1
0
mirror of synced 2024-11-14 18:57:39 +01:00
Retrieval-based-Voice-Conve.../rvc_for_realtime.py
github-actions[bot] 76b67842ba
Format code (#989)
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2023-08-13 11:52:51 +08:00

320 lines
12 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import os, sys
import faiss, torch, traceback, parselmouth, numpy as np, torchcrepe, torch.nn as nn, pyworld
import fairseq
from lib.infer_pack.models import (
SynthesizerTrnMs256NSFsid,
SynthesizerTrnMs256NSFsid_nono,
SynthesizerTrnMs768NSFsid,
SynthesizerTrnMs768NSFsid_nono,
)
from time import time as ttime
import torch.nn.functional as F
import scipy.signal as signal
now_dir = os.getcwd()
sys.path.append(now_dir)
from config import Config
from multiprocessing import Manager as M
mm = M()
config = Config()
if config.dml == True:
def forward_dml(ctx, x, scale):
ctx.scale = scale
res = x.clone().detach()
return res
fairseq.modules.grad_multiply.GradMultiply.forward = forward_dml
# config.device=torch.device("cpu")########强制cpu测试
# config.is_half=False########强制cpu测试
class RVC:
def __init__(
self, key, pth_path, index_path, index_rate, n_cpu, inp_q, opt_q, device
) -> None:
"""
初始化
"""
try:
global config
self.inp_q = inp_q
self.opt_q = opt_q
# device="cpu"########强制cpu测试
self.device = device
self.f0_up_key = key
self.time_step = 160 / 16000 * 1000
self.f0_min = 50
self.f0_max = 1100
self.f0_mel_min = 1127 * np.log(1 + self.f0_min / 700)
self.f0_mel_max = 1127 * np.log(1 + self.f0_max / 700)
self.sr = 16000
self.window = 160
self.n_cpu = n_cpu
if index_rate != 0:
self.index = faiss.read_index(index_path)
self.big_npy = self.index.reconstruct_n(0, self.index.ntotal)
print("index search enabled")
self.index_rate = index_rate
models, _, _ = fairseq.checkpoint_utils.load_model_ensemble_and_task(
["hubert_base.pt"],
suffix="",
)
hubert_model = models[0]
hubert_model = hubert_model.to(config.device)
if config.is_half:
hubert_model = hubert_model.half()
else:
hubert_model = hubert_model.float()
hubert_model.eval()
self.model = hubert_model
cpt = torch.load(pth_path, map_location="cpu")
self.tgt_sr = cpt["config"][-1]
cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0]
self.if_f0 = cpt.get("f0", 1)
self.version = cpt.get("version", "v1")
if self.version == "v1":
if self.if_f0 == 1:
self.net_g = SynthesizerTrnMs256NSFsid(
*cpt["config"], is_half=config.is_half
)
else:
self.net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
elif self.version == "v2":
if self.if_f0 == 1:
self.net_g = SynthesizerTrnMs768NSFsid(
*cpt["config"], is_half=config.is_half
)
else:
self.net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"])
del self.net_g.enc_q
print(self.net_g.load_state_dict(cpt["weight"], strict=False))
self.net_g.eval().to(device)
# print(2333333333,device,config.device,self.device)#net_g是devicehubert是config.device
if config.is_half:
self.net_g = self.net_g.half()
else:
self.net_g = self.net_g.float()
self.is_half = config.is_half
except:
print(traceback.format_exc())
