Ryujinx-uplift/ARMeilleure/Instructions/InstEmitSimdCvt32.cs
FICTURE7 22b2cb39af
Reduce JIT GC allocations (#2515)
* Turn `MemoryOperand` into a struct

* Remove `IntrinsicOperation`

* Remove `PhiNode`

* Remove `Node`

* Turn `Operand` into a struct

* Turn `Operation` into a struct

* Clean up pool management methods

* Add `Arena` allocator

* Move `OperationHelper` to `Operation.Factory`

* Move `OperandHelper` to `Operand.Factory`

* Optimize `Operation` a bit

* Fix `Arena` initialization

* Rename `NativeList<T>` to `ArenaList<T>`

* Reduce `Operand` size from 88 to 56 bytes

* Reduce `Operation` size from 56 to 40 bytes

* Add optimistic interning of Register & Constant operands

* Optimize `RegisterUsage` pass a bit

* Optimize `RemoveUnusedNodes` pass a bit

Iterating in reverse-order allows killing dependency chains in a single
pass.

* Fix PPTC symbols

* Optimize `BasicBlock` a bit

Reduce allocations from `_successor` & `DominanceFrontiers`

* Fix `Operation` resize

* Make `Arena` expandable

Change the arena allocator to be expandable by allocating in pages, with
some of them being pooled. Currently 32 pages are pooled. An LRU removal
mechanism should probably be added to it.

Apparently MHR can allocate bitmaps large enough to exceed the 16MB
limit for the type.

* Move `Arena` & `ArenaList` to `Common`

* Remove `ThreadStaticPool` & co

* Add `PhiOperation`

* Reduce `Operand` size from 56 from 48 bytes

* Add linear-probing to `Operand` intern table

* Optimize `HybridAllocator` a bit

* Add `Allocators` class

* Tune `ArenaAllocator` sizes

* Add page removal mechanism to `ArenaAllocator`

Remove pages which have not been used for more than 5s after each reset.

I am on fence if this would be better using a Gen2 callback object like
the one in System.Buffers.ArrayPool<T>, to trim the pool. Because right
now if a large translation happens, the pages will be freed only after a
reset. This reset may not happen for a while because no new translation
is hit, but the arena base sizes are rather small.

* Fix `OOM` when allocating larger than page size in `ArenaAllocator`

Tweak resizing mechanism for Operand.Uses and Assignemnts.

* Optimize `Optimizer` a bit

* Optimize `Operand.Add<T>/Remove<T>` a bit

* Clean up `PreAllocator`

* Fix phi insertion order

Reduce codegen diffs.

* Fix code alignment

* Use new heuristics for degree of parallelism

* Suppress warnings

* Address gdkchan's feedback

Renamed `GetValue()` to `GetValueUnsafe()` to make it more clear that
`Operand.Value` should usually not be modified directly.

* Add fast path to `ArenaAllocator`

* Assembly for `ArenaAllocator.Allocate(ulong)`:

  .L0:
    mov rax, [rcx+0x18]
    lea r8, [rax+rdx]
    cmp r8, [rcx+0x10]
    ja short .L2
  .L1:
    mov rdx, [rcx+8]
    add rax, [rdx+8]
    mov [rcx+0x18], r8
    ret
  .L2:
    jmp ArenaAllocator.AllocateSlow(UInt64)

  A few variable/field had to be changed to ulong so that RyuJIT avoids
  emitting zero-extends.

* Implement a new heuristic to free pooled pages.

  If an arena is used often, it is more likely that its pages will be
  needed, so the pages are kept for longer (e.g: during PPTC rebuild or
  burst sof compilations). If is not used often, then it is more likely
  that its pages will not be needed (e.g: after PPTC rebuild or bursts
  of compilations).

