1
0
mirror of synced 2024-11-30 18:24:32 +01:00
Retrieval-based-Voice-Conve.../vc_infer_pipeline.py
github-actions[bot] e435b3bb8a
Format code (#366)
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2023-05-28 16:06:11 +00:00

432 lines
15 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import numpy as np, parselmouth, torch, pdb
from time import time as ttime
import torch.nn.functional as F
import scipy.signal as signal
import pyworld, os, traceback, faiss, librosa, torchcrepe
from scipy import signal
from functools import lru_cache
bh, ah = signal.butter(N=5, Wn=48, btype="high", fs=16000)
input_audio_path2wav = {}
@lru_cache
def cache_harvest_f0(input_audio_path, fs, f0max, f0min, frame_period):
audio = input_audio_path2wav[input_audio_path]
f0, t = pyworld.harvest(
audio,
fs=fs,
f0_ceil=f0max,
f0_floor=f0min,
frame_period=frame_period,
)
f0 = pyworld.stonemask(audio, f0, t, fs)
return f0
def change_rms(data1, sr1, data2, sr2, rate): # 1是输入音频2是输出音频,rate是2的占比
# print(data1.max(),data2.max())
rms1 = librosa.feature.rms(
y=data1, frame_length=sr1 // 2 * 2, hop_length=sr1 // 2
) # 每半秒一个点
rms2 = librosa.feature.rms(y=data2, frame_length=sr2 // 2 * 2, hop_length=sr2 // 2)
rms1 = torch.from_numpy(rms1)
rms1 = F.interpolate(
rms1.unsqueeze(0), size=data2.shape[0], mode="linear"
).squeeze()
rms2 = torch.from_numpy(rms2)
rms2 = F.interpolate(
rms2.unsqueeze(0), size=data2.shape[0], mode="linear"
).squeeze()
rms2 = torch.max(rms2, torch.zeros_like(rms2) + 1e-6)
data2 *= (
torch.pow(rms1, torch.tensor(1 - rate))
* torch.pow(rms2, torch.tensor(rate - 1))
).numpy()
return data2
class VC(object):
def __init__(self, tgt_sr, config):
self.x_pad, self.x_query, self.x_center, self.x_max, self.is_half = (
config.x_pad,
config.x_query,
config.x_center,
config.x_max,
config.is_half,
)
self.sr = 16000 # hubert输入采样率
self.window = 160 # 每帧点数
self.t_pad = self.sr * self.x_pad # 每条前后pad时间
self.t_pad_tgt = tgt_sr * self.x_pad
self.t_pad2 = self.t_pad * 2
self.t_query = self.sr * self.x_query # 查询切点前后查询时间
self.t_center = self.sr * self.x_center # 查询切点位置
self.t_max = self.sr * self.x_max # 免查询时长阈值
self.device = config.device
def get_f0(
self,
input_audio_path,
x,
p_len,
f0_up_key,
f0_method,
filter_radius,
inp_f0=None,
):
global input_audio_path2wav
time_step = self.window / self.sr * 1000
f0_min = 50
f0_max = 1100
f0_mel_min = 1127 * np.log(1 + f0_min / 700)
f0_mel_max = 1127 * np.log(1 + f0_max / 700)
if f0_method == "pm":
f0 = (
parselmouth.Sound(x, self.sr)
.to_pitch_ac(
time_step=time_step / 1000,
voicing_threshold=0.6,
pitch_floor=f0_min,
pitch_ceiling=f0_max,
)
.selected_array["frequency"]
)
pad_size = (p_len - len(f0) + 1) // 2
if pad_size > 0 or p_len - len(f0) - pad_size > 0:
f0 = np.pad(
f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant"
)
elif f0_method == "harvest":
input_audio_path2wav[input_audio_path] = x.astype(np.double)
f0 = cache_harvest_f0(input_audio_path, self.sr, f0_max, f0_min, 10)
if filter_radius > 2:
f0 = signal.medfilt(f0, 3)
elif f0_method == "crepe":
model = "full"
# Pick a batch size that doesn't cause memory errors on your gpu
batch_size = 512
# Compute pitch using first gpu
audio = torch.tensor(np.copy(x))[None].float()
f0, pd = torchcrepe.predict(
audio,
self.sr,
self.window,
f0_min,
f0_max,
model,
batch_size=batch_size,
device=self.device,
return_periodicity=True,
)
pd = torchcrepe.filter.median(pd, 3)
