e9dd11bddb
* Optimize latency (#1259) * add attribute: configs/config.py Optimize latency: tools/rvc_for_realtime.py * new file: assets/Synthesizer_inputs.pth * fix: configs/config.py fix: tools/rvc_for_realtime.py * fix bug: infer/lib/infer_pack/models.py * new file: assets/hubert_inputs.pth new file: assets/rmvpe_inputs.pth modified: configs/config.py new features: infer/lib/rmvpe.py new features: tools/jit_export/__init__.py new features: tools/jit_export/get_hubert.py new features: tools/jit_export/get_rmvpe.py new features: tools/jit_export/get_synthesizer.py optimize: tools/rvc_for_realtime.py * optimize: tools/jit_export/get_synthesizer.py fix bug: tools/jit_export/__init__.py * Fixed a bug caused by using half on the CPU: infer/lib/rmvpe.py Fixed a bug caused by using half on the CPU: tools/jit_export/__init__.py Fixed CIRCULAR IMPORT: tools/jit_export/get_rmvpe.py Fixed CIRCULAR IMPORT: tools/jit_export/get_synthesizer.py Fixed a bug caused by using half on the CPU: tools/rvc_for_realtime.py * Remove useless code: infer/lib/rmvpe.py * Delete gui_v1 copy.py * Delete .vscode/launch.json * Delete jit_export_test.py * Delete tools/rvc_for_realtime copy.py * Delete configs/config.json * Delete .gitignore * Fix exceptions caused by switching inference devices: infer/lib/rmvpe.py Fix exceptions caused by switching inference devices: tools/jit_export/__init__.py Fix exceptions caused by switching inference devices: tools/rvc_for_realtime.py * restore * replace(you can undo this commit) * remove debug_print --------- Co-authored-by: Ftps <ftpsflandre@gmail.com> * Fixed some bugs when exporting ONNX model (#1254) * fix import (#1280) * fix import * lint * 🎨 同步 locale (#1242) Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com> * Fix jit load and import issue (#1282) * fix jit model loading : infer/lib/rmvpe.py * modified: assets/hubert/.gitignore move file: assets/hubert_inputs.pth -> assets/hubert/hubert_inputs.pth modified: assets/rmvpe/.gitignore move file: assets/rmvpe_inputs.pth -> assets/rmvpe/rmvpe_inputs.pth fix import: gui_v1.py * feat(workflow): trigger on dev * feat(workflow): add close-pr on non-dev branch * Add input wav and delay time monitor for real-time gui (#1293) * feat(workflow): trigger on dev * feat(workflow): add close-pr on non-dev branch * 🎨 同步 locale (#1289) Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com> * feat: edit PR template * add input wav and delay time monitor --------- Co-authored-by: 源文雨 <41315874+fumiama@users.noreply.github.com> Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com> Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com> Co-authored-by: RVC-Boss <129054828+RVC-Boss@users.noreply.github.com> * Optimize latency using scripted jit (#1291) * feat(workflow): trigger on dev * feat(workflow): add close-pr on non-dev branch * 🎨 同步 locale (#1289) Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com> * feat: edit PR template * Optimize-latency-using-scripted: configs/config.py Optimize-latency-using-scripted: infer/lib/infer_pack/attentions.py Optimize-latency-using-scripted: infer/lib/infer_pack/commons.py Optimize-latency-using-scripted: infer/lib/infer_pack/models.py Optimize-latency-using-scripted: infer/lib/infer_pack/modules.py Optimize-latency-using-scripted: infer/lib/jit/__init__.py Optimize-latency-using-scripted: infer/lib/jit/get_hubert.py Optimize-latency-using-scripted: infer/lib/jit/get_rmvpe.py Optimize-latency-using-scripted: infer/lib/jit/get_synthesizer.py Optimize-latency-using-scripted: infer/lib/rmvpe.py Optimize-latency-using-scripted: tools/rvc_for_realtime.py * modified: infer/lib/infer_pack/models.py * fix some bug: configs/config.py fix some bug: infer/lib/infer_pack/models.py fix some bug: infer/lib/rmvpe.py * Fixed abnormal reference of logger in multiprocessing: infer/modules/train/train.py --------- Co-authored-by: 源文雨 <41315874+fumiama@users.noreply.github.com> Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com> Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com> * Format code (#1298) Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com> * 🎨 同步 locale (#1299) Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com> * feat: optimize actions * feat(workflow): add sync dev * feat: optimize actions * feat: optimize actions * feat: optimize actions * feat: optimize actions * feat: add jit options (#1303) Delete useless code: infer/lib/jit/get_synthesizer.py Optimized code: tools/rvc_for_realtime.py * Code refactor + re-design inference ui (#1304) * Code refacor + re-design inference ui * Fix tabname * i18n jp --------- Co-authored-by: Ftps <ftpsflandre@gmail.com> * feat: optimize actions * feat: optimize actions * Update README & en_US locale file (#1309) * critical: some bug fixes (#1322) * JIT acceleration switch does not support hot update * fix padding bug of rmvpe in torch-directml * fix padding bug of rmvpe in torch-directml * Fix STFT under torch_directml (#1330) * chore(format): run black on dev (#1318) Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com> * chore(i18n): sync locale on dev (#1317) Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com> * feat: allow for tta to be passed to uvr (#1361) * chore(format): run black on dev (#1373) Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com> * Added script for automatically download all needed models at install (#1366) * Delete modules.py * Add files via upload * Add files via upload * Add files via upload * Add files via upload * chore(i18n): sync locale on dev (#1377) Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com> * chore(format): run black on dev (#1376) Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com> * Update IPEX library (#1362) * Update IPEX library * Update ipex index * chore(format): run black on dev (#1378) Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com> --------- Co-authored-by: Chengjia Jiang <46401978+ChasonJiang@users.noreply.github.com> Co-authored-by: Ftps <ftpsflandre@gmail.com> Co-authored-by: shizuku_nia <102004222+ShizukuNia@users.noreply.github.com> Co-authored-by: Ftps <63702646+Tps-F@users.noreply.github.com> Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com> Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com> Co-authored-by: 源文雨 <41315874+fumiama@users.noreply.github.com> Co-authored-by: yxlllc <33565655+yxlllc@users.noreply.github.com> Co-authored-by: RVC-Boss <129054828+RVC-Boss@users.noreply.github.com> Co-authored-by: Blaise <133521603+blaise-tk@users.noreply.github.com> Co-authored-by: Rice Cake <gak141808@gmail.com> Co-authored-by: AWAS666 <33494149+AWAS666@users.noreply.github.com> Co-authored-by: Dmitry <nda2911@yandex.ru> Co-authored-by: Disty0 <47277141+Disty0@users.noreply.github.com>
343 lines
11 KiB
Python
343 lines
11 KiB
Python
import math
|
|
import random
|
|
