1
0
mirror of synced 2024-12-23 21:05:02 +01:00
Retrieval-based-Voice-Conve.../infer/lib/rmvpe.py
2023-12-26 00:23:36 +08:00

671 lines
24 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

from io import BytesIO
import os
from typing import List, Optional, Tuple
import numpy as np
import torch
from infer.lib import jit
try:
# Fix "Torch not compiled with CUDA enabled"
import intel_extension_for_pytorch as ipex # pylint: disable=import-error, unused-import
if torch.xpu.is_available():
from infer.modules.ipex import ipex_init
ipex_init()
except Exception: # pylint: disable=broad-exception-caught
pass
import torch.nn as nn
import torch.nn.functional as F
from librosa.util import normalize, pad_center, tiny
from scipy.signal import get_window
import logging
logger = logging.getLogger(__name__)
class STFT(torch.nn.Module):
def __init__(
self, filter_length=1024, hop_length=512, win_length=None, window="hann"
):
"""
This module implements an STFT using 1D convolution and 1D transpose convolutions.
This is a bit tricky so there are some cases that probably won't work as working
out the same sizes before and after in all overlap add setups is tough. Right now,
this code should work with hop lengths that are half the filter length (50% overlap
between frames).
Keyword Arguments:
filter_length {int} -- Length of filters used (default: {1024})
hop_length {int} -- Hop length of STFT (restrict to 50% overlap between frames) (default: {512})
win_length {[type]} -- Length of the window function applied to each frame (if not specified, it
equals the filter length). (default: {None})
window {str} -- Type of window to use (options are bartlett, hann, hamming, blackman, blackmanharris)
(default: {'hann'})
"""
super(STFT, self).__init__()
self.filter_length = filter_length
self.hop_length = hop_length
self.win_length = win_length if win_length else filter_length
self.window = window
self.forward_transform = None
self.pad_amount = int(self.filter_length / 2)
fourier_basis = np.fft.fft(np.eye(self.filter_length))
cutoff = int((self.filter_length / 2 + 1))
fourier_basis = np.vstack(
[np.real(fourier_basis[:cutoff, :]), np.imag(fourier_basis[:cutoff, :])]
)
forward_basis = torch.FloatTensor(fourier_basis)
inverse_basis = torch.FloatTensor(np.linalg.pinv(fourier_basis))
assert filter_length >= self.win_length
# get window and zero center pad it to filter_length
fft_window = get_window(window, self.win_length, fftbins=True)
fft_window = pad_center(fft_window, size=filter_length)
fft_window = torch.from_numpy(fft_window).float()
# window the bases
forward_basis *= fft_window
inverse_basis = (inverse_basis.T * fft_window).T
self.register_buffer("forward_basis", forward_basis.float())
self.register_buffer("inverse_basis", inverse_basis.float())
self.register_buffer("fft_window", fft_window.float())
def transform(self, input_data, return_phase=False):
"""Take input data (audio) to STFT domain.
Arguments:
input_data {tensor} -- Tensor of floats, with shape (num_batch, num_samples)
Returns:
magnitude {tensor} -- Magnitude of STFT with shape (num_batch,
num_frequencies, num_frames)
phase {tensor} -- Phase of STFT with shape (num_batch,
num_frequencies, num_frames)
"""
input_data = F.pad(
input_data,
(self.pad_amount, self.pad_amount),
mode="reflect",
)
forward_transform = input_data.unfold(
1, self.filter_length, self.hop_length
).permute(0, 2, 1)
forward_transform = torch.matmul(self.forward_basis, forward_transform)
cutoff = int((self.filter_length / 2) + 1)
real_part = forward_transform[:, :cutoff, :]
imag_part = forward_transform[:, cutoff:, :]
magnitude = torch.sqrt(real_part**2 + imag_part**2)
if return_phase:
phase = torch.atan2(imag_part.data, real_part.data)
return magnitude, phase
else:
return magnitude
def inverse(self, magnitude, phase):
"""Call the inverse STFT (iSTFT), given magnitude and phase tensors produced
by the ```transform``` function.