def get_f0_post(self, f0):
f0_min = self.f0_min
f0_max = self.f0_max
f0_mel_min = 1127 * np.log(1 + f0_min / 700)
f0_mel_max = 1127 * np.log(1 + f0_max / 700)
f0bak = f0.copy()
f0_mel = 1127 * np.log(1 + f0 / 700)
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / (
f0_mel_max - f0_mel_min
) + 1
f0_mel[f0_mel <= 1] = 1
f0_mel[f0_mel > 255] = 255
f0_coarse = np.rint(f0_mel).astype(np.int32)
return f0_coarse, f0bak
def get_f0(self, x, f0_up_key, n_cpu, method="harvest"):
n_cpu = int(n_cpu)
if method == "crepe":
return self.get_f0_crepe(x, f0_up_key)
if method == "rmvpe":
return self.get_f0_rmvpe(x, f0_up_key)
if method == "pm":
p_len = x.shape[0] // 160
f0 = (
parselmouth.Sound(x, 16000)
.to_pitch_ac(
time_step=0.01,
voicing_threshold=0.6,
pitch_floor=50,
pitch_ceiling=1100,
)
.selected_array["frequency"]
)
pad_size = (p_len - len(f0) + 1) // 2
if pad_size > 0 or p_len - len(f0) - pad_size > 0:
# print(pad_size, p_len - len(f0) - pad_size)
f0 = np.pad(
f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant"
)
f0 *= pow(2, f0_up_key / 12)
return self.get_f0_post(f0)
if n_cpu == 1:
f0, t = pyworld.harvest(
x.astype(np.double),
fs=16000,
f0_ceil=1100,
f0_floor=50,
frame_period=10,
)
f0 = signal.medfilt(f0, 3)
f0 *= pow(2, f0_up_key / 12)
return self.get_f0_post(f0)
f0bak = np.zeros(x.shape[0] // 160, dtype=np.float64)
length = len(x)
part_length = int(length / n_cpu / 160) * 160
ts = ttime()
res_f0 = mm.dict()
for idx in range(n_cpu):
tail = part_length * (idx + 1) + 320
if idx == 0:
self.inp_q.put((idx, x[:tail], res_f0, n_cpu, ts))
else:
self.inp_q.put(
(idx, x[part_length * idx - 320 : tail], res_f0, n_cpu, ts)
)
while 1:
res_ts = self.opt_q.get()
if res_ts == ts:
break
f0s = [i[1] for i in sorted(res_f0.items(), key=lambda x: x[0])]
for idx, f0 in enumerate(f0s):
if idx == 0:
f0 = f0[:-3]
elif idx != n_cpu - 1:
f0 = f0[2:-3]
else:
f0 = f0[2:-1]
f0bak[
part_length * idx // 160 : part_length * idx // 160 + f0.shape[0]
] = f0
f0bak = signal.medfilt(f0bak, 3)
f0bak *= pow(2, f0_up_key / 12)
return self.get_f0_post(f0bak)
def get_f0_crepe(self, x, f0_up_key):
if self.device.type == "privateuseone": ###不支持dmlcpu又太慢用不成拿pm顶替
return self.get_f0(x, f0_up_key, 1, "pm")
audio = torch.tensor(np.copy(x))[None].float()
# print("using crepe,device:%s"%self.device)
f0, pd = torchcrepe.predict(
audio,
self.sr,
160,
self.f0_min,
self.f0_max,
"full",
batch_size=512,
# device=self.device if self.device.type!="privateuseone" else "cpu",###crepe不用半精度全部是全精度所以不愁###cpu延迟高到没法用
device=self.device,
return_periodicity=True,
)
pd = torchcrepe.filter.median(pd, 3)
f0 = torchcrepe.filter.mean(f0, 3)
f0[pd < 0.1] = 0
f0 = f0[0].cpu().numpy()
f0 *= pow(2, f0_up_key / 12)
return self.get_f0_post(f0)
def get_f0_rmvpe(self, x, f0_up_key):
if hasattr(self, "model_rmvpe") == False:
from lib.rmvpe import RMVPE
print("loading rmvpe model")
self.model_rmvpe = RMVPE(
