270 lines
10 KiB
Python
270 lines
10 KiB
Python
import faiss,torch,traceback,parselmouth,numpy as np,torchcrepe,torch.nn as nn,pyworld
|
|
from fairseq import checkpoint_utils
|
|
from lib.infer_pack.models import (
|
|
SynthesizerTrnMs256NSFsid,
|
|
SynthesizerTrnMs256NSFsid_nono,
|
|
SynthesizerTrnMs768NSFsid,
|
|
SynthesizerTrnMs768NSFsid_nono,
|
|
)
|
|
import os,sys
|
|
from time import time as ttime
|
|
import torch.nn.functional as F
|
|
import scipy.signal as signal
|
|
now_dir = os.getcwd()
|
|
sys.path.append(now_dir)
|
|
from config import Config
|
|
from multiprocessing import Manager as M
|
|
mm = M()
|
|
config = Config()
|
|
|
|
class RVC:
|
|
def __init__(
|
|
self, key, pth_path, index_path, index_rate, n_cpu,inp_q,opt_q,device
|
|
) -> None:
|
|
"""
|
|
初始化
|
|
"""
|
|
try:
|
|
global config
|
|
self.inp_q=inp_q
|
|
self.opt_q=opt_q
|
|
self.device=device
|
|
self.f0_up_key = key
|
|
self.time_step = 160 / 16000 * 1000
|
|
self.f0_min = 50
|
|
self.f0_max = 1100
|
|
self.f0_mel_min = 1127 * np.log(1 + self.f0_min / 700)
|
|
self.f0_mel_max = 1127 * np.log(1 + self.f0_max / 700)
|
|
self.sr = 16000
|
|
self.window = 160
|
|
self.n_cpu = n_cpu
|
|
if index_rate != 0:
|
|
self.index = faiss.read_index(index_path)
|
|
self.big_npy = self.index.reconstruct_n(0, self.index.ntotal)
|
|
print("index search enabled")
|
|
self.index_rate = index_rate
|
|
models, _, _ = checkpoint_utils.load_model_ensemble_and_task(
|
|
["hubert_base.pt"],
|
|
suffix="",
|
|
)
|
|
hubert_model = models[0]
|
|
hubert_model = hubert_model.to(config.device)
|
|
if config.is_half:
|
|
hubert_model = hubert_model.half()
|
|
else:
|
|
hubert_model = hubert_model.float()
|
|
hubert_model.eval()
|
|
self.model = hubert_model
|
|
cpt = torch.load(pth_path, map_location="cpu")
|
|
self.tgt_sr = cpt["config"][-1]
|
|
cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0]
|
|
self.if_f0 = cpt.get("f0", 1)
|
|
self.version = cpt.get("version", "v1")
|
|
if self.version == "v1":
|
|
if self.if_f0 == 1:
|
|
self.net_g = SynthesizerTrnMs256NSFsid(
|
|
*cpt["config"], is_half=config.is_half
|
|
)
|
|
else:
|
|
self.net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
|
|
elif self.version == "v2":
|
|
if self.if_f0 == 1:
|
|
self.net_g = SynthesizerTrnMs768NSFsid(
|
|
*cpt["config"], is_half=config.is_half
|
|
)
|
|
else:
|
|
self.net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"])
|
|
del self.net_g.enc_q
|
|
print(self.net_g.load_state_dict(cpt["weight"], strict=False))
|
|
self.net_g.eval().to(device)
|
|
if config.is_half:
|
|
self.net_g = self.net_g.half()
|
|
else:
|
|
self.net_g = self.net_g.float()
|
|
self.is_half=config.is_half
|
|
except:
|
|
print(traceback.format_exc())
|
|
|
|
def get_f0_post(self, f0):
|
|
f0_min = self.f0_min
|
|
f0_max = self.f0_max
|
|
f0_mel_min = 1127 * np.log(1 + f0_min / 700)
|
|
f0_mel_max = 1127 * np.log(1 + f0_max / 700)
|
|
f0bak = f0.copy()
|
|