Arguments:
magnitude {tensor} -- Magnitude of STFT with shape (num_batch,
num_frequencies, num_frames)
phase {tensor} -- Phase of STFT with shape (num_batch,
num_frequencies, num_frames)
Returns:
inverse_transform {tensor} -- Reconstructed audio given magnitude and phase. Of
shape (num_batch, num_samples)
"""
cat = torch.cat(
[magnitude * torch.cos(phase), magnitude * torch.sin(phase)], dim=1
)
fold = torch.nn.Fold(
output_size=(1, (cat.size(-1) - 1) * self.hop_length + self.filter_length),
kernel_size=(1, self.filter_length),
stride=(1, self.hop_length),
)
inverse_transform = torch.matmul(self.inverse_basis, cat)
inverse_transform = fold(inverse_transform)[
:, 0, 0, self.pad_amount : -self.pad_amount
]
window_square_sum = (
self.fft_window.pow(2).repeat(cat.size(-1), 1).T.unsqueeze(0)
)
window_square_sum = fold(window_square_sum)[
:, 0, 0, self.pad_amount : -self.pad_amount
]
inverse_transform /= window_square_sum
return inverse_transform
def forward(self, input_data):
"""Take input data (audio) to STFT domain and then back to audio.
Arguments:
input_data {tensor} -- Tensor of floats, with shape (num_batch, num_samples)
Returns:
reconstruction {tensor} -- Reconstructed audio given magnitude and phase. Of
shape (num_batch, num_samples)
"""
self.magnitude, self.phase = self.transform(input_data, return_phase=True)
reconstruction = self.inverse(self.magnitude, self.phase)
return reconstruction
from time import time as ttime
class BiGRU(nn.Module):
def __init__(self, input_features, hidden_features, num_layers):
super(BiGRU, self).__init__()
self.gru = nn.GRU(
input_features,
hidden_features,
num_layers=num_layers,
batch_first=True,
bidirectional=True,
)
def forward(self, x):
return self.gru(x)[0]
class ConvBlockRes(nn.Module):
def __init__(self, in_channels, out_channels, momentum=0.01):
super(ConvBlockRes, self).__init__()
self.conv = nn.Sequential(
nn.Conv2d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=(3, 3),
stride=(1, 1),
padding=(1, 1),
bias=False,
),
nn.BatchNorm2d(out_channels, momentum=momentum),
nn.ReLU(),
nn.Conv2d(
in_channels=out_channels,
out_channels=out_channels,
kernel_size=(3, 3),
stride=(1, 1),
padding=(1, 1),
bias=False,
),
nn.BatchNorm2d(out_channels, momentum=momentum),
nn.ReLU(),
)
# self.shortcut:Optional[nn.Module] = None
if in_channels != out_channels:
self.shortcut = nn.Conv2d(in_channels, out_channels, (1, 1))
def forward(self, x: torch.Tensor):
if not hasattr(self, "shortcut"):
return self.conv(x) + x
else:
return self.conv(x) + self.shortcut(x)
class Encoder(nn.Module):
def __init__(
self,
in_channels,
in_size,
n_encoders,
kernel_size,
n_blocks,
out_channels=16,
momentum=0.01,
):
super(Encoder, self).__init__()
self.n_encoders = n_encoders
self.bn = nn.BatchNorm2d(in_channels, momentum=momentum)
self.layers = nn.ModuleList()
self.latent_channels = []
for i in range(self.n_encoders):
self.layers.append(
ResEncoderBlock(
in_channels, out_channels, kernel_size, n_blocks, momentum=momentum
)
)
self.latent_channels.append([out_channels, in_size])
in_channels = out_channels
out_channels *= 2
in_size //= 2
self.out_size = in_size
self.out_channel = out_channels
def forward(self, x: torch.Tensor):
concat_tensors: List[torch.Tensor] = []
x = self.bn(x)
for i, layer in enumerate(self.layers):
t, x = layer(x)
concat_tensors.append(t)
return x, concat_tensors
class ResEncoderBlock(nn.Module):
def __init__(
self, in_channels, out_channels, kernel_size, n_blocks=1, momentum=0.01
):
super(ResEncoderBlock, self).__init__()
self.n_blocks = n_blocks
self.conv = nn.ModuleList()