* Address riperiperi's feedback

* Use `EqualityComparer<T>` in `IntrusiveList<T>`

Avoids a potential GC hole in `Equals(T, T)`.
2021-08-17 15:08:34 -03:00

585 lines
22 KiB
C#

using ARMeilleure.Decoders;
using ARMeilleure.IntermediateRepresentation;
using ARMeilleure.State;
using ARMeilleure.Translation;
using System;
using System.Diagnostics;
using System.Reflection;
using static ARMeilleure.Instructions.InstEmitHelper;
using static ARMeilleure.Instructions.InstEmitSimdHelper;
using static ARMeilleure.Instructions.InstEmitSimdHelper32;
using static ARMeilleure.IntermediateRepresentation.Operand.Factory;
namespace ARMeilleure.Instructions
{
static partial class InstEmit32
{
private static int FlipVdBits(int vd, bool lowBit)
{
if (lowBit)
{
// Move the low bit to the top.
return ((vd & 0x1) << 4) | (vd >> 1);
}
else
{
// Move the high bit to the bottom.
return ((vd & 0xf) << 1) | (vd >> 4);
}
}
private static Operand EmitSaturateFloatToInt(ArmEmitterContext context, Operand op1, bool unsigned)
{
MethodInfo info;
if (op1.Type == OperandType.FP64)
{
info = unsigned
? typeof(SoftFallback).GetMethod(nameof(SoftFallback.SatF64ToU32))
: typeof(SoftFallback).GetMethod(nameof(SoftFallback.SatF64ToS32));
}
else
{
info = unsigned
? typeof(SoftFallback).GetMethod(nameof(SoftFallback.SatF32ToU32))
: typeof(SoftFallback).GetMethod(nameof(SoftFallback.SatF32ToS32));
}
return context.Call(info, op1);
}
public static void Vcvt_V(ArmEmitterContext context)
{
OpCode32Simd op = (OpCode32Simd)context.CurrOp;
bool unsigned = (op.Opc & 1) != 0;
bool toInteger = (op.Opc & 2) != 0;
OperandType floatSize = (op.Size == 2) ? OperandType.FP32 : OperandType.FP64;
if (toInteger)
{
if (Optimizations.UseSse41)
{
EmitSse41ConvertVector32(context, FPRoundingMode.TowardsZero, !unsigned);
}
else
{
EmitVectorUnaryOpF32(context, (op1) =>
{
return EmitSaturateFloatToInt(context, op1, unsigned);
});
}
}
else
{
if (Optimizations.UseSse2)
{
EmitVectorUnaryOpSimd32(context, (n) =>
{
if (unsigned)
{
Operand mask = X86GetAllElements(context, 0x47800000);
Operand res = context.AddIntrinsic(Intrinsic.X86Psrld, n, Const(16));
res = context.AddIntrinsic(Intrinsic.X86Cvtdq2ps, res);
res = context.AddIntrinsic(Intrinsic.X86Mulps, res, mask);
Operand res2 = context.AddIntrinsic(Intrinsic.X86Pslld, n, Const(16));
res2 = context.AddIntrinsic(Intrinsic.X86Psrld, res2, Const(16));
res2 = context.AddIntrinsic(Intrinsic.X86Cvtdq2ps, res2);
return context.AddIntrinsic(Intrinsic.X86Addps, res, res2);
}
else
{
return context.AddIntrinsic(Intrinsic.X86Cvtdq2ps, n);
}
});
}
else
{
if (unsigned)
{
EmitVectorUnaryOpZx32(context, (op1) => EmitFPConvert(context, op1, floatSize, false));
}
else
{
EmitVectorUnaryOpSx32(context, (op1) => EmitFPConvert(context, op1, floatSize, true));
}
}
}
}
public static void Vcvt_FD(ArmEmitterContext context)
{
OpCode32SimdS op = (OpCode32SimdS)context.CurrOp;
int vm = op.Vm;
int vd;
if (op.Size == 3)
{
vd = FlipVdBits(op.Vd, false);
// Double to single.
Operand fp = ExtractScalar(context, OperandType.FP64, vm);
Operand res = context.ConvertToFP(OperandType.FP32, fp);