# "rmvpe.pt", is_half=self.is_half if self.device.type!="privateuseone" else False, device=self.device if self.device.type!="privateuseone"else "cpu"####dml时强制对rmvpe用cpu跑
# "rmvpe.pt", is_half=False, device=self.device####dml配置
# "rmvpe.pt", is_half=False, device="cpu"####锁定cpu配置
"rmvpe.pt",
is_half=self.is_half,
device=self.device, ####正常逻辑
)
# self.model_rmvpe = RMVPE("aug2_58000_half.pt", is_half=self.is_half, device=self.device)
f0 = self.model_rmvpe.infer_from_audio(x, thred=0.03)
f0 *= pow(2, f0_up_key / 12)
return self.get_f0_post(f0)
def infer(
self,
feats: torch.Tensor,
indata: np.ndarray,
rate1,
rate2,
cache_pitch,
cache_pitchf,
f0method,
) -> np.ndarray:
feats = feats.view(1, -1)
if config.is_half:
feats = feats.half()
else:
feats = feats.float()
feats = feats.to(self.device)
t1 = ttime()
with torch.no_grad():
padding_mask = torch.BoolTensor(feats.shape).to(self.device).fill_(False)
inputs = {
"source": feats,
"padding_mask": padding_mask,
"output_layer": 9 if self.version == "v1" else 12,
}
logits = self.model.extract_features(**inputs)
feats = (
self.model.final_proj(logits[0]) if self.version == "v1" else logits[0]
)
t2 = ttime()
try:
if hasattr(self, "index") and self.index_rate != 0:
leng_replace_head = int(rate1 * feats[0].shape[0])
npy = feats[0][-leng_replace_head:].cpu().numpy().astype("float32")
score, ix = self.index.search(npy, k=8)
weight = np.square(1 / score)
weight /= weight.sum(axis=1, keepdims=True)
npy = np.sum(self.big_npy[ix] * np.expand_dims(weight, axis=2), axis=1)
if config.is_half:
npy = npy.astype("float16")
feats[0][-leng_replace_head:] = (
torch.from_numpy(npy).unsqueeze(0).to(self.device) * self.index_rate
+ (1 - self.index_rate) * feats[0][-leng_replace_head:]
)
else:
print("index search FAIL or disabled")
except:
traceback.print_exc()
print("index search FAIL")
feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1)
t3 = ttime()
if self.if_f0 == 1:
pitch, pitchf = self.get_f0(indata, self.f0_up_key, self.n_cpu, f0method)
cache_pitch[:] = np.append(cache_pitch[pitch[:-1].shape[0] :], pitch[:-1])
cache_pitchf[:] = np.append(
cache_pitchf[pitchf[:-1].shape[0] :], pitchf[:-1]
)
p_len = min(feats.shape[1], 13000, cache_pitch.shape[0])
else:
cache_pitch, cache_pitchf = None, None
p_len = min(feats.shape[1], 13000)
t4 = ttime()
feats = feats[:, :p_len, :]
if self.if_f0 == 1:
cache_pitch = cache_pitch[:p_len]
cache_pitchf = cache_pitchf[:p_len]
cache_pitch = torch.LongTensor(cache_pitch).unsqueeze(0).to(self.device)
cache_pitchf = torch.FloatTensor(cache_pitchf).unsqueeze(0).to(self.device)
p_len = torch.LongTensor([p_len]).to(self.device)
ii = 0 # sid
sid = torch.LongTensor([ii]).to(self.device)
with torch.no_grad():
if self.if_f0 == 1:
# print(12222222222,feats.device,p_len.device,cache_pitch.device,cache_pitchf.device,sid.device,rate2)
infered_audio = (
self.net_g.infer(
feats, p_len, cache_pitch, cache_pitchf, sid, rate2
)[0][0, 0]
.data.cpu()
.float()
)
else:
infered_audio = (
self.net_g.infer(feats, p_len, sid, rate2)[0][0, 0]
.data.cpu()
.float()
)
t5 = ttime()
print("time->fea-index-f0-model:", t2 - t1, t3 - t2, t4 - t3, t5 - t4)
return infered_audio