self.conv.append(ConvBlockRes(in_channels, out_channels, momentum))
for i in range(n_blocks - 1):
self.conv.append(ConvBlockRes(out_channels, out_channels, momentum))
self.kernel_size = kernel_size
if self.kernel_size is not None:
self.pool = nn.AvgPool2d(kernel_size=kernel_size)
def forward(self, x):
for i, conv in enumerate(self.conv):
x = conv(x)
if self.kernel_size is not None:
return x, self.pool(x)
else:
return x
class Intermediate(nn.Module): #
def __init__(self, in_channels, out_channels, n_inters, n_blocks, momentum=0.01):
super(Intermediate, self).__init__()
self.n_inters = n_inters
self.layers = nn.ModuleList()
self.layers.append(
ResEncoderBlock(in_channels, out_channels, None, n_blocks, momentum)
)
for i in range(self.n_inters - 1):
self.layers.append(
ResEncoderBlock(out_channels, out_channels, None, n_blocks, momentum)
)
def forward(self, x):
for i, layer in enumerate(self.layers):
x = layer(x)
return x
class ResDecoderBlock(nn.Module):
def __init__(self, in_channels, out_channels, stride, n_blocks=1, momentum=0.01):
super(ResDecoderBlock, self).__init__()
out_padding = (0, 1) if stride == (1, 2) else (1, 1)
self.n_blocks = n_blocks
self.conv1 = nn.Sequential(
nn.ConvTranspose2d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=(3, 3),
stride=stride,
padding=(1, 1),
output_padding=out_padding,
bias=False,
),
nn.BatchNorm2d(out_channels, momentum=momentum),
nn.ReLU(),
)
self.conv2 = nn.ModuleList()
self.conv2.append(ConvBlockRes(out_channels * 2, out_channels, momentum))
for i in range(n_blocks - 1):
self.conv2.append(ConvBlockRes(out_channels, out_channels, momentum))
def forward(self, x, concat_tensor):
x = self.conv1(x)
x = torch.cat((x, concat_tensor), dim=1)
for i, conv2 in enumerate(self.conv2):
x = conv2(x)
return x
class Decoder(nn.Module):
def __init__(self, in_channels, n_decoders, stride, n_blocks, momentum=0.01):
super(Decoder, self).__init__()
self.layers = nn.ModuleList()
self.n_decoders = n_decoders
for i in range(self.n_decoders):
out_channels = in_channels // 2
self.layers.append(
ResDecoderBlock(in_channels, out_channels, stride, n_blocks, momentum)
)
in_channels = out_channels
def forward(self, x: torch.Tensor, concat_tensors: List[torch.Tensor]):
for i, layer in enumerate(self.layers):
x = layer(x, concat_tensors[-1 - i])
return x
class DeepUnet(nn.Module):
def __init__(
self,
kernel_size,
n_blocks,
en_de_layers=5,
inter_layers=4,
in_channels=1,
en_out_channels=16,
):
super(DeepUnet, self).__init__()
self.encoder = Encoder(
in_channels, 128, en_de_layers, kernel_size, n_blocks, en_out_channels
)
self.intermediate = Intermediate(
self.encoder.out_channel // 2,
self.encoder.out_channel,
inter_layers,
n_blocks,
)
self.decoder = Decoder(
self.encoder.out_channel, en_de_layers, kernel_size, n_blocks
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x, concat_tensors = self.encoder(x)
x = self.intermediate(x)
x = self.decoder(x, concat_tensors)
return x
class E2E(nn.Module):
def __init__(
self,
n_blocks,
n_gru,
kernel_size,
en_de_layers=5,
inter_layers=4,
in_channels=1,
en_out_channels=16,
):
super(E2E, self).__init__()
self.unet = DeepUnet(
kernel_size,
n_blocks,
en_de_layers,
inter_layers,
in_channels,
en_out_channels,
)
self.cnn = nn.Conv2d(en_out_channels, 3, (3, 3), padding=(1, 1))
if n_gru:
self.fc = nn.Sequential(
BiGRU(3 * 128, 256, n_gru),
nn.Linear(512, 360),
nn.Dropout(0.25),
nn.Sigmoid(),
)
else:
self.fc = nn.Sequential(
nn.Linear(3 * nn.N_MELS, nn.N_CLASS), nn.Dropout(0.25), nn.Sigmoid()
)
def forward(self, mel):
# print(mel.shape)
mel = mel.transpose(-1, -2).unsqueeze(1)
x = self.cnn(self.unet(mel)).transpose(1, 2).flatten(-2)
