1
0
mirror of synced 2025-01-07 12:01:45 +01:00
Retrieval-based-Voice-Conve.../infer/lib/infer_pack/attentions.py
github-actions[bot] e9dd11bddb
chore(sync): merge dev into main (#1379)
* Optimize latency (#1259)

* add attribute:   configs/config.py
	Optimize latency:   tools/rvc_for_realtime.py

* new file:   assets/Synthesizer_inputs.pth

* fix:   configs/config.py
	fix:   tools/rvc_for_realtime.py

* fix bug:   infer/lib/infer_pack/models.py

* new file:   assets/hubert_inputs.pth
	new file:   assets/rmvpe_inputs.pth
	modified:   configs/config.py
	new features:   infer/lib/rmvpe.py
	new features:   tools/jit_export/__init__.py
	new features:   tools/jit_export/get_hubert.py
	new features:   tools/jit_export/get_rmvpe.py
	new features:   tools/jit_export/get_synthesizer.py
	optimize:   tools/rvc_for_realtime.py

* optimize:   tools/jit_export/get_synthesizer.py
	fix bug:   tools/jit_export/__init__.py

* Fixed a bug caused by using half on the CPU:   infer/lib/rmvpe.py
	Fixed a bug caused by using half on the CPU:   tools/jit_export/__init__.py
	Fixed CIRCULAR IMPORT:   tools/jit_export/get_rmvpe.py
	Fixed CIRCULAR IMPORT:   tools/jit_export/get_synthesizer.py
	Fixed a bug caused by using half on the CPU:   tools/rvc_for_realtime.py

* Remove useless code:   infer/lib/rmvpe.py

* Delete gui_v1 copy.py

* Delete .vscode/launch.json

* Delete jit_export_test.py

* Delete tools/rvc_for_realtime copy.py

* Delete configs/config.json

* Delete .gitignore

* Fix exceptions caused by switching inference devices:   infer/lib/rmvpe.py
	Fix exceptions caused by switching inference devices:   tools/jit_export/__init__.py
	Fix exceptions caused by switching inference devices:   tools/rvc_for_realtime.py

* restore

* replace(you can undo this commit)

* remove debug_print

---------

Co-authored-by: Ftps <ftpsflandre@gmail.com>

* Fixed some bugs when exporting ONNX model (#1254)

* fix import (#1280)

* fix import

* lint

* 🎨 同步 locale (#1242)

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>

* Fix jit load and import issue (#1282)

* fix jit model loading :   infer/lib/rmvpe.py

* modified:   assets/hubert/.gitignore
	move file:    assets/hubert_inputs.pth -> assets/hubert/hubert_inputs.pth
	modified:   assets/rmvpe/.gitignore
	move file:    assets/rmvpe_inputs.pth -> assets/rmvpe/rmvpe_inputs.pth
	fix import:   gui_v1.py

* feat(workflow): trigger on dev

* feat(workflow): add close-pr on non-dev branch

* Add input wav and delay time monitor for real-time gui (#1293)

* feat(workflow): trigger on dev

* feat(workflow): add close-pr on non-dev branch

* 🎨 同步 locale (#1289)

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>

* feat: edit PR template

* add input wav and delay time monitor

---------

Co-authored-by: 源文雨 <41315874+fumiama@users.noreply.github.com>
Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
Co-authored-by: RVC-Boss <129054828+RVC-Boss@users.noreply.github.com>

* Optimize latency using scripted jit (#1291)

* feat(workflow): trigger on dev

* feat(workflow): add close-pr on non-dev branch

* 🎨 同步 locale (#1289)

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>

* feat: edit PR template

* Optimize-latency-using-scripted:   configs/config.py
	Optimize-latency-using-scripted:   infer/lib/infer_pack/attentions.py
	Optimize-latency-using-scripted:   infer/lib/infer_pack/commons.py
	Optimize-latency-using-scripted:   infer/lib/infer_pack/models.py
	Optimize-latency-using-scripted:   infer/lib/infer_pack/modules.py
	Optimize-latency-using-scripted:   infer/lib/jit/__init__.py
	Optimize-latency-using-scripted:   infer/lib/jit/get_hubert.py
	Optimize-latency-using-scripted:   infer/lib/jit/get_rmvpe.py
	Optimize-latency-using-scripted:   infer/lib/jit/get_synthesizer.py
	Optimize-latency-using-scripted:   infer/lib/rmvpe.py
	Optimize-latency-using-scripted:   tools/rvc_for_realtime.py