f0_mel = 1127 * np.log(1 + f0 / 700)
|
|
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / (
|
|
f0_mel_max - f0_mel_min
|
|
) + 1
|
|
f0_mel[f0_mel <= 1] = 1
|
|
f0_mel[f0_mel > 255] = 255
|
|
f0_coarse = np.rint(f0_mel).astype(np.int)
|
|
return f0_coarse, f0bak
|
|
|
|
def get_f0(self, x, f0_up_key, n_cpu, method="harvest"):
|
|
n_cpu = int(n_cpu)
|
|
if (method == "crepe"): return self.get_f0_crepe(x, f0_up_key)
|
|
if (method == "rmvpe"): return self.get_f0_rmvpe(x, f0_up_key)
|
|
if (method == "pm"):
|
|
p_len = x.shape[0] // 160
|
|
f0 = (
|
|
parselmouth.Sound(x, 16000)
|
|
.to_pitch_ac(
|
|
time_step=0.01,
|
|
voicing_threshold=0.6,
|
|
pitch_floor=50,
|
|
pitch_ceiling=1100,
|
|
)
|
|
.selected_array["frequency"]
|
|
)
|
|
|
|
pad_size = (p_len - len(f0) + 1) // 2
|
|
if pad_size > 0 or p_len - len(f0) - pad_size > 0:
|
|
print(pad_size, p_len - len(f0) - pad_size)
|
|
f0 = np.pad(f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant")
|
|
|
|
f0 *= pow(2, f0_up_key / 12)
|
|
return self.get_f0_post(f0)
|
|
if (n_cpu == 1):
|
|
f0, t = pyworld.harvest(
|
|
x.astype(np.double),
|
|
fs=16000,
|
|
f0_ceil=1100,
|
|
f0_floor=50,
|
|
frame_period=10,
|
|
)
|
|
f0 = signal.medfilt(f0, 3)
|
|
f0 *= pow(2, f0_up_key / 12)
|
|
return self.get_f0_post(f0)
|
|
f0bak = np.zeros(x.shape[0] // 160, dtype=np.float64)
|
|
length = len(x)
|
|
part_length = int(length / n_cpu / 160) * 160
|
|
ts = ttime()
|
|
res_f0 = mm.dict()
|
|
for idx in range(n_cpu):
|
|
tail = part_length * (idx + 1) + 320
|
|
if (idx == 0):
|
|
self.inp_q.put((idx, x[:tail], res_f0, n_cpu, ts))
|
|
else:
|
|
self.inp_q.put((idx, x[part_length * idx - 320:tail], res_f0, n_cpu, ts))
|
|
while (1):
|
|
res_ts = self.opt_q.get()
|
|
if (res_ts == ts):
|
|
break
|
|
f0s = [i[1] for i in sorted(res_f0.items(), key=lambda x: x[0])]
|
|
for idx, f0 in enumerate(f0s):
|
|
if (idx == 0):
|
|
f0 = f0[:-3]
|
|
elif (idx != n_cpu - 1):
|
|
f0 = f0[2:-3]
|
|
else:
|
|
f0 = f0[2:-1]
|
|
f0bak[part_length * idx // 160:part_length * idx // 160 + f0.shape[0]] = f0
|
|
f0bak = signal.medfilt(f0bak, 3)
|
|
f0bak *= pow(2, f0_up_key / 12)
|
|
return self.get_f0_post(f0bak)
|
|
|
|
def get_f0_crepe(self, x, f0_up_key):
|
|
audio = torch.tensor(np.copy(x))[None].float()
|
|
f0, pd = torchcrepe.predict(
|
|
audio,
|
|
self.sr,
|
|
160,
|
|
self.f0_min,
|
|
self.f0_max,
|
|
"full",
|
|
batch_size=512,
|
|
device=self.device,
|
|
return_periodicity=True,
|
|
)
|
|
pd = torchcrepe.filter.median(pd, 3)
|
|
f0 = torchcrepe.filter.mean(f0, 3)
|
|
f0[pd < 0.1] = 0
|
|
f0 = f0[0].cpu().numpy()
|
|
f0 *= pow(2, f0_up_key / 12)
|
|
return self.get_f0_post(f0)
|
|
|
|
def get_f0_rmvpe(self, x, f0_up_key):
|
|
if (hasattr(self, "model_rmvpe") == False):
|
|
from rmvpe import RMVPE
|
|
print("loading rmvpe model")
|
|
self.model_rmvpe = RMVPE("rmvpe.pt", is_half=self.is_half, device=self.device)
|
|
# self.model_rmvpe = RMVPE("aug2_58000_half.pt", is_half=self.is_half, device=self.device)
|
