Ryujinx-uplift/Ryujinx.Tests/Cpu/CpuTest.cs
gdkchan a731ab3a2a Add a new JIT compiler for CPU code (#693)
* Start of the ARMeilleure project

* Refactoring around the old IRAdapter, now renamed to PreAllocator

* Optimize the LowestBitSet method

* Add CLZ support and fix CLS implementation

* Add missing Equals and GetHashCode overrides on some structs, misc small tweaks

* Implement the ByteSwap IR instruction, and some refactoring on the assembler

* Implement the DivideUI IR instruction and fix 64-bits IDIV

* Correct constant operand type on CSINC

* Move division instructions implementation to InstEmitDiv

* Fix destination type for the ConditionalSelect IR instruction

* Implement UMULH and SMULH, with new IR instructions

* Fix some issues with shift instructions

* Fix constant types for BFM instructions

* Fix up new tests using the new V128 struct

* Update tests

* Move DIV tests to a separate file

* Add support for calls, and some instructions that depends on them

* Start adding support for SIMD & FP types, along with some of the related ARM instructions

* Fix some typos and the divide instruction with FP operands

* Fix wrong method call on Clz_V

* Implement ARM FP & SIMD move instructions, Saddlv_V, and misc. fixes

* Implement SIMD logical instructions and more misc. fixes

* Fix PSRAD x86 instruction encoding, TRN, UABD and UABDL implementations

* Implement float conversion instruction, merge in LDj3SNuD fixes, and some other misc. fixes

* Implement SIMD shift instruction and fix Dup_V

* Add SCVTF and UCVTF (vector, fixed-point) variants to the opcode table

* Fix check with tolerance on tester

* Implement FP & SIMD comparison instructions, and some fixes

* Update FCVT (Scalar) encoding on the table to support the Half-float variants

* Support passing V128 structs, some cleanup on the register allocator, merge LDj3SNuD fixes

* Use old memory access methods, made a start on SIMD memory insts support, some fixes

* Fix float constant passed to functions, save and restore non-volatile XMM registers, other fixes

* Fix arguments count with struct return values, other fixes

* More instructions

* Misc. fixes and integrate LDj3SNuD fixes

* Update tests

* Add a faster linear scan allocator, unwinding support on windows, and other changes

* Update Ryujinx.HLE

* Update Ryujinx.Graphics

* Fix V128 return pointer passing, RCX is clobbered

* Update Ryujinx.Tests

* Update ITimeZoneService

* Stop using GetFunctionPointer as that can't be called from native code, misc. fixes and tweaks

* Use generic GetFunctionPointerForDelegate method and other tweaks

* Some refactoring on the code generator, assert on invalid operations and use a separate enum for intrinsics

* Remove some unused code on the assembler

* Fix REX.W prefix regression on float conversion instructions, add some sort of profiler

* Add hardware capability detection

* Fix regression on Sha1h and revert Fcm** changes

* Add SSE2-only paths on vector extract and insert, some refactoring on the pre-allocator

* Fix silly mistake introduced on last commit on CpuId

* Generate inline stack probes when the stack allocation is too large

* Initial support for the System-V ABI

* Support multiple destination operands

* Fix SSE2 VectorInsert8 path, and other fixes

* Change placement of XMM callee save and restore code to match other compilers

* Rename Dest to Destination and Inst to Instruction

* Fix a regression related to calls and the V128 type

* Add an extra space on comments to match code style

* Some refactoring

* Fix vector insert FP32 SSE2 path

* Port over the ARM32 instructions

* Avoid memory protection races on JIT Cache

* Another fix on VectorInsert FP32 (thanks to LDj3SNuD

* Float operands don't need to use the same register when VEX is supported

* Add a new register allocator, higher quality code for hot code (tier up), and other tweaks

* Some nits, small improvements on the pre allocator

* CpuThreadState is gone

* Allow changing CPU emulators with a config entry

* Add runtime identifiers on the ARMeilleure project

* Allow switching between CPUs through a config entry (pt. 2)

* Change win10-x64 to win-x64 on projects

* Update the Ryujinx project to use ARMeilleure

* Ensure that the selected register is valid on the hybrid allocator

* Allow exiting on returns to 0 (should fix test regression)

