172 lines
6.5 KiB
Python
172 lines
6.5 KiB
Python
import os, sys, torch, warnings, pdb
|
||
|
||
warnings.filterwarnings("ignore")
|
||
import librosa
|
||
import importlib
|
||
import numpy as np
|
||
import hashlib, math
|
||
from tqdm import tqdm
|
||
from uvr5_pack.lib_v5 import spec_utils
|
||
from uvr5_pack.utils import _get_name_params, inference
|
||
from uvr5_pack.lib_v5.model_param_init import ModelParameters
|
||
from scipy.io import wavfile
|
||
|
||
|
||
class _audio_pre_:
|
||
def __init__(self, agg,model_path, device, is_half):
|
||
self.model_path = model_path
|
||
self.device = device
|
||
self.data = {
|
||
# Processing Options
|
||
"postprocess": False,
|
||
"tta": False,
|
||
# Constants
|
||
"window_size": 512,
|
||
"agg": agg,
|
||
"high_end_process": "mirroring",
|
||
}
|
||
nn_arch_sizes = [
|
||
31191, # default
|
||
33966,
|
||
61968,
|
||
123821,
|
||
123812,
|
||
537238, # custom
|
||
]
|
||
self.nn_architecture = list("{}KB".format(s) for s in nn_arch_sizes)
|
||
model_size = math.ceil(os.stat(model_path).st_size / 1024)
|
||
nn_architecture = "{}KB".format(
|
||
min(nn_arch_sizes, key=lambda x: abs(x - model_size))
|
||
)
|
||
nets = importlib.import_module(
|
||
"uvr5_pack.lib_v5.nets"
|
||
+ f"_{nn_architecture}".replace("_{}KB".format(nn_arch_sizes[0]), ""),
|
||
package=None,
|
||
)
|
||
model_hash = hashlib.md5(open(model_path, "rb").read()).hexdigest()
|
||
param_name, model_params_d = _get_name_params(model_path, model_hash)
|
||
|
||
mp = ModelParameters(model_params_d)
|
||
model = nets.CascadedASPPNet(mp.param["bins"] * 2)
|
||
cpk = torch.load(model_path, map_location="cpu")
|
||
model.load_state_dict(cpk)
|
||
model.eval()
|
||
if is_half:
|
||
model = model.half().to(device)
|
||
else:
|
||
model = model.to(device)
|
||
|
||
self.mp = mp
|
||
self.model = model
|
||
|
||
def _path_audio_(self, music_file, ins_root=None, vocal_root=None):
|
||
if ins_root is None and vocal_root is None:
|
||
return "No save root."
|
||
name = os.path.basename(music_file)
|
||
if ins_root is not None:
|
||
os.makedirs(ins_root, exist_ok=True)
|
||
if vocal_root is not None:
|
||
os.makedirs(vocal_root, exist_ok=True)
|
||
X_wave, y_wave, X_spec_s, y_spec_s = {}, {}, {}, {}
|
||
bands_n = len(self.mp.param["band"])
|
||
# print(bands_n)
|
||
for d in range(bands_n, 0, -1):
|
||
bp = self.mp.param["band"][d]
|
||
if d == bands_n: # high-end band
|
||
(
|
||
X_wave[d],
|
||
_,
|
||
) = librosa.core.load( # 理论上librosa读取可能对某些音频有bug,应该上ffmpeg读取,但是太麻烦了弃坑
|
||
music_file,
|
||
bp["sr"],
|
||
False,
|
||
dtype=np.float32,
|
||
res_type=bp["res_type"],
|
||
)
|
||
if X_wave[d].ndim == 1:
|
||
X_wave[d] = np.asfortranarray([X_wave[d], X_wave[d]])
|
||
else: # lower bands
|
||
X_wave[d] = librosa.core.resample(
|
||
X_wave[d + 1],
|
||
self.mp.param["band"][d + 1]["sr"],
|
||
bp["sr"],