x = self.fc(x)
# print(x.shape)
return x
from librosa.filters import mel
class MelSpectrogram(torch.nn.Module):
def __init__(
self,
is_half,
n_mel_channels,
sampling_rate,
win_length,
hop_length,
n_fft=None,
mel_fmin=0,
mel_fmax=None,
clamp=1e-5,
):
super().__init__()
n_fft = win_length if n_fft is None else n_fft
self.hann_window = {}
mel_basis = mel(
sr=sampling_rate,
n_fft=n_fft,
n_mels=n_mel_channels,
fmin=mel_fmin,
fmax=mel_fmax,
htk=True,
)
mel_basis = torch.from_numpy(mel_basis).float()
self.register_buffer("mel_basis", mel_basis)
self.n_fft = win_length if n_fft is None else n_fft
self.hop_length = hop_length
self.win_length = win_length
self.sampling_rate = sampling_rate
self.n_mel_channels = n_mel_channels
self.clamp = clamp
self.is_half = is_half
def forward(self, audio, keyshift=0, speed=1, center=True):
factor = 2 ** (keyshift / 12)
n_fft_new = int(np.round(self.n_fft * factor))
win_length_new = int(np.round(self.win_length * factor))
hop_length_new = int(np.round(self.hop_length * speed))
keyshift_key = str(keyshift) + "_" + str(audio.device)
if keyshift_key not in self.hann_window:
self.hann_window[keyshift_key] = torch.hann_window(win_length_new).to(
audio.device
)
if "privateuseone" in str(audio.device):
if not hasattr(self, "stft"):
self.stft = STFT(
filter_length=n_fft_new,
hop_length=hop_length_new,
win_length=win_length_new,
window="hann",
).to(audio.device)
magnitude = self.stft.transform(audio)
else:
fft = torch.stft(
audio,
n_fft=n_fft_new,
hop_length=hop_length_new,
win_length=win_length_new,
window=self.hann_window[keyshift_key],
center=center,
return_complex=True,
)
magnitude = torch.sqrt(fft.real.pow(2) + fft.imag.pow(2))
if keyshift != 0:
size = self.n_fft // 2 + 1
resize = magnitude.size(1)
if resize < size:
magnitude = F.pad(magnitude, (0, 0, 0, size - resize))
magnitude = magnitude[:, :size, :] * self.win_length / win_length_new
mel_output = torch.matmul(self.mel_basis, magnitude)
if self.is_half == True:
mel_output = mel_output.half()
log_mel_spec = torch.log(torch.clamp(mel_output, min=self.clamp))
return log_mel_spec
class RMVPE:
def __init__(self, model_path: str, is_half, device=None, use_jit=False):
self.resample_kernel = {}
self.resample_kernel = {}
self.is_half = is_half
if device is None:
device = "cuda:0" if torch.cuda.is_available() else "cpu"
self.device = device
self.mel_extractor = MelSpectrogram(
is_half, 128, 16000, 1024, 160, None, 30, 8000
).to(device)
if "privateuseone" in str(device):
import onnxruntime as ort
ort_session = ort.InferenceSession(
"%s/rmvpe.onnx" % os.environ["rmvpe_root"],
providers=["DmlExecutionProvider"],
)
self.model = ort_session
else:
if str(self.device) == "cuda":
self.device = torch.device("cuda:0")
def get_jit_model():
jit_model_path = model_path.rstrip(".pth")
jit_model_path += ".half.jit" if is_half else ".jit"
reload = False
if os.path.exists(jit_model_path):
ckpt = jit.load(jit_model_path)
model_device = ckpt["device"]
if model_device != str(self.device):
reload = True
else:
reload = True
if reload:
ckpt = jit.rmvpe_jit_export(
model_path=model_path,
mode="script",
inputs_path=None,
save_path=jit_model_path,
device=device,
is_half=is_half,
)
model = torch.jit.load(BytesIO(ckpt["model"]), map_location=device)
return model
def get_default_model():
model = E2E(4, 1, (2, 2))
ckpt = torch.load(model_path, map_location="cpu")
model.load_state_dict(ckpt)
model.eval()
if is_half:
model = model.half()
else:
model = model.float()
return model
if use_jit:
if is_half and "cpu" in str(self.device):
logger.warning(
"Use default rmvpe model. \