from typing import Optional, Tuple
|
|
from fairseq.checkpoint_utils import load_model_ensemble_and_task
|
|
import numpy as np
|
|
import torch
|
|
import torch.nn.functional as F
|
|
|
|
# from fairseq.data.data_utils import compute_mask_indices
|
|
from fairseq.utils import index_put
|
|
|
|
|
|
# @torch.jit.script
|
|
def pad_to_multiple(x, multiple, dim=-1, value=0):
|
|
# Inspired from https://github.com/lucidrains/local-attention/blob/master/local_attention/local_attention.py#L41
|
|
if x is None:
|
|
return None, 0
|
|
tsz = x.size(dim)
|
|
m = tsz / multiple
|
|
remainder = math.ceil(m) * multiple - tsz
|
|
if int(tsz % multiple) == 0:
|
|
return x, 0
|
|
pad_offset = (0,) * (-1 - dim) * 2
|
|
|
|
return F.pad(x, (*pad_offset, 0, remainder), value=value), remainder
|
|
|
|
|
|
def extract_features(
|
|
self,
|
|
x,
|
|
padding_mask=None,
|
|
tgt_layer=None,
|
|
min_layer=0,
|
|
):
|
|
if padding_mask is not None:
|
|
x = index_put(x, padding_mask, 0)
|
|
|
|
x_conv = self.pos_conv(x.transpose(1, 2))
|
|
x_conv = x_conv.transpose(1, 2)
|
|
x = x + x_conv
|
|
|
|
if not self.layer_norm_first:
|
|
x = self.layer_norm(x)
|
|
|
|
# pad to the sequence length dimension
|
|
x, pad_length = pad_to_multiple(x, self.required_seq_len_multiple, dim=-2, value=0)
|
|
if pad_length > 0 and padding_mask is None:
|
|
padding_mask = x.new_zeros((x.size(0), x.size(1)), dtype=torch.bool)
|
|
padding_mask[:, -pad_length:] = True
|
|
else:
|
|
padding_mask, _ = pad_to_multiple(
|
|
padding_mask, self.required_seq_len_multiple, dim=-1, value=True
|
|
)
|
|
x = F.dropout(x, p=self.dropout, training=self.training)
|
|
|
|
# B x T x C -> T x B x C
|
|
x = x.transpose(0, 1)
|
|
|
|
layer_results = []
|
|
r = None
|
|
for i, layer in enumerate(self.layers):
|
|
dropout_probability = np.random.random() if self.layerdrop > 0 else 1
|
|
if not self.training or (dropout_probability > self.layerdrop):
|
|
x, (z, lr) = layer(
|
|
x, self_attn_padding_mask=padding_mask, need_weights=False
|
|
)
|
|
if i >= min_layer:
|
|
layer_results.append((x, z, lr))
|
|
if i == tgt_layer:
|
|
r = x
|
|
break
|
|
|
|
if r is not None:
|
|
x = r
|
|
|
|
# T x B x C -> B x T x C
|
|
x = x.transpose(0, 1)
|
|
|
|
# undo paddding
|
|
if pad_length > 0:
|
|
x = x[:, :-pad_length]
|
|
|
|
def undo_pad(a, b, c):
|
|
return (
|
|
a[:-pad_length],
|
|
b[:-pad_length] if b is not None else b,
|
|
c[:-pad_length],
|
|
)
|
|
|
|
layer_results = [undo_pad(*u) for u in layer_results]
|
|
|
|
return x, layer_results
|
|
|
|
|
|
def compute_mask_indices(
|
|
shape: Tuple[int, int],
|
|
padding_mask: Optional[torch.Tensor],
|
|
mask_prob: float,
|
|
mask_length: int,
|
|
mask_type: str = "static",
|
|
mask_other: float = 0.0,
|
|
min_masks: int = 0,
|
|
no_overlap: bool = False,
|
|
min_space: int = 0,
|
|
require_same_masks: bool = True,
|
|
mask_dropout: float = 0.0,
|
|
) -> torch.Tensor:
|
|
"""
|
|
Computes random mask spans for a given shape
|
|
|
|
Args:
|
|
shape: the the shape for which to compute masks.
|
|
should be of size 2 where first element is batch size and 2nd is timesteps
|
|
padding_mask: optional padding mask of the same size as shape, which will prevent masking padded elements
|
|
mask_prob: probability for each token to be chosen as start of the span to be masked. this will be multiplied by
|
|
number of timesteps divided by length of mask span to mask approximately this percentage of all elements.