|
||
res_type=bp["res_type"],
|
||
)
|
||
# Stft of wave source
|
||
X_spec_s[d] = spec_utils.wave_to_spectrogram_mt(
|
||
X_wave[d],
|
||
bp["hl"],
|
||
bp["n_fft"],
|
||
self.mp.param["mid_side"],
|
||
self.mp.param["mid_side_b2"],
|
||
self.mp.param["reverse"],
|
||
)
|
||
# pdb.set_trace()
|
||
if d == bands_n and self.data["high_end_process"] != "none":
|
||
input_high_end_h = (bp["n_fft"] // 2 - bp["crop_stop"]) + (
|
||
self.mp.param["pre_filter_stop"] - self.mp.param["pre_filter_start"]
|
||
)
|
||
input_high_end = X_spec_s[d][
|
||
:, bp["n_fft"] // 2 - input_high_end_h : bp["n_fft"] // 2, :
|
||
]
|
||
|
||
X_spec_m = spec_utils.combine_spectrograms(X_spec_s, self.mp)
|
||
aggresive_set = float(self.data["agg"] / 100)
|
||
aggressiveness = {
|
||
"value": aggresive_set,
|
||
"split_bin": self.mp.param["band"][1]["crop_stop"],
|
||
}
|
||
with torch.no_grad():
|
||
pred, X_mag, X_phase = inference(
|
||
X_spec_m, self.device, self.model, aggressiveness, self.data
|
||
)
|
||
# Postprocess
|
||
if self.data["postprocess"]:
|
||
pred_inv = np.clip(X_mag - pred, 0, np.inf)
|
||
pred = spec_utils.mask_silence(pred, pred_inv)
|
||
y_spec_m = pred * X_phase
|
||
v_spec_m = X_spec_m - y_spec_m
|
||
|
||
if ins_root is not None:
|
||
if self.data["high_end_process"].startswith("mirroring"):
|
||
input_high_end_ = spec_utils.mirroring(
|
||
self.data["high_end_process"], y_spec_m, input_high_end, self.mp
|
||
)
|
||
wav_instrument = spec_utils.cmb_spectrogram_to_wave(
|
||
y_spec_m, self.mp, input_high_end_h, input_high_end_
|
||
)
|
||
else:
|
||
wav_instrument = spec_utils.cmb_spectrogram_to_wave(y_spec_m, self.mp)
|
||
print("%s instruments done" % name)
|
||
wavfile.write(
|
||
os.path.join(ins_root, "instrument_{}_{}.wav".format(name,self.data["agg"])),
|
||
self.mp.param["sr"],
|
||
(np.array(wav_instrument) * 32768).astype("int16"),
|
||
) #
|
||
if vocal_root is not None:
|
||
if self.data["high_end_process"].startswith("mirroring"):
|
||
input_high_end_ = spec_utils.mirroring(
|
||
self.data["high_end_process"], v_spec_m, input_high_end, self.mp
|
||
)
|
||
wav_vocals = spec_utils.cmb_spectrogram_to_wave(
|
||
v_spec_m, self.mp, input_high_end_h, input_high_end_
|
||
)
|
||
else:
|
||
wav_vocals = spec_utils.cmb_spectrogram_to_wave(v_spec_m, self.mp)
|
||
print("%s vocals done" % name)
|
||
wavfile.write(
|
||
os.path.join(vocal_root, "vocal_{}_{}.wav".format(name,self.data["agg"])),
|
||
self.mp.param["sr"],
|
||
(np.array(wav_vocals) * 32768).astype("int16"),
|
||
)
|
||
|
||
|
||
if __name__ == "__main__":
|
||
device = "cuda"
|
||
is_half = True
|
||
model_path = "uvr5_weights/2_HP-UVR.pth"
|
||
pre_fun = _audio_pre_(model_path=model_path, device=device, is_half=True)
|
||
audio_path = "神女劈观.aac"
|
||
save_path = "opt"
|
||
pre_fun._path_audio_(audio_path, save_path, save_path)
|