InsertScalar(context, vd, res);
}
else
{
vd = FlipVdBits(op.Vd, true);
// Single to double.
Operand fp = ExtractScalar(context, OperandType.FP32, vm);
Operand res = context.ConvertToFP(OperandType.FP64, fp);
InsertScalar(context, vd, res);
}
}
// VCVT (floating-point to integer, floating-point) | VCVT (integer to floating-point, floating-point).
public static void Vcvt_FI(ArmEmitterContext context)
{
OpCode32SimdCvtFI op = (OpCode32SimdCvtFI)context.CurrOp;
bool toInteger = (op.Opc2 & 0b100) != 0;
OperandType floatSize = op.RegisterSize == RegisterSize.Int64 ? OperandType.FP64 : OperandType.FP32;
if (toInteger)
{
bool unsigned = (op.Opc2 & 1) == 0;
bool roundWithFpscr = op.Opc != 1;
if (!roundWithFpscr && Optimizations.UseSse41)
{
EmitSse41ConvertInt32(context, FPRoundingMode.TowardsZero, !unsigned);
}
else
{
Operand toConvert = ExtractScalar(context, floatSize, op.Vm);
Operand asInteger;
// TODO: Fast Path.
if (roundWithFpscr)
{
MethodInfo info;
if (floatSize == OperandType.FP64)
{
info = unsigned
? typeof(SoftFallback).GetMethod(nameof(SoftFallback.DoubleToUInt32))
: typeof(SoftFallback).GetMethod(nameof(SoftFallback.DoubleToInt32));
}
else
{
info = unsigned
? typeof(SoftFallback).GetMethod(nameof(SoftFallback.FloatToUInt32))
: typeof(SoftFallback).GetMethod(nameof(SoftFallback.FloatToInt32));
}
asInteger = context.Call(info, toConvert);
}
else
{
// Round towards zero.
asInteger = EmitSaturateFloatToInt(context, toConvert, unsigned);
}
InsertScalar(context, op.Vd, asInteger);
}
}
else
{
bool unsigned = op.Opc == 0;
Operand toConvert = ExtractScalar(context, OperandType.I32, op.Vm);
Operand asFloat = EmitFPConvert(context, toConvert, floatSize, !unsigned);
InsertScalar(context, op.Vd, asFloat);
}
}
private static Operand EmitRoundMathCall(ArmEmitterContext context, MidpointRounding roundMode, Operand n)
{
IOpCode32Simd op = (IOpCode32Simd)context.CurrOp;
string name = nameof(Math.Round);
MethodInfo info = (op.Size & 1) == 0
? typeof(MathF).GetMethod(name, new Type[] { typeof(float), typeof(MidpointRounding) })
: typeof(Math). GetMethod(name, new Type[] { typeof(double), typeof(MidpointRounding) });
return context.Call(info, n, Const((int)roundMode));
}
private static FPRoundingMode RMToRoundMode(int rm)
{
FPRoundingMode roundMode;
switch (rm)
{
case 0b01:
roundMode = FPRoundingMode.ToNearest;
break;
case 0b10:
roundMode = FPRoundingMode.TowardsPlusInfinity;
break;
case 0b11:
roundMode = FPRoundingMode.TowardsMinusInfinity;
break;
default:
throw new ArgumentOutOfRangeException(nameof(rm));
}
return roundMode;
}
// VCVTA/M/N/P (floating-point).
public static void Vcvt_RM(ArmEmitterContext context)
{
OpCode32SimdCvtFI op = (OpCode32SimdCvtFI)context.CurrOp; // toInteger == true (opCode<18> == 1 => Opc2<2> == 1).
OperandType floatSize = op.RegisterSize == RegisterSize.Int64 ? OperandType.FP64 : OperandType.FP32;
bool unsigned = op.Opc == 0;
int rm = op.Opc2 & 3;
if (Optimizations.UseSse41 && rm != 0b00)
{
EmitSse41ConvertInt32(context, RMToRoundMode(rm), !unsigned);
}
else
{
Operand toConvert = ExtractScalar(context, floatSize, op.Vm);