f0 = torchcrepe.filter.mean(f0, 3)
f0[pd < 0.1] = 0
f0 = f0[0].cpu().numpy()
f0 *= pow(2, f0_up_key / 12)
# with open("test.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
tf0 = self.sr // self.window # 每秒f0点数
if inp_f0 is not None:
delta_t = np.round(
(inp_f0[:, 0].max() - inp_f0[:, 0].min()) * tf0 + 1
).astype("int16")
replace_f0 = np.interp(
list(range(delta_t)), inp_f0[:, 0] * 100, inp_f0[:, 1]
)
shape = f0[self.x_pad * tf0 : self.x_pad * tf0 + len(replace_f0)].shape[0]
f0[self.x_pad * tf0 : self.x_pad * tf0 + len(replace_f0)] = replace_f0[
:shape
]
# with open("test_opt.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
f0bak = f0.copy()
f0_mel = 1127 * np.log(1 + f0 / 700)
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / (
f0_mel_max - f0_mel_min
) + 1
f0_mel[f0_mel <= 1] = 1
f0_mel[f0_mel > 255] = 255
f0_coarse = np.rint(f0_mel).astype(np.int)
return f0_coarse, f0bak # 1-0
def vc(
self,
model,
net_g,
sid,
audio0,
pitch,
pitchf,
times,
index,
big_npy,
index_rate,
version,
protect,
): # ,file_index,file_big_npy
feats = torch.from_numpy(audio0)
if self.is_half:
feats = feats.half()
else:
feats = feats.float()
if feats.dim() == 2: # double channels
feats = feats.mean(-1)
assert feats.dim() == 1, feats.dim()
feats = feats.view(1, -1)
padding_mask = torch.BoolTensor(feats.shape).to(self.device).fill_(False)
inputs = {
"source": feats.to(self.device),
"padding_mask": padding_mask,
"output_layer": 9 if version == "v1" else 12,
}
t0 = ttime()
with torch.no_grad():
logits = model.extract_features(**inputs)
feats = model.final_proj(logits[0]) if version == "v1" else logits[0]
if protect < 0.5:
feats0 = feats.clone()
if (
isinstance(index, type(None)) == False
and isinstance(big_npy, type(None)) == False
and index_rate != 0
):
npy = feats[0].cpu().numpy()
if self.is_half:
npy = npy.astype("float32")
# _, I = index.search(npy, 1)
# npy = big_npy[I.squeeze()]
score, ix = index.search(npy, k=8)
weight = np.square(1 / score)
weight /= weight.sum(axis=1, keepdims=True)
npy = np.sum(big_npy[ix] * np.expand_dims(weight, axis=2), axis=1)
if self.is_half:
npy = npy.astype("float16")
feats = (
torch.from_numpy(npy).unsqueeze(0).to(self.device) * index_rate
+ (1 - index_rate) * feats
)
feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1)
if protect < 0.5:
feats0 = F.interpolate(feats0.permute(0, 2, 1), scale_factor=2).permute(
0, 2, 1
)
t1 = ttime()
p_len = audio0.shape[0] // self.window
if feats.shape[1] < p_len:
p_len = feats.shape[1]
if pitch != None and pitchf != None:
pitch = pitch[:, :p_len]
pitchf = pitchf[:, :p_len]
if protect < 0.5:
pitchff = pitchf.clone()
pitchff[pitchf > 0] = 1
pitchff[pitchf < 1] = protect
pitchff = pitchff.unsqueeze(-1)
feats = feats * pitchff + feats0 * (1 - pitchff)
feats = feats.to(feats0.dtype)
p_len = torch.tensor([p_len], device=self.device).long()
with torch.no_grad():
if pitch != None and pitchf != None:
audio1 = (
(net_g.infer(feats, p_len, pitch, pitchf, sid)[0][0, 0])
.data.cpu()
.float()
.numpy()
)
else:
audio1 = (
(net_g.infer(feats, p_len, sid)[0][0, 0]).data.cpu().float().numpy()
)
del feats, p_len, padding_mask
if torch.cuda.is_available():
torch.cuda.empty_cache()
t2 = ttime()
times[0] += t1 - t0
times[2] += t2 - t1
return audio1
def pipeline(
self,
model,
net_g,
sid,
audio,
input_audio_path,
times,
f0_up_key,
f0_method,
file_index,
# file_big_npy,
index_rate,
if_f0,
filter_radius,
tgt_sr,
resample_sr,