* modified:   infer/lib/infer_pack/models.py

* fix some bug:   configs/config.py
	fix some bug:   infer/lib/infer_pack/models.py
	fix some bug:   infer/lib/rmvpe.py

* Fixed abnormal reference of logger in multiprocessing:   infer/modules/train/train.py

---------

Co-authored-by: 源文雨 <41315874+fumiama@users.noreply.github.com>
Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>

* Format code (#1298)

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>

* 🎨 同步 locale (#1299)

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>

* feat: optimize actions

* feat(workflow): add sync dev

* feat: optimize actions

* feat: optimize actions

* feat: optimize actions

* feat: optimize actions

* feat: add jit options (#1303)

Delete useless code:   infer/lib/jit/get_synthesizer.py
	Optimized code:   tools/rvc_for_realtime.py

* Code refactor + re-design inference ui (#1304)

* Code refacor + re-design inference ui

* Fix tabname

* i18n jp

---------

Co-authored-by: Ftps <ftpsflandre@gmail.com>

* feat: optimize actions

* feat: optimize actions

* Update README & en_US locale file (#1309)

* critical: some bug fixes (#1322)

* JIT acceleration switch does not support hot update

* fix padding bug of rmvpe in torch-directml

* fix padding bug of rmvpe in torch-directml

* Fix STFT under torch_directml (#1330)

* chore(format): run black on dev (#1318)

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>

* chore(i18n): sync locale on dev (#1317)

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>

* feat: allow for tta to be passed to uvr (#1361)

* chore(format): run black on dev (#1373)

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>

* Added script for automatically download all needed models at install (#1366)

* Delete modules.py

* Add files via upload

* Add files via upload

* Add files via upload

* Add files via upload

* chore(i18n): sync locale on dev (#1377)

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>

* chore(format): run black on dev (#1376)

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>

* Update IPEX library (#1362)

* Update IPEX library

* Update ipex index

* chore(format): run black on dev (#1378)

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>

---------

Co-authored-by: Chengjia Jiang <46401978+ChasonJiang@users.noreply.github.com>
Co-authored-by: Ftps <ftpsflandre@gmail.com>
Co-authored-by: shizuku_nia <102004222+ShizukuNia@users.noreply.github.com>
Co-authored-by: Ftps <63702646+Tps-F@users.noreply.github.com>
Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
Co-authored-by: 源文雨 <41315874+fumiama@users.noreply.github.com>
Co-authored-by: yxlllc <33565655+yxlllc@users.noreply.github.com>
Co-authored-by: RVC-Boss <129054828+RVC-Boss@users.noreply.github.com>
Co-authored-by: Blaise <133521603+blaise-tk@users.noreply.github.com>
Co-authored-by: Rice Cake <gak141808@gmail.com>
Co-authored-by: AWAS666 <33494149+AWAS666@users.noreply.github.com>
Co-authored-by: Dmitry <nda2911@yandex.ru>
Co-authored-by: Disty0 <47277141+Disty0@users.noreply.github.com>
2023-10-06 17:14:33 +08:00