|
f0 = self.model_rmvpe.infer_from_audio(x, thred=0.03)
|
|
f0 *= pow(2, f0_up_key / 12)
|
|
return self.get_f0_post(f0)
|
|
|
|
def infer(self, feats: torch.Tensor, indata: np.ndarray, rate1, rate2, cache_pitch, cache_pitchf, f0method) -> np.ndarray:
|
|
feats = feats.view(1, -1)
|
|
if config.is_half:
|
|
feats = feats.half()
|
|
else:
|
|
feats = feats.float()
|
|
feats = feats.to(self.device)
|
|
t1 = ttime()
|
|
with torch.no_grad():
|
|
padding_mask = torch.BoolTensor(feats.shape).to(self.device).fill_(False)
|
|
inputs = {
|
|
"source": feats,
|
|
"padding_mask": padding_mask,
|
|
"output_layer": 9 if self.version == "v1" else 12,
|
|
}
|
|
logits = self.model.extract_features(**inputs)
|
|
feats = self.model.final_proj(logits[0]) if self.version == "v1" else logits[0]
|
|
t2 = ttime()
|
|
try:
|
|
if (
|
|
hasattr(self, "index")
|
|
and self.index_rate != 0
|
|
):
|
|
leng_replace_head = int(rate1 * feats[0].shape[0])
|
|
npy = feats[0][-leng_replace_head:].cpu().numpy().astype("float32")
|
|
score, ix = self.index.search(npy, k=8)
|
|
weight = np.square(1 / score)
|
|
weight /= weight.sum(axis=1, keepdims=True)
|
|
npy = np.sum(self.big_npy[ix] * np.expand_dims(weight, axis=2), axis=1)
|
|
if config.is_half:
|
|
npy = npy.astype("float16")
|
|
feats[0][-leng_replace_head:] = (
|
|
torch.from_numpy(npy).unsqueeze(0).to(self.device) * self.index_rate
|
|
+ (1 - self.index_rate) * feats[0][-leng_replace_head:]
|
|
)
|
|
else:
|
|
print("index search FAIL or disabled")
|
|
except:
|
|
traceback.print_exc()
|
|
print("index search FAIL")
|
|
feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1)
|
|
t3 = ttime()
|
|
if self.if_f0 == 1:
|
|
pitch, pitchf = self.get_f0(indata, self.f0_up_key, self.n_cpu, f0method)
|
|
cache_pitch[:] = np.append(cache_pitch[pitch[:-1].shape[0]:], pitch[:-1])
|
|
cache_pitchf[:] = np.append(cache_pitchf[pitchf[:-1].shape[0]:], pitchf[:-1])
|
|
p_len = min(feats.shape[1], 13000, cache_pitch.shape[0])
|
|
else:
|
|
cache_pitch, cache_pitchf = None, None
|
|
p_len = min(feats.shape[1], 13000)
|
|
t4 = ttime()
|
|
feats = feats[:, :p_len, :]
|
|
if self.if_f0 == 1:
|
|
cache_pitch = cache_pitch[:p_len]
|
|
cache_pitchf = cache_pitchf[:p_len]
|
|
cache_pitch = torch.LongTensor(cache_pitch).unsqueeze(0).to(self.device)
|
|
cache_pitchf = torch.FloatTensor(cache_pitchf).unsqueeze(0).to(self.device)
|
|
p_len = torch.LongTensor([p_len]).to(self.device)
|
|
ii = 0 # sid
|
|
sid = torch.LongTensor([ii]).to(self.device)
|
|
with torch.no_grad():
|
|
if self.if_f0 == 1:
|
|
infered_audio = (
|
|
self.net_g.infer(feats, p_len, cache_pitch, cache_pitchf, sid, rate2)[0][0, 0]
|
|
.data.cpu()
|
|
.float()
|
|
)
|
|
else:
|
|
infered_audio = (
|
|
self.net_g.infer(feats, p_len, sid, rate2)[0][0, 0].data.cpu().float()
|
|
)
|
|
t5 = ttime()
|
|
print("time->fea-index-f0-model:", t2 - t1, t3 - t2, t4 - t3, t5 - t4)
|
|
return infered_audio
|