||
interactive=False,
|
||
visible=False,
|
||
)
|
||
file_index2 = gr.Dropdown(
|
||
label=i18n("自动检测index路径,下拉式选择(dropdown)"),
|
||
choices=sorted(index_paths),
|
||
interactive=True,
|
||
)
|
||
index_rate1 = gr.Slider(
|
||
minimum=0,
|
||
maximum=1,
|
||
label=i18n("检索特征占比"),
|
||
value=0.88,
|
||
interactive=True,
|
||
)
|
||
resample_sr0 = gr.Slider(
|
||
minimum=0,
|
||
maximum=48000,
|
||
label=i18n("后处理重采样至最终采样率,0为不进行重采样"),
|
||
value=0,
|
||
step=1,
|
||
interactive=True,
|
||
)
|
||
rms_mix_rate0 = gr.Slider(
|
||
minimum=0,
|
||
maximum=1,
|
||
label=i18n("输入源音量包络替换输出音量包络融合比例,越靠近1越使用输出包络"),
|
||
value=1,
|
||
interactive=True,
|
||
)
|
||
protect0 = gr.Slider(
|
||
minimum=0,
|
||
maximum=0.5,
|
||
label=i18n("保护清辅音和呼吸声,防止电音撕裂等artifact,拉满0.5不开启,调低加大保护力度但可能降低索引效果"),
|
||
value=0.33,
|
||
step=0.01,
|
||
interactive=True,
|
||
)
|
||
f0_file = gr.File(label=i18n("F0曲线文件, 可选, 一行一个音高, 代替默认F0及升降调"))
|
||
but0 = gr.Button(i18n("转换"), variant="primary")
|
||
vc_output1 = gr.Textbox(label=i18n("输出信息"))
|
||
vc_output2 = gr.Audio(label=i18n("输出音频(右下角三个点,点了可以下载)"))
|
||
but0.click(
|
||
vc_single,
|
||
[
|
||
spk_item,
|
||
vc_input3,
|
||
vc_transform0,
|
||
f0_file,
|
||
f0method0,
|
||
file_index1,
|
||
file_index2,
|
||
# file_big_npy1,
|
||
index_rate1,
|
||
filter_radius0,
|
||
resample_sr0,
|
||
rms_mix_rate0,
|
||
protect0,
|
||
],
|
||
[vc_output1, vc_output2],
|
||
)
|
||
|
||
|
||
app.launch()
|