rms_mix_rate,
version,
protect,
f0_file=None,
):
if (
file_index != ""
# and file_big_npy != ""
# and os.path.exists(file_big_npy) == True
and os.path.exists(file_index) == True
and index_rate != 0
):
try:
index = faiss.read_index(file_index)
# big_npy = np.load(file_big_npy)
big_npy = index.reconstruct_n(0, index.ntotal)
except:
traceback.print_exc()
index = big_npy = None
else:
index = big_npy = None
audio = signal.filtfilt(bh, ah, audio)
audio_pad = np.pad(audio, (self.window // 2, self.window // 2), mode="reflect")
opt_ts = []
if audio_pad.shape[0] > self.t_max:
audio_sum = np.zeros_like(audio)
for i in range(self.window):
audio_sum += audio_pad[i : i - self.window]
for t in range(self.t_center, audio.shape[0], self.t_center):
opt_ts.append(
t
- self.t_query
+ np.where(
np.abs(audio_sum[t - self.t_query : t + self.t_query])
== np.abs(audio_sum[t - self.t_query : t + self.t_query]).min()
)[0][0]
)
s = 0
audio_opt = []
t = None
t1 = ttime()
audio_pad = np.pad(audio, (self.t_pad, self.t_pad), mode="reflect")
p_len = audio_pad.shape[0] // self.window
inp_f0 = None
if hasattr(f0_file, "name") == True:
try:
with open(f0_file.name, "r") as f:
lines = f.read().strip("\n").split("\n")
inp_f0 = []
for line in lines:
inp_f0.append([float(i) for i in line.split(",")])
inp_f0 = np.array(inp_f0, dtype="float32")
except:
traceback.print_exc()
sid = torch.tensor(sid, device=self.device).unsqueeze(0).long()
pitch, pitchf = None, None
if if_f0 == 1:
pitch, pitchf = self.get_f0(
input_audio_path,
audio_pad,
p_len,
f0_up_key,
f0_method,
filter_radius,
inp_f0,
)
pitch = pitch[:p_len]
pitchf = pitchf[:p_len]
if self.device == "mps":
pitchf = pitchf.astype(np.float32)
pitch = torch.tensor(pitch, device=self.device).unsqueeze(0).long()
pitchf = torch.tensor(pitchf, device=self.device).unsqueeze(0).float()
t2 = ttime()
times[1] += t2 - t1
for t in opt_ts:
t = t // self.window * self.window
if if_f0 == 1:
audio_opt.append(
self.vc(
model,
net_g,
sid,
audio_pad[s : t + self.t_pad2 + self.window],
pitch[:, s // self.window : (t + self.t_pad2) // self.window],
pitchf[:, s // self.window : (t + self.t_pad2) // self.window],
times,
index,
big_npy,
index_rate,
version,
protect,
)[self.t_pad_tgt : -self.t_pad_tgt]
)
else:
audio_opt.append(
self.vc(
model,
net_g,
sid,
audio_pad[s : t + self.t_pad2 + self.window],
None,
None,
times,
index,
big_npy,
index_rate,
version,
protect,
)[self.t_pad_tgt : -self.t_pad_tgt]
)
s = t
if if_f0 == 1:
audio_opt.append(
self.vc(
model,
net_g,
sid,
audio_pad[t:],
pitch[:, t // self.window :] if t is not None else pitch,
pitchf[:, t // self.window :] if t is not None else pitchf,
times,
index,
big_npy,
index_rate,
version,
protect,
)[self.t_pad_tgt : -self.t_pad_tgt]
)
else:
audio_opt.append(
self.vc(
model,
net_g,
sid,
audio_pad[t:],
None,
None,
times,
index,
big_npy,
index_rate,
version,
protect,
)[self.t_pad_tgt : -self.t_pad_tgt]
)
audio_opt = np.concatenate(audio_opt)
if rms_mix_rate != 1:
audio_opt = change_rms(audio, 16000, audio_opt, tgt_sr, rms_mix_rate)
if resample_sr >= 16000 and tgt_sr != resample_sr:
audio_opt = librosa.resample(
audio_opt, orig_sr=tgt_sr, target_sr=resample_sr
)
audio_max = np.abs(audio_opt).max() / 0.99
max_int16 = 32768
if audio_max > 1:
max_int16 /= audio_max
audio_opt = (audio_opt * max_int16).astype(np.int16)
del pitch, pitchf, sid
if torch.cuda.is_available():
torch.cuda.empty_cache()
return audio_opt