Jit is not supported on the CPU for half floating point"
)
self.model = get_default_model()
else:
self.model = get_jit_model()
else:
self.model = get_default_model()
self.model = self.model.to(device)
cents_mapping = 20 * np.arange(360) + 1997.3794084376191
self.cents_mapping = np.pad(cents_mapping, (4, 4)) # 368
def mel2hidden(self, mel):
with torch.no_grad():
n_frames = mel.shape[-1]
n_pad = 32 * ((n_frames - 1) // 32 + 1) - n_frames
if n_pad > 0:
mel = F.pad(mel, (0, n_pad), mode="constant")
if "privateuseone" in str(self.device):
onnx_input_name = self.model.get_inputs()[0].name
onnx_outputs_names = self.model.get_outputs()[0].name
hidden = self.model.run(
[onnx_outputs_names],
input_feed={onnx_input_name: mel.cpu().numpy()},
)[0]
else:
mel = mel.half() if self.is_half else mel.float()
hidden = self.model(mel)
return hidden[:, :n_frames]
def decode(self, hidden, thred=0.03):
cents_pred = self.to_local_average_cents(hidden, thred=thred)
f0 = 10 * (2 ** (cents_pred / 1200))
f0[f0 == 10] = 0
# f0 = np.array([10 * (2 ** (cent_pred / 1200)) if cent_pred else 0 for cent_pred in cents_pred])
return f0
def infer_from_audio(self, audio, thred=0.03):
# torch.cuda.synchronize()
# t0 = ttime()
if not torch.is_tensor(audio):
audio = torch.from_numpy(audio)
mel = self.mel_extractor(
audio.float().to(self.device).unsqueeze(0), center=True
)
# print(123123123,mel.device.type)
# torch.cuda.synchronize()
# t1 = ttime()
hidden = self.mel2hidden(mel)
# torch.cuda.synchronize()
# t2 = ttime()
# print(234234,hidden.device.type)
if "privateuseone" not in str(self.device):
hidden = hidden.squeeze(0).cpu().numpy()
else:
hidden = hidden[0]
if self.is_half == True:
hidden = hidden.astype("float32")
f0 = self.decode(hidden, thred=thred)
# torch.cuda.synchronize()
# t3 = ttime()
# print("hmvpe:%s\t%s\t%s\t%s"%(t1-t0,t2-t1,t3-t2,t3-t0))
return f0
def to_local_average_cents(self, salience, thred=0.05):
# t0 = ttime()
center = np.argmax(salience, axis=1) # 帧长#index
salience = np.pad(salience, ((0, 0), (4, 4))) # 帧长,368
# t1 = ttime()
center += 4
todo_salience = []
todo_cents_mapping = []
starts = center - 4
ends = center + 5
for idx in range(salience.shape[0]):
todo_salience.append(salience[:, starts[idx] : ends[idx]][idx])
todo_cents_mapping.append(self.cents_mapping[starts[idx] : ends[idx]])
# t2 = ttime()
todo_salience = np.array(todo_salience) # 帧长9
todo_cents_mapping = np.array(todo_cents_mapping) # 帧长9
product_sum = np.sum(todo_salience * todo_cents_mapping, 1)
weight_sum = np.sum(todo_salience, 1) # 帧长
devided = product_sum / weight_sum # 帧长
# t3 = ttime()
maxx = np.max(salience, axis=1) # 帧长
devided[maxx <= thred] = 0
# t4 = ttime()
# print("decode:%s\t%s\t%s\t%s" % (t1 - t0, t2 - t1, t3 - t2, t4 - t3))
return devided
if __name__ == "__main__":
import librosa
import soundfile as sf
audio, sampling_rate = sf.read(r"C:\Users\liujing04\Desktop\Z\冬之花clip1.wav")
if len(audio.shape) > 1:
audio = librosa.to_mono(audio.transpose(1, 0))
audio_bak = audio.copy()
if sampling_rate != 16000:
audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000)
model_path = r"D:\BaiduNetdiskDownload\RVC-beta-v2-0727AMD_realtime\rmvpe.pt"
thred = 0.03 # 0.01
device = "cuda" if torch.cuda.is_available() else "cpu"
rmvpe = RMVPE(model_path, is_half=False, device=device)
t0 = ttime()
f0 = rmvpe.infer_from_audio(audio, thred=thred)
# f0 = rmvpe.infer_from_audio(audio, thred=thred)
# f0 = rmvpe.infer_from_audio(audio, thred=thred)
# f0 = rmvpe.infer_from_audio(audio, thred=thred)
# f0 = rmvpe.infer_from_audio(audio, thred=thred)
t1 = ttime()
logger.info("%s %.2f", f0.shape, t1 - t0)