* Remove register assignments for most used variables on the hybrid allocator

* Do not use fixed registers as spill temp

* Add missing namespace and remove unneeded using

* Address PR feedback

* Fix types, etc

* Enable AssumeStrictAbiCompliance by default

* Ensure that Spill and Fill don't load or store any more than necessary
2019-08-08 21:56:22 +03:00

536 lines
21 KiB
C#

using ARMeilleure.Memory;
using ARMeilleure.State;
using ARMeilleure.Translation;
using NUnit.Framework;
using Ryujinx.Tests.Unicorn;
using System;
using System.Runtime.InteropServices;
namespace Ryujinx.Tests.Cpu
{
[TestFixture]
public class CpuTest
{
private ulong _currAddress;
private long _size;
private ulong _entryPoint;
private IntPtr _ramPointer;
private MemoryManager _memory;
private ExecutionContext _context;
private Translator _translator;
private static bool _unicornAvailable;
private UnicornAArch64 _unicornEmu;
static CpuTest()
{
_unicornAvailable = UnicornAArch64.IsAvailable();
if (!_unicornAvailable)
{
Console.WriteLine("WARNING: Could not find Unicorn.");
}
}
[SetUp]
public void Setup()
{
_currAddress = 0x1000;
_size = 0x1000;
_entryPoint = _currAddress;
_ramPointer = Marshal.AllocHGlobal(new IntPtr(_size));
_memory = new MemoryManager(_ramPointer);
_memory.Map((long)_currAddress, 0, _size);
_context = new ExecutionContext();
_translator = new Translator(_memory);
if (_unicornAvailable)
{
_unicornEmu = new UnicornAArch64();
_unicornEmu.MemoryMap(_currAddress, (ulong)_size, MemoryPermission.READ | MemoryPermission.EXEC);
_unicornEmu.PC = _entryPoint;
}
}
[TearDown]
public void Teardown()
{
Marshal.FreeHGlobal(_ramPointer);
_memory = null;
_context = null;
_translator = null;
_unicornEmu = null;
}
protected void Reset()
{
Teardown();
Setup();
}
protected void Opcode(uint opcode)
{
_memory.WriteUInt32((long)_currAddress, opcode);
if (_unicornAvailable)
{
_unicornEmu.MemoryWrite32((ulong)_currAddress, opcode);
}
_currAddress += 4;
}
protected ExecutionContext GetContext() => _context;
protected void SetContext(ulong x0 = 0,
ulong x1 = 0,
ulong x2 = 0,
ulong x3 = 0,
ulong x31 = 0,
V128 v0 = default(V128),
V128 v1 = default(V128),
V128 v2 = default(V128),
V128 v3 = default(V128),
V128 v4 = default(V128),
V128 v5 = default(V128),
V128 v30 = default(V128),
V128 v31 = default(V128),
bool overflow = false,
bool carry = false,
bool zero = false,
bool negative = false,
int fpcr = 0,
int fpsr = 0)
{
_context.SetX(0, x0);
_context.SetX(1, x1);
_context.SetX(2, x2);
_context.SetX(3, x3);
_context.SetX(31, x31);
_context.SetV(0, v0);
_context.SetV(1, v1);
_context.SetV(2, v2);
_context.SetV(3, v3);
_context.SetV(4, v4);
_context.SetV(5, v5);
_context.SetV(30, v30);
_context.SetV(31, v31);
_context.SetPstateFlag(PState.VFlag, overflow);
_context.SetPstateFlag(PState.CFlag, carry);
_context.SetPstateFlag(PState.ZFlag, zero);
_context.SetPstateFlag(PState.NFlag, negative);
_context.Fpcr = (FPCR)fpcr;
_context.Fpsr = (FPSR)fpsr;
if (_unicornAvailable)
{