460 lines
16 KiB
Python

import copy
import math
from typing import Optional
import numpy as np
import torch
from torch import nn
from torch.nn import functional as F
from infer.lib.infer_pack import commons, modules
from infer.lib.infer_pack.modules import LayerNorm
class Encoder(nn.Module):
def __init__(
self,
hidden_channels,
filter_channels,
n_heads,
n_layers,
kernel_size=1,
p_dropout=0.0,
window_size=10,
**kwargs
):
super(Encoder, self).__init__()
self.hidden_channels = hidden_channels
self.filter_channels = filter_channels
self.n_heads = n_heads
self.n_layers = int(n_layers)
self.kernel_size = kernel_size
self.p_dropout = p_dropout
self.window_size = window_size
self.drop = nn.Dropout(p_dropout)
self.attn_layers = nn.ModuleList()
self.norm_layers_1 = nn.ModuleList()
self.ffn_layers = nn.ModuleList()
self.norm_layers_2 = nn.ModuleList()
for i in range(self.n_layers):
self.attn_layers.append(
MultiHeadAttention(
hidden_channels,
hidden_channels,
n_heads,
p_dropout=p_dropout,
window_size=window_size,
)
)
self.norm_layers_1.append(LayerNorm(hidden_channels))
self.ffn_layers.append(
FFN(
hidden_channels,
hidden_channels,
filter_channels,
kernel_size,
p_dropout=p_dropout,
)
)
self.norm_layers_2.append(LayerNorm(hidden_channels))
def forward(self, x, x_mask):
attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
x = x * x_mask
zippep = zip(
self.attn_layers, self.norm_layers_1, self.ffn_layers, self.norm_layers_2
)
for attn_layers, norm_layers_1, ffn_layers, norm_layers_2 in zippep:
y = attn_layers(x, x, attn_mask)
y = self.drop(y)
x = norm_layers_1(x + y)
y = ffn_layers(x, x_mask)
y = self.drop(y)
x = norm_layers_2(x + y)
x = x * x_mask
return x
class Decoder(nn.Module):
def __init__(
self,
hidden_channels,
filter_channels,
n_heads,
n_layers,
kernel_size=1,
p_dropout=0.0,
proximal_bias=False,
proximal_init=True,
**kwargs
):
super(Decoder, self).__init__()
self.hidden_channels = hidden_channels
self.filter_channels = filter_channels
self.n_heads = n_heads
self.n_layers = n_layers
self.kernel_size = kernel_size
self.p_dropout = p_dropout
self.proximal_bias = proximal_bias
self.proximal_init = proximal_init
self.drop = nn.Dropout(p_dropout)
self.self_attn_layers = nn.ModuleList()
self.norm_layers_0 = nn.ModuleList()
self.encdec_attn_layers = nn.ModuleList()
self.norm_layers_1 = nn.ModuleList()
self.ffn_layers = nn.ModuleList()
self.norm_layers_2 = nn.ModuleList()
for i in range(self.n_layers):
self.self_attn_layers.append(
MultiHeadAttention(
hidden_channels,
hidden_channels,
n_heads,
p_dropout=p_dropout,
proximal_bias=proximal_bias,
proximal_init=proximal_init,
)
)
self.norm_layers_0.append(LayerNorm(hidden_channels))
self.encdec_attn_layers.append(
MultiHeadAttention(
hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout
)
)
self.norm_layers_1.append(LayerNorm(hidden_channels))
self.ffn_layers.append(
FFN(
hidden_channels,
hidden_channels,
filter_channels,
kernel_size,
p_dropout=p_dropout,
causal=True,
)
)
self.norm_layers_2.append(LayerNorm(hidden_channels))
def forward(self, x, x_mask, h, h_mask):
"""
x: decoder input
h: encoder output
"""
self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(
device=x.device, dtype=x.dtype
)
encdec_attn_mask = h_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
x = x * x_mask
for i in range(self.n_layers):
y = self.self_attn_layers[i](x, x, self_attn_mask)
y = self.drop(y)
x = self.norm_layers_0[i](x + y)
y = self.encdec_attn_layers[i](x, h, encdec_attn_mask)
y = self.drop(y)
x = self.norm_layers_1[i](x + y)
y = self.ffn_layers[i](x, x_mask)
y = self.drop(y)
x = self.norm_layers_2[i](x + y)
x = x * x_mask
return x
class MultiHeadAttention(nn.Module):
def __init__(
self,
channels,
out_channels,
n_heads,
p_dropout=0.0,
window_size=None,
heads_share=True,
block_length=None,
proximal_bias=False,
