1
0
mirror of synced 2024-12-25 05:44:57 +01:00
Retrieval-based-Voice-Conve.../infer/modules/uvr5/preprocess.py
2023-08-30 17:46:45 +08:00

344 lines
14 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import os
import librosa
import numpy as np
import soundfile as sf
import torch
from infer.lib.uvr5_pack.lib_v5 import nets_61968KB as Nets
from infer.lib.uvr5_pack.lib_v5 import spec_utils
from infer.lib.uvr5_pack.lib_v5.model_param_init import ModelParameters
from infer.lib.uvr5_pack.lib_v5.nets_new import CascadedNet
from infer.lib.uvr5_pack.utils import inference
class AudioPre:
def __init__(self, agg, model_path, device, is_half):
self.model_path = model_path
self.device = device
self.data = {
# Processing Options
"postprocess": False,
"tta": False,
# Constants
"window_size": 512,
"agg": agg,
"high_end_process": "mirroring",
}
mp = ModelParameters("infer/lib/uvr5_pack/lib_v5/modelparams/4band_v2.json")
model = Nets.CascadedASPPNet(mp.param["bins"] * 2)
cpk = torch.load(model_path, map_location="cpu")
model.load_state_dict(cpk)
model.eval()
if is_half:
model = model.half().to(device)
else:
model = model.to(device)
self.mp = mp
self.model = model
def _path_audio_(self, music_file, ins_root=None, vocal_root=None, format="flac"):
if ins_root is None and vocal_root is None:
return "No save root."
name = os.path.basename(music_file)
if ins_root is not None:
os.makedirs(ins_root, exist_ok=True)
if vocal_root is not None:
os.makedirs(vocal_root, exist_ok=True)
X_wave, y_wave, X_spec_s, y_spec_s = {}, {}, {}, {}
bands_n = len(self.mp.param["band"])
# print(bands_n)
for d in range(bands_n, 0, -1):
bp = self.mp.param["band"][d]
if d == bands_n: # high-end band
(
X_wave[d],
_,
) = librosa.core.load( # 理论上librosa读取可能对某些音频有bug应该上ffmpeg读取但是太麻烦了弃坑
music_file,
bp["sr"],
False,
dtype=np.float32,
res_type=bp["res_type"],
)
if X_wave[d].ndim == 1:
X_wave[d] = np.asfortranarray([X_wave[d], X_wave[d]])
else: # lower bands
X_wave[d] = librosa.core.resample(
X_wave[d + 1],
self.mp.param["band"][d + 1]["sr"],
bp["sr"],
res_type=bp["res_type"],
)
# Stft of wave source
X_spec_s[d] = spec_utils.wave_to_spectrogram_mt(
X_wave[d],
bp["hl"],
bp["n_fft"],
self.mp.param["mid_side"],
self.mp.param["mid_side_b2"],
self.mp.param["reverse"],
)
# pdb.set_trace()
if d == bands_n and self.data["high_end_process"] != "none":
input_high_end_h = (bp["n_fft"] // 2 - bp["crop_stop"]) + (
self.mp.param["pre_filter_stop"] - self.mp.param["pre_filter_start"]
)
input_high_end = X_spec_s[d][
:, bp["n_fft"] // 2 - input_high_end_h : bp["n_fft"] // 2, :
]
X_spec_m = spec_utils.combine_spectrograms(X_spec_s, self.mp)
aggresive_set = float(self.data["agg"] / 100)
aggressiveness = {
"value": aggresive_set,
"split_bin": self.mp.param["band"][1]["crop_stop"],
}
with torch.no_grad():
pred, X_mag, X_phase = inference(