switch (rm)
{
case 0b00: // Away
toConvert = EmitRoundMathCall(context, MidpointRounding.AwayFromZero, toConvert);
break;
case 0b01: // Nearest
toConvert = EmitRoundMathCall(context, MidpointRounding.ToEven, toConvert);
break;
case 0b10: // Towards positive infinity
toConvert = EmitUnaryMathCall(context, nameof(Math.Ceiling), toConvert);
break;
case 0b11: // Towards negative infinity
toConvert = EmitUnaryMathCall(context, nameof(Math.Floor), toConvert);
break;
}
Operand asInteger;
asInteger = EmitSaturateFloatToInt(context, toConvert, unsigned);
InsertScalar(context, op.Vd, asInteger);
}
}
// VRINTA/M/N/P (floating-point).
public static void Vrint_RM(ArmEmitterContext context)
{
OpCode32SimdS op = (OpCode32SimdS)context.CurrOp;
OperandType floatSize = op.RegisterSize == RegisterSize.Int64 ? OperandType.FP64 : OperandType.FP32;
int rm = op.Opc2 & 3;
if (Optimizations.UseSse2 && rm != 0b00)
{
EmitScalarUnaryOpSimd32(context, (m) =>
{
Intrinsic inst = (op.Size & 1) == 0 ? Intrinsic.X86Roundss : Intrinsic.X86Roundsd;
FPRoundingMode roundMode = RMToRoundMode(rm);
return context.AddIntrinsic(inst, m, Const(X86GetRoundControl(roundMode)));
});
}
else
{
Operand toConvert = ExtractScalar(context, floatSize, op.Vm);
switch (rm)
{
case 0b00: // Away
toConvert = EmitRoundMathCall(context, MidpointRounding.AwayFromZero, toConvert);
break;
case 0b01: // Nearest
toConvert = EmitRoundMathCall(context, MidpointRounding.ToEven, toConvert);
break;
case 0b10: // Towards positive infinity
toConvert = EmitUnaryMathCall(context, nameof(Math.Ceiling), toConvert);
break;
case 0b11: // Towards negative infinity
toConvert = EmitUnaryMathCall(context, nameof(Math.Floor), toConvert);
break;
}
InsertScalar(context, op.Vd, toConvert);
}
}
// VRINTZ (floating-point).
public static void Vrint_Z(ArmEmitterContext context)
{
OpCode32SimdS op = (OpCode32SimdS)context.CurrOp;
if (Optimizations.UseSse2)
{
EmitScalarUnaryOpSimd32(context, (m) =>
{
Intrinsic inst = (op.Size & 1) == 0 ? Intrinsic.X86Roundss : Intrinsic.X86Roundsd;
return context.AddIntrinsic(inst, m, Const(X86GetRoundControl(FPRoundingMode.TowardsZero)));
});
}
else
{
EmitScalarUnaryOpF32(context, (op1) => EmitUnaryMathCall(context, nameof(Math.Truncate), op1));
}
}
// VRINTX (floating-point).
public static void Vrintx_S(ArmEmitterContext context)
{
OpCode32SimdS op = (OpCode32SimdS)context.CurrOp;
bool doubleSize = (op.Size & 1) == 1;
string methodName = doubleSize ? nameof(SoftFallback.Round) : nameof(SoftFallback.RoundF);
EmitScalarUnaryOpF32(context, (op1) =>
{
MethodInfo info = typeof(SoftFallback).GetMethod(methodName);
return context.Call(info, op1);
});
}
private static Operand EmitFPConvert(ArmEmitterContext context, Operand value, OperandType type, bool signed)
{
Debug.Assert(value.Type == OperandType.I32 || value.Type == OperandType.I64);
if (signed)
{
return context.ConvertToFP(type, value);
}
else
{
return context.ConvertToFPUI(type, value);
}
}
private static void EmitSse41ConvertInt32(ArmEmitterContext context, FPRoundingMode roundMode, bool signed)