_unicornEmu.X[0] = x0;
_unicornEmu.X[1] = x1;
_unicornEmu.X[2] = x2;
_unicornEmu.X[3] = x3;
_unicornEmu.SP = x31;
_unicornEmu.Q[0] = V128ToSimdValue(v0);
_unicornEmu.Q[1] = V128ToSimdValue(v1);
_unicornEmu.Q[2] = V128ToSimdValue(v2);
_unicornEmu.Q[3] = V128ToSimdValue(v3);
_unicornEmu.Q[4] = V128ToSimdValue(v4);
_unicornEmu.Q[5] = V128ToSimdValue(v5);
_unicornEmu.Q[30] = V128ToSimdValue(v30);
_unicornEmu.Q[31] = V128ToSimdValue(v31);
_unicornEmu.OverflowFlag = overflow;
_unicornEmu.CarryFlag = carry;
_unicornEmu.ZeroFlag = zero;
_unicornEmu.NegativeFlag = negative;
_unicornEmu.Fpcr = fpcr;
_unicornEmu.Fpsr = fpsr;
}
}
protected void ExecuteOpcodes()
{
_translator.Execute(_context, _entryPoint);
if (_unicornAvailable)
{
_unicornEmu.RunForCount((ulong)(_currAddress - _entryPoint - 4) / 4);
}
}
protected ExecutionContext SingleOpcode(uint opcode,
ulong x0 = 0,
ulong x1 = 0,
ulong x2 = 0,
ulong x3 = 0,
ulong x31 = 0,
V128 v0 = default(V128),
V128 v1 = default(V128),
V128 v2 = default(V128),
V128 v3 = default(V128),
V128 v4 = default(V128),
V128 v5 = default(V128),
V128 v30 = default(V128),
V128 v31 = default(V128),
bool overflow = false,
bool carry = false,
bool zero = false,
bool negative = false,
int fpcr = 0,
int fpsr = 0)
{
Opcode(opcode);
Opcode(0xD65F03C0); // RET
SetContext(x0, x1, x2, x3, x31, v0, v1, v2, v3, v4, v5, v30, v31, overflow, carry, zero, negative, fpcr, fpsr);
ExecuteOpcodes();
return GetContext();
}
/// <summary>Rounding Mode control field.</summary>
public enum RMode
{
/// <summary>Round to Nearest mode.</summary>
Rn,
/// <summary>Round towards Plus Infinity mode.</summary>
Rp,
/// <summary>Round towards Minus Infinity mode.</summary>
Rm,
/// <summary>Round towards Zero mode.</summary>
Rz
};
/// <summary>Floating-point Control Register.</summary>
protected enum Fpcr
{
/// <summary>Rounding Mode control field.</summary>
RMode = 22,
/// <summary>Flush-to-zero mode control bit.</summary>
Fz = 24,
/// <summary>Default NaN mode control bit.</summary>
Dn = 25,
/// <summary>Alternative half-precision control bit.</summary>
Ahp = 26
}
/// <summary>Floating-point Status Register.</summary>
[Flags] protected enum Fpsr
{
None = 0,
/// <summary>Invalid Operation cumulative floating-point exception bit.</summary>
Ioc = 1 << 0,
/// <summary>Divide by Zero cumulative floating-point exception bit.</summary>
Dzc = 1 << 1,
/// <summary>Overflow cumulative floating-point exception bit.</summary>
Ofc = 1 << 2,
/// <summary>Underflow cumulative floating-point exception bit.</summary>
Ufc = 1 << 3,
/// <summary>Inexact cumulative floating-point exception bit.</summary>
Ixc = 1 << 4,
/// <summary>Input Denormal cumulative floating-point exception bit.</summary>
Idc = 1 << 7,
/// <summary>Cumulative saturation bit.</summary>
Qc = 1 << 27
}
[Flags] protected enum FpSkips
{
None = 0,
IfNaNS = 1,
IfNaND = 2,
IfUnderflow = 4,
IfOverflow = 8
}
protected enum FpTolerances
{
None,
UpToOneUlpsS,
UpToOneUlpsD
}
protected void CompareAgainstUnicorn(