X_spec_m, self.device, self.model, aggressiveness, self.data
)
# Postprocess
if self.data["postprocess"]:
pred_inv = np.clip(X_mag - pred, 0, np.inf)
pred = spec_utils.mask_silence(pred, pred_inv)
y_spec_m = pred * X_phase
v_spec_m = X_spec_m - y_spec_m
if ins_root is not None:
if self.data["high_end_process"].startswith("mirroring"):
input_high_end_ = spec_utils.mirroring(
self.data["high_end_process"], y_spec_m, input_high_end, self.mp
)
wav_instrument = spec_utils.cmb_spectrogram_to_wave(
y_spec_m, self.mp, input_high_end_h, input_high_end_
)
else:
wav_instrument = spec_utils.cmb_spectrogram_to_wave(y_spec_m, self.mp)
print("%s instruments done" % name)
if format in ["wav", "flac"]:
sf.write(
os.path.join(
ins_root,
"instrument_{}_{}.{}".format(name, self.data["agg"], format),
),
(np.array(wav_instrument) * 32768).astype("int16"),
self.mp.param["sr"],
) #
else:
path = os.path.join(
ins_root, "instrument_{}_{}.wav".format(name, self.data["agg"])
)
sf.write(
path,
(np.array(wav_instrument) * 32768).astype("int16"),
self.mp.param["sr"],
)
if os.path.exists(path):
os.system(
"ffmpeg -i %s -vn %s -q:a 2 -y"
% (path, path[:-4] + ".%s" % format)
)
if vocal_root is not None:
if self.data["high_end_process"].startswith("mirroring"):
input_high_end_ = spec_utils.mirroring(
self.data["high_end_process"], v_spec_m, input_high_end, self.mp
)
wav_vocals = spec_utils.cmb_spectrogram_to_wave(
v_spec_m, self.mp, input_high_end_h, input_high_end_
)
else:
wav_vocals = spec_utils.cmb_spectrogram_to_wave(v_spec_m, self.mp)
print("%s vocals done" % name)
if format in ["wav", "flac"]:
sf.write(
os.path.join(
vocal_root,
"vocal_{}_{}.{}".format(name, self.data["agg"], format),
),
(np.array(wav_vocals) * 32768).astype("int16"),
self.mp.param["sr"],
)
else:
path = os.path.join(
vocal_root, "vocal_{}_{}.wav".format(name, self.data["agg"])
)
sf.write(
path,
(np.array(wav_vocals) * 32768).astype("int16"),
self.mp.param["sr"],
)
if os.path.exists(path):
os.system(
"ffmpeg -i %s -vn %s -q:a 2 -y"
% (path, path[:-4] + ".%s" % format)
)
class AudioPreDeEcho:
def __init__(self, agg, model_path, device, is_half):
self.model_path = model_path
self.device = device
self.data = {
# Processing Options
"postprocess": False,
"tta": False,
# Constants
"window_size": 512,
"agg": agg,
"high_end_process": "mirroring",
}
mp = ModelParameters("infer/lib/uvr5_pack/lib_v5/modelparams/4band_v3.json")
nout = 64 if "DeReverb" in model_path else 48
model = CascadedNet(mp.param["bins"] * 2, nout)
cpk = torch.load(model_path, map_location="cpu")
model.load_state_dict(cpk)
model.eval()
if is_half:
model = model.half().to(device)
else:
model = model.to(device)
self.mp = mp
self.model = model
def _path_audio_(
self, music_file, vocal_root=None, ins_root=None, format="flac"
): # 3个VR模型vocal和ins是反的
if ins_root is None and vocal_root is None:
return "No save root."