{
// A port of the similar round function in InstEmitSimdCvt.
OpCode32SimdCvtFI op = (OpCode32SimdCvtFI)context.CurrOp;
bool doubleSize = (op.Size & 1) != 0;
int shift = doubleSize ? 1 : 2;
Operand n = GetVecA32(op.Vm >> shift);
n = EmitSwapScalar(context, n, op.Vm, doubleSize);
if (!doubleSize)
{
Operand nRes = context.AddIntrinsic(Intrinsic.X86Cmpss, n, n, Const((int)CmpCondition.OrderedQ));
nRes = context.AddIntrinsic(Intrinsic.X86Pand, nRes, n);
nRes = context.AddIntrinsic(Intrinsic.X86Roundss, nRes, Const(X86GetRoundControl(roundMode)));
Operand zero = context.VectorZero();
Operand nCmp;
Operand nIntOrLong2 = default;
if (!signed)
{
nCmp = context.AddIntrinsic(Intrinsic.X86Cmpss, nRes, zero, Const((int)CmpCondition.NotLessThanOrEqual));
nRes = context.AddIntrinsic(Intrinsic.X86Pand, nRes, nCmp);
}
int fpMaxVal = 0x4F000000; // 2.14748365E9f (2147483648)
Operand fpMaxValMask = X86GetScalar(context, fpMaxVal);
Operand nIntOrLong = context.AddIntrinsicInt(Intrinsic.X86Cvtss2si, nRes);
if (!signed)
{
nRes = context.AddIntrinsic(Intrinsic.X86Subss, nRes, fpMaxValMask);
nCmp = context.AddIntrinsic(Intrinsic.X86Cmpss, nRes, zero, Const((int)CmpCondition.NotLessThanOrEqual));
nRes = context.AddIntrinsic(Intrinsic.X86Pand, nRes, nCmp);
nIntOrLong2 = context.AddIntrinsicInt(Intrinsic.X86Cvtss2si, nRes);
}
nRes = context.AddIntrinsic(Intrinsic.X86Cmpss, nRes, fpMaxValMask, Const((int)CmpCondition.NotLessThan));
Operand nInt = context.AddIntrinsicInt(Intrinsic.X86Cvtsi2si, nRes);
Operand dRes;
if (signed)
{
dRes = context.BitwiseExclusiveOr(nIntOrLong, nInt);
}
else
{
dRes = context.BitwiseExclusiveOr(nIntOrLong2, nInt);
dRes = context.Add(dRes, nIntOrLong);
}
InsertScalar(context, op.Vd, dRes);
}
else
{
Operand nRes = context.AddIntrinsic(Intrinsic.X86Cmpsd, n, n, Const((int)CmpCondition.OrderedQ));
nRes = context.AddIntrinsic(Intrinsic.X86Pand, nRes, n);
nRes = context.AddIntrinsic(Intrinsic.X86Roundsd, nRes, Const(X86GetRoundControl(roundMode)));
Operand zero = context.VectorZero();
Operand nCmp;
Operand nIntOrLong2 = default;
if (!signed)
{
nCmp = context.AddIntrinsic(Intrinsic.X86Cmpsd, nRes, zero, Const((int)CmpCondition.NotLessThanOrEqual));
nRes = context.AddIntrinsic(Intrinsic.X86Pand, nRes, nCmp);
}
long fpMaxVal = 0x41E0000000000000L; // 2147483648.0000000d (2147483648)
Operand fpMaxValMask = X86GetScalar(context, fpMaxVal);
Operand nIntOrLong = context.AddIntrinsicInt(Intrinsic.X86Cvtsd2si, nRes);
if (!signed)
{
nRes = context.AddIntrinsic(Intrinsic.X86Subsd, nRes, fpMaxValMask);
nCmp = context.AddIntrinsic(Intrinsic.X86Cmpsd, nRes, zero, Const((int)CmpCondition.NotLessThanOrEqual));
nRes = context.AddIntrinsic(Intrinsic.X86Pand, nRes, nCmp);
nIntOrLong2 = context.AddIntrinsicInt(Intrinsic.X86Cvtsd2si, nRes);
}
nRes = context.AddIntrinsic(Intrinsic.X86Cmpsd, nRes, fpMaxValMask, Const((int)CmpCondition.NotLessThan));
Operand nLong = context.AddIntrinsicLong(Intrinsic.X86Cvtsi2si, nRes);
nLong = context.ConvertI64ToI32(nLong);
Operand dRes;
if (signed)
{
dRes = context.BitwiseExclusiveOr(nIntOrLong, nLong);
}
else
{