proximal_init=False,
):
super(MultiHeadAttention, self).__init__()
assert channels % n_heads == 0
self.channels = channels
self.out_channels = out_channels
self.n_heads = n_heads
self.p_dropout = p_dropout
self.window_size = window_size
self.heads_share = heads_share
self.block_length = block_length
self.proximal_bias = proximal_bias
self.proximal_init = proximal_init
self.attn = None
self.k_channels = channels // n_heads
self.conv_q = nn.Conv1d(channels, channels, 1)
self.conv_k = nn.Conv1d(channels, channels, 1)
self.conv_v = nn.Conv1d(channels, channels, 1)
self.conv_o = nn.Conv1d(channels, out_channels, 1)
self.drop = nn.Dropout(p_dropout)
if window_size is not None:
n_heads_rel = 1 if heads_share else n_heads
rel_stddev = self.k_channels**-0.5
self.emb_rel_k = nn.Parameter(
torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels)
* rel_stddev
)
self.emb_rel_v = nn.Parameter(
torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels)
* rel_stddev
)
nn.init.xavier_uniform_(self.conv_q.weight)
nn.init.xavier_uniform_(self.conv_k.weight)
nn.init.xavier_uniform_(self.conv_v.weight)
if proximal_init:
with torch.no_grad():
self.conv_k.weight.copy_(self.conv_q.weight)
self.conv_k.bias.copy_(self.conv_q.bias)
def forward(
self, x: torch.Tensor, c: torch.Tensor, attn_mask: Optional[torch.Tensor] = None
):
q = self.conv_q(x)
k = self.conv_k(c)
v = self.conv_v(c)
x, _ = self.attention(q, k, v, mask=attn_mask)
x = self.conv_o(x)
return x
def attention(
self,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
mask: Optional[torch.Tensor] = None,
):
# reshape [b, d, t] -> [b, n_h, t, d_k]
b, d, t_s = key.size()
t_t = query.size(2)
query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3)
key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
scores = torch.matmul(query / math.sqrt(self.k_channels), key.transpose(-2, -1))
if self.window_size is not None:
assert (
t_s == t_t
), "Relative attention is only available for self-attention."
key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s)
rel_logits = self._matmul_with_relative_keys(
query / math.sqrt(self.k_channels), key_relative_embeddings
)
scores_local = self._relative_position_to_absolute_position(rel_logits)
scores = scores + scores_local
if self.proximal_bias:
assert t_s == t_t, "Proximal bias is only available for self-attention."
scores = scores + self._attention_bias_proximal(t_s).to(
device=scores.device, dtype=scores.dtype
)
if mask is not None:
scores = scores.masked_fill(mask == 0, -1e4)
if self.block_length is not None:
assert (
t_s == t_t
), "Local attention is only available for self-attention."
block_mask = (
torch.ones_like(scores)
.triu(-self.block_length)
.tril(self.block_length)
)
scores = scores.masked_fill(block_mask == 0, -1e4)
p_attn = F.softmax(scores, dim=-1) # [b, n_h, t_t, t_s]
p_attn = self.drop(p_attn)
output = torch.matmul(p_attn, value)
if self.window_size is not None:
relative_weights = self._absolute_position_to_relative_position(p_attn)
value_relative_embeddings = self._get_relative_embeddings(
self.emb_rel_v, t_s
)
output = output + self._matmul_with_relative_values(
relative_weights, value_relative_embeddings
)
output = (
output.transpose(2, 3).contiguous().view(b, d, t_t)
) # [b, n_h, t_t, d_k] -> [b, d, t_t]
return output, p_attn
def _matmul_with_relative_values(self, x, y):
"""
x: [b, h, l, m]
y: [h or 1, m, d]
ret: [b, h, l, d]
"""
ret = torch.matmul(x, y.unsqueeze(0))
return ret
def _matmul_with_relative_keys(self, x, y):
"""
x: [b, h, l, d]
y: [h or 1, m, d]
ret: [b, h, l, m]
"""
ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1))
return ret
def _get_relative_embeddings(self, relative_embeddings, length: int):
max_relative_position = 2 * self.window_size + 1
# Pad first before slice to avoid using cond ops.
pad_length: int = max(length - (self.window_size + 1), 0)