name = os.path.basename(music_file)
if ins_root is not None:
os.makedirs(ins_root, exist_ok=True)
if vocal_root is not None:
os.makedirs(vocal_root, exist_ok=True)
X_wave, y_wave, X_spec_s, y_spec_s = {}, {}, {}, {}
bands_n = len(self.mp.param["band"])
# print(bands_n)
for d in range(bands_n, 0, -1):
bp = self.mp.param["band"][d]
if d == bands_n: # high-end band
(
X_wave[d],
_,
) = librosa.core.load( # 理论上librosa读取可能对某些音频有bug应该上ffmpeg读取但是太麻烦了弃坑
music_file,
bp["sr"],
False,
dtype=np.float32,
res_type=bp["res_type"],
)
if X_wave[d].ndim == 1:
X_wave[d] = np.asfortranarray([X_wave[d], X_wave[d]])
else: # lower bands
X_wave[d] = librosa.core.resample(
X_wave[d + 1],
self.mp.param["band"][d + 1]["sr"],
bp["sr"],
res_type=bp["res_type"],
)
# Stft of wave source
X_spec_s[d] = spec_utils.wave_to_spectrogram_mt(
X_wave[d],
bp["hl"],
bp["n_fft"],
self.mp.param["mid_side"],
self.mp.param["mid_side_b2"],
self.mp.param["reverse"],
)
# pdb.set_trace()
if d == bands_n and self.data["high_end_process"] != "none":
input_high_end_h = (bp["n_fft"] // 2 - bp["crop_stop"]) + (
self.mp.param["pre_filter_stop"] - self.mp.param["pre_filter_start"]
)
input_high_end = X_spec_s[d][
:, bp["n_fft"] // 2 - input_high_end_h : bp["n_fft"] // 2, :
]
X_spec_m = spec_utils.combine_spectrograms(X_spec_s, self.mp)
aggresive_set = float(self.data["agg"] / 100)
aggressiveness = {
"value": aggresive_set,
"split_bin": self.mp.param["band"][1]["crop_stop"],
}
with torch.no_grad():
pred, X_mag, X_phase = inference(
X_spec_m, self.device, self.model, aggressiveness, self.data
)
# Postprocess
if self.data["postprocess"]:
pred_inv = np.clip(X_mag - pred, 0, np.inf)
pred = spec_utils.mask_silence(pred, pred_inv)
y_spec_m = pred * X_phase
v_spec_m = X_spec_m - y_spec_m
if ins_root is not None:
if self.data["high_end_process"].startswith("mirroring"):
input_high_end_ = spec_utils.mirroring(
self.data["high_end_process"], y_spec_m, input_high_end, self.mp
)
wav_instrument = spec_utils.cmb_spectrogram_to_wave(
y_spec_m, self.mp, input_high_end_h, input_high_end_
)
else:
wav_instrument = spec_utils.cmb_spectrogram_to_wave(y_spec_m, self.mp)
print("%s instruments done" % name)
if format in ["wav", "flac"]:
sf.write(
os.path.join(
ins_root,
"instrument_{}_{}.{}".format(name, self.data["agg"], format),
),
(np.array(wav_instrument) * 32768).astype("int16"),
self.mp.param["sr"],
) #
else:
path = os.path.join(
ins_root, "instrument_{}_{}.wav".format(name, self.data["agg"])
)
sf.write(
path,
(np.array(wav_instrument) * 32768).astype("int16"),
self.mp.param["sr"],
)
if os.path.exists(path):
os.system(
"ffmpeg -i %s -vn %s -q:a 2 -y"
% (path, path[:-4] + ".%s" % format)
)
if vocal_root is not None:
if self.data["high_end_process"].startswith("mirroring"):
input_high_end_ = spec_utils.mirroring(
self.data["high_end_process"], v_spec_m, input_high_end, self.mp
)
wav_vocals = spec_utils.cmb_spectrogram_to_wave(
v_spec_m, self.mp, input_high_end_h, input_high_end_
)
else:
wav_vocals = spec_utils.cmb_spectrogram_to_wave(v_spec_m, self.mp)
print("%s vocals done" % name)
if format in ["wav", "flac"]:
sf.write(
os.path.join(
vocal_root,
"vocal_{}_{}.{}".format(name, self.data["agg"], format),
),
(np.array(wav_vocals) * 32768).astype("int16"),
self.mp.param["sr"],
)
else:
path = os.path.join(
vocal_root, "vocal_{}_{}.wav".format(name, self.data["agg"])
)
sf.write(
path,
(np.array(wav_vocals) * 32768).astype("int16"),
self.mp.param["sr"],
)
if os.path.exists(path):
os.system(
"ffmpeg -i %s -vn %s -q:a 2 -y"
% (path, path[:-4] + ".%s" % format)
)