dRes = context.BitwiseExclusiveOr(nIntOrLong2, nLong);
dRes = context.Add(dRes, nIntOrLong);
}
InsertScalar(context, op.Vd, dRes);
}
}
private static void EmitSse41ConvertVector32(ArmEmitterContext context, FPRoundingMode roundMode, bool signed)
{
OpCode32Simd op = (OpCode32Simd)context.CurrOp;
EmitVectorUnaryOpSimd32(context, (n) =>
{
int sizeF = op.Size & 1;
if (sizeF == 0)
{
Operand nRes = context.AddIntrinsic(Intrinsic.X86Cmpps, n, n, Const((int)CmpCondition.OrderedQ));
nRes = context.AddIntrinsic(Intrinsic.X86Pand, nRes, n);
nRes = context.AddIntrinsic(Intrinsic.X86Roundps, nRes, Const(X86GetRoundControl(roundMode)));
Operand zero = context.VectorZero();
Operand nCmp;
if (!signed)
{
nCmp = context.AddIntrinsic(Intrinsic.X86Cmpps, nRes, zero, Const((int)CmpCondition.NotLessThanOrEqual));
nRes = context.AddIntrinsic(Intrinsic.X86Pand, nRes, nCmp);
}
Operand fpMaxValMask = X86GetAllElements(context, 0x4F000000); // 2.14748365E9f (2147483648)
Operand nInt = context.AddIntrinsic(Intrinsic.X86Cvtps2dq, nRes);
Operand nInt2 = default;
if (!signed)
{
nRes = context.AddIntrinsic(Intrinsic.X86Subps, nRes, fpMaxValMask);
nCmp = context.AddIntrinsic(Intrinsic.X86Cmpps, nRes, zero, Const((int)CmpCondition.NotLessThanOrEqual));
nRes = context.AddIntrinsic(Intrinsic.X86Pand, nRes, nCmp);
nInt2 = context.AddIntrinsic(Intrinsic.X86Cvtps2dq, nRes);
}
nRes = context.AddIntrinsic(Intrinsic.X86Cmpps, nRes, fpMaxValMask, Const((int)CmpCondition.NotLessThan));
if (signed)
{
return context.AddIntrinsic(Intrinsic.X86Pxor, nInt, nRes);
}
else
{
Operand dRes = context.AddIntrinsic(Intrinsic.X86Pxor, nInt2, nRes);
return context.AddIntrinsic(Intrinsic.X86Paddd, dRes, nInt);
}
}
else /* if (sizeF == 1) */
{
Operand nRes = context.AddIntrinsic(Intrinsic.X86Cmppd, n, n, Const((int)CmpCondition.OrderedQ));
nRes = context.AddIntrinsic(Intrinsic.X86Pand, nRes, n);
nRes = context.AddIntrinsic(Intrinsic.X86Roundpd, nRes, Const(X86GetRoundControl(roundMode)));
Operand zero = context.VectorZero();
Operand nCmp;
if (!signed)
{
nCmp = context.AddIntrinsic(Intrinsic.X86Cmppd, nRes, zero, Const((int)CmpCondition.NotLessThanOrEqual));
nRes = context.AddIntrinsic(Intrinsic.X86Pand, nRes, nCmp);
}
Operand fpMaxValMask = X86GetAllElements(context, 0x43E0000000000000L); // 9.2233720368547760E18d (9223372036854775808)
Operand nLong = InstEmit.EmitSse2CvtDoubleToInt64OpF(context, nRes, false);
Operand nLong2 = default;
if (!signed)
{
nRes = context.AddIntrinsic(Intrinsic.X86Subpd, nRes, fpMaxValMask);
nCmp = context.AddIntrinsic(Intrinsic.X86Cmppd, nRes, zero, Const((int)CmpCondition.NotLessThanOrEqual));
nRes = context.AddIntrinsic(Intrinsic.X86Pand, nRes, nCmp);
nLong2 = InstEmit.EmitSse2CvtDoubleToInt64OpF(context, nRes, false);
}
nRes = context.AddIntrinsic(Intrinsic.X86Cmppd, nRes, fpMaxValMask, Const((int)CmpCondition.NotLessThan));
if (signed)
{
return context.AddIntrinsic(Intrinsic.X86Pxor, nLong, nRes);
}
else
{
Operand dRes = context.AddIntrinsic(Intrinsic.X86Pxor, nLong2, nRes);
return context.AddIntrinsic(Intrinsic.X86Paddq, dRes, nLong);
}
}
});
}
}
}