slice_start_position = max((self.window_size + 1) - length, 0)
slice_end_position = slice_start_position + 2 * length - 1
if pad_length > 0:
padded_relative_embeddings = F.pad(
relative_embeddings,
# commons.convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]]),
[0, 0, pad_length, pad_length, 0, 0],
)
else:
padded_relative_embeddings = relative_embeddings
used_relative_embeddings = padded_relative_embeddings[
:, slice_start_position:slice_end_position
]
return used_relative_embeddings
def _relative_position_to_absolute_position(self, x):
"""
x: [b, h, l, 2*l-1]
ret: [b, h, l, l]
"""
batch, heads, length, _ = x.size()
# Concat columns of pad to shift from relative to absolute indexing.
x = F.pad(
x,
# commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, 1]])
[0, 1, 0, 0, 0, 0, 0, 0],
)
# Concat extra elements so to add up to shape (len+1, 2*len-1).
x_flat = x.view([batch, heads, length * 2 * length])
x_flat = F.pad(
x_flat,
# commons.convert_pad_shape([[0, 0], [0, 0], [0, int(length) - 1]])
[0, int(length) - 1, 0, 0, 0, 0],
)
# Reshape and slice out the padded elements.
x_final = x_flat.view([batch, heads, length + 1, 2 * length - 1])[
:, :, :length, length - 1 :
]
return x_final
def _absolute_position_to_relative_position(self, x):
"""
x: [b, h, l, l]
ret: [b, h, l, 2*l-1]
"""
batch, heads, length, _ = x.size()
# padd along column
x = F.pad(
x,
# commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, int(length) - 1]])
[0, int(length) - 1, 0, 0, 0, 0, 0, 0],
)
x_flat = x.view([batch, heads, int(length**2) + int(length * (length - 1))])
# add 0's in the beginning that will skew the elements after reshape
x_flat = F.pad(
x_flat,
# commons.convert_pad_shape([[0, 0], [0, 0], [int(length), 0]])
[length, 0, 0, 0, 0, 0],
)
x_final = x_flat.view([batch, heads, length, 2 * length])[:, :, :, 1:]
return x_final
def _attention_bias_proximal(self, length: int):
"""Bias for self-attention to encourage attention to close positions.
Args:
length: an integer scalar.
Returns:
a Tensor with shape [1, 1, length, length]
"""
r = torch.arange(length, dtype=torch.float32)
diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0)
class FFN(nn.Module):
def __init__(
self,
in_channels,
out_channels,
filter_channels,
kernel_size,
p_dropout=0.0,
activation: str = None,
causal=False,
):
super(FFN, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.filter_channels = filter_channels
self.kernel_size = kernel_size
self.p_dropout = p_dropout
self.activation = activation
self.causal = causal
self.is_activation = True if activation == "gelu" else False
# if causal:
# self.padding = self._causal_padding
# else:
# self.padding = self._same_padding
self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size)
self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size)
self.drop = nn.Dropout(p_dropout)
def padding(self, x: torch.Tensor, x_mask: torch.Tensor) -> torch.Tensor:
if self.causal:
padding = self._causal_padding(x * x_mask)
else:
padding = self._same_padding(x * x_mask)
return padding
def forward(self, x: torch.Tensor, x_mask: torch.Tensor):
x = self.conv_1(self.padding(x, x_mask))
if self.is_activation:
x = x * torch.sigmoid(1.702 * x)
else:
x = torch.relu(x)
x = self.drop(x)
x = self.conv_2(self.padding(x, x_mask))
return x * x_mask
def _causal_padding(self, x):
if self.kernel_size == 1:
return x
pad_l: int = self.kernel_size - 1
pad_r: int = 0
# padding = [[0, 0], [0, 0], [pad_l, pad_r]]
x = F.pad(
x,
# commons.convert_pad_shape(padding)
[pad_l, pad_r, 0, 0, 0, 0],
)
return x
def _same_padding(self, x):
if self.kernel_size == 1:
return x
pad_l: int = (self.kernel_size - 1) // 2
pad_r: int = self.kernel_size // 2
# padding = [[0, 0], [0, 0], [pad_l, pad_r]]
x = F.pad(
x,
# commons.convert_pad_shape(padding)
[pad_l, pad_r, 0, 0, 0, 0],
)
return x