Fpsr fpsrMask = Fpsr.None,
FpSkips fpSkips = FpSkips.None,
FpTolerances fpTolerances = FpTolerances.None)
{
if (!_unicornAvailable)
{
return;
}
if (fpSkips != FpSkips.None)
{
ManageFpSkips(fpSkips);
}
Assert.That(_context.GetX(0), Is.EqualTo(_unicornEmu.X[0]));
Assert.That(_context.GetX(1), Is.EqualTo(_unicornEmu.X[1]));
Assert.That(_context.GetX(2), Is.EqualTo(_unicornEmu.X[2]));
Assert.That(_context.GetX(3), Is.EqualTo(_unicornEmu.X[3]));
Assert.That(_context.GetX(4), Is.EqualTo(_unicornEmu.X[4]));
Assert.That(_context.GetX(5), Is.EqualTo(_unicornEmu.X[5]));
Assert.That(_context.GetX(6), Is.EqualTo(_unicornEmu.X[6]));
Assert.That(_context.GetX(7), Is.EqualTo(_unicornEmu.X[7]));
Assert.That(_context.GetX(8), Is.EqualTo(_unicornEmu.X[8]));
Assert.That(_context.GetX(9), Is.EqualTo(_unicornEmu.X[9]));
Assert.That(_context.GetX(10), Is.EqualTo(_unicornEmu.X[10]));
Assert.That(_context.GetX(11), Is.EqualTo(_unicornEmu.X[11]));
Assert.That(_context.GetX(12), Is.EqualTo(_unicornEmu.X[12]));
Assert.That(_context.GetX(13), Is.EqualTo(_unicornEmu.X[13]));
Assert.That(_context.GetX(14), Is.EqualTo(_unicornEmu.X[14]));
Assert.That(_context.GetX(15), Is.EqualTo(_unicornEmu.X[15]));
Assert.That(_context.GetX(16), Is.EqualTo(_unicornEmu.X[16]));
Assert.That(_context.GetX(17), Is.EqualTo(_unicornEmu.X[17]));
Assert.That(_context.GetX(18), Is.EqualTo(_unicornEmu.X[18]));
Assert.That(_context.GetX(19), Is.EqualTo(_unicornEmu.X[19]));
Assert.That(_context.GetX(20), Is.EqualTo(_unicornEmu.X[20]));
Assert.That(_context.GetX(21), Is.EqualTo(_unicornEmu.X[21]));
Assert.That(_context.GetX(22), Is.EqualTo(_unicornEmu.X[22]));
Assert.That(_context.GetX(23), Is.EqualTo(_unicornEmu.X[23]));
Assert.That(_context.GetX(24), Is.EqualTo(_unicornEmu.X[24]));
Assert.That(_context.GetX(25), Is.EqualTo(_unicornEmu.X[25]));
Assert.That(_context.GetX(26), Is.EqualTo(_unicornEmu.X[26]));
Assert.That(_context.GetX(27), Is.EqualTo(_unicornEmu.X[27]));
Assert.That(_context.GetX(28), Is.EqualTo(_unicornEmu.X[28]));
Assert.That(_context.GetX(29), Is.EqualTo(_unicornEmu.X[29]));
Assert.That(_context.GetX(30), Is.EqualTo(_unicornEmu.X[30]));
Assert.That(_context.GetX(31), Is.EqualTo(_unicornEmu.SP));
if (fpTolerances == FpTolerances.None)
{
Assert.That(V128ToSimdValue(_context.GetV(0)), Is.EqualTo(_unicornEmu.Q[0]));
}
else
{
ManageFpTolerances(fpTolerances);
}
Assert.That(V128ToSimdValue(_context.GetV(1)), Is.EqualTo(_unicornEmu.Q[1]));
Assert.That(V128ToSimdValue(_context.GetV(2)), Is.EqualTo(_unicornEmu.Q[2]));
Assert.That(V128ToSimdValue(_context.GetV(3)), Is.EqualTo(_unicornEmu.Q[3]));
Assert.That(V128ToSimdValue(_context.GetV(4)), Is.EqualTo(_unicornEmu.Q[4]));
Assert.That(V128ToSimdValue(_context.GetV(5)), Is.EqualTo(_unicornEmu.Q[5]));
Assert.That(V128ToSimdValue(_context.GetV(6)), Is.EqualTo(_unicornEmu.Q[6]));
Assert.That(V128ToSimdValue(_context.GetV(7)), Is.EqualTo(_unicornEmu.Q[7]));
Assert.That(V128ToSimdValue(_context.GetV(8)), Is.EqualTo(_unicornEmu.Q[