|
|
however due to overlaps, the actual number will be smaller (unless no_overlap is True)
|
|
mask_type: how to compute mask lengths
|
|
static = fixed size
|
|
uniform = sample from uniform distribution [mask_other, mask_length*2]
|
|
normal = sample from normal distribution with mean mask_length and stdev mask_other. mask is min 1 element
|
|
poisson = sample from possion distribution with lambda = mask length
|
|
min_masks: minimum number of masked spans
|
|
no_overlap: if false, will switch to an alternative recursive algorithm that prevents spans from overlapping
|
|
min_space: only used if no_overlap is True, this is how many elements to keep unmasked between spans
|
|
require_same_masks: if true, will randomly drop out masks until same amount of masks remains in each sample
|
|
mask_dropout: randomly dropout this percentage of masks in each example
|
|
"""
|
|
|
|
bsz, all_sz = shape
|
|
mask = torch.full((bsz, all_sz), False)
|
|
|
|
all_num_mask = int(
|
|
# add a random number for probabilistic rounding
|
|
mask_prob * all_sz / float(mask_length)
|
|
+ torch.rand([1]).item()
|
|
)
|
|
|
|
all_num_mask = max(min_masks, all_num_mask)
|
|
|
|
mask_idcs = []
|
|
for i in range(bsz):
|
|
if padding_mask is not None:
|
|
sz = all_sz - padding_mask[i].long().sum().item()
|
|
num_mask = int(mask_prob * sz / float(mask_length) + np.random.rand())
|
|
num_mask = max(min_masks, num_mask)
|
|
else:
|
|
sz = all_sz
|
|
num_mask = all_num_mask
|
|
|
|
if mask_type == "static":
|
|
lengths = torch.full([num_mask], mask_length)
|
|
elif mask_type == "uniform":
|
|
lengths = torch.randint(mask_other, mask_length * 2 + 1, size=[num_mask])
|
|
elif mask_type == "normal":
|
|
lengths = torch.normal(mask_length, mask_other, size=[num_mask])
|
|
lengths = [max(1, int(round(x))) for x in lengths]
|
|
else:
|
|
raise Exception("unknown mask selection " + mask_type)
|
|
|
|
if sum(lengths) == 0:
|
|
lengths[0] = min(mask_length, sz - 1)
|
|
|
|
if no_overlap:
|
|
mask_idc = []
|
|
|
|
def arrange(s, e, length, keep_length):
|
|
span_start = torch.randint(low=s, high=e - length, size=[1]).item()
|
|
mask_idc.extend(span_start + i for i in range(length))
|
|
|
|
new_parts = []
|
|
if span_start - s - min_space >= keep_length:
|
|
new_parts.append((s, span_start - min_space + 1))
|
|
if e - span_start - length - min_space > keep_length:
|
|
new_parts.append((span_start + length + min_space, e))
|
|
return new_parts
|
|
|
|
parts = [(0, sz)]
|
|
min_length = min(lengths)
|
|
for length in sorted(lengths, reverse=True):
|
|
t = [e - s if e - s >= length + min_space else 0 for s, e in parts]
|
|
lens = torch.asarray(t, dtype=torch.int)
|
|
l_sum = torch.sum(lens)
|
|
if l_sum == 0:
|
|
break
|
|
probs = lens / torch.sum(lens)
|
|
c = torch.multinomial(probs.float(), len(parts)).item()
|
|
s, e = parts.pop(c)
|
|
parts.extend(arrange(s, e, length, min_length))
|
|
mask_idc = torch.asarray(mask_idc)
|
|
else:
|
|
min_len = min(lengths)
|
|
if sz - min_len <= num_mask:
|
|
min_len = sz - num_mask - 1
|
|
mask_idc = torch.asarray(
|
|
random.sample([i for i in range(sz - min_len)], num_mask)
|
|
)
|
|
mask_idc = torch.asarray(
|
|
[
|
|
mask_idc[j] + offset
|
|
for j in range(len(mask_idc))
|
|
for offset in range(lengths[j])
|
|
]
|
|
)
|
|
|
|
mask_idcs.append(torch.unique(mask_idc[mask_idc < sz]))
|
|
|
|
min_len = min([len(m) for m in mask_idcs])
|
|
for i, mask_idc in enumerate(mask_idcs):
|
|
if isinstance(mask_idc, torch.Tensor):
|
|
mask_idc = torch.asarray(mask_idc, dtype=torch.float)
|
|
if len(mask_idc) > min_len and require_same_masks:
|
|
mask_idc = torch.asarray(
|
|
random.sample([i for i in range(mask_idc)], min_len)
|
|
)
|
|
if mask_dropout > 0:
|
|
num_holes = int(round(len(mask_idc) * mask_dropout))
|
|
mask_idc = torch.asarray(
|
|
random.sample([i for i in range(mask_idc)], len(mask_idc) - num_holes)
|
|
)
|
|
|
|
mask[i, mask_idc.int()] = True
|
|
|
|
return mask
|
|
|
|
|
|
def apply_mask(self, x, padding_mask, target_list):
|
|
B, T, C = x.shape
|
|
torch.zeros_like(x)
|
|
if self.mask_prob > 0:
|
|
mask_indices = compute_mask_indices(
|
|
(B, T),
|
|
padding_mask,
|
|
self.mask_prob,
|
|
self.mask_length,
|
|
self.mask_selection,
|
|
self.mask_other,
|
|
min_masks=2,
|
|
no_overlap=self.no_mask_overlap,
|
|
min_space=self.mask_min_space,
|
|
)
|
|
mask_indices = mask_indices.to(x.device)
|
|
x[mask_indices] = self.mask_emb
|
|
else:
|
|
mask_indices = None
|
|
|
|
if self.mask_channel_prob > 0:
|
|
mask_channel_indices = compute_mask_indices(
|
|
(B, C),
|
|
None,
|
|
self.mask_channel_prob,
|
|
self.mask_channel_length,
|
|
self.mask_channel_selection,
|
|
self.mask_channel_other,
|
|
no_overlap=self.no_mask_channel_overlap,
|
|
min_space=self.mask_channel_min_space,
|
|
)
|
|
mask_channel_indices = (
|
|
mask_channel_indices.to(x.device).unsqueeze(1).expand(-1, T, -1)
|
|
)
|
|
x[mask_channel_indices] = 0
|
|
|
|
return x, mask_indices
|
|
|
|
|
|
def get_hubert_model(
|
|
model_path="assets/hubert/hubert_base.pt", device=torch.device("cpu")
|
|
):
|
|
models, _, _ = load_model_ensemble_and_task(
|
|
[model_path],
|
|
suffix="",
|
|
)
|
|
hubert_model = models[0]
|
|
hubert_model = hubert_model.to(device)
|
|
|
|
def _apply_mask(x, padding_mask, target_list):
|
|
return apply_mask(hubert_model, x, padding_mask, target_list)
|
|
|
|
hubert_model.apply_mask = _apply_mask
|
|
|
|
def _extract_features(
|
|
x,
|
|
padding_mask=None,
|
|
tgt_layer=None,
|
|
min_layer=0,
|
|
):
|
|
return extract_features(
|
|
hubert_model.encoder,
|
|
x,
|
|
padding_mask=padding_mask,
|
|
tgt_layer=tgt_layer,
|
|
min_layer=min_layer,
|
|
)
|
|
|
|
hubert_model.encoder.extract_features = _extract_features
|
|
|
|
hubert_model._forward = hubert_model.forward
|
|
|
|
def hubert_extract_features(
|
|
self,
|
|
source: torch.Tensor,
|
|
padding_mask: Optional[torch.Tensor] = None,
|
|
mask: bool = False,
|
|
ret_conv: bool = False,
|
|
output_layer: Optional[int] = None,
|
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
res = self._forward(
|
|
source,
|
|
padding_mask=padding_mask,
|
|
mask=mask,
|
|
features_only=True,
|
|
output_layer=output_layer,
|
|
)
|
|
feature = res["features"] if ret_conv else res["x"]
|
|
return feature, res["padding_mask"]
|
|
|
|
def _hubert_extract_features(
|
|
source: torch.Tensor,
|
|
padding_mask: Optional[torch.Tensor] = None,
|
|
mask: bool = False,
|
|
ret_conv: bool = False,
|
|
output_layer: Optional[int] = None,
|
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
return hubert_extract_features(
|
|
hubert_model, source, padding_mask, mask, ret_conv, output_layer
|
|
)
|
|
|
|
hubert_model.extract_features = _hubert_extract_features
|
|
|
|
def infer(source, padding_mask, output_layer: torch.Tensor):
|
|
output_layer = output_layer.item()
|
|
logits = hubert_model.extract_features(
|
|
source=source, padding_mask=padding_mask, output_layer=output_layer
|
|
)
|
|
feats = hubert_model.final_proj(logits[0]) if output_layer == 9 else logits[0]
|
|
return feats
|
|
|
|
hubert_model.infer = infer
|
|
# hubert_model.forward=infer
|
|
# hubert_model.forward
|
|
|
|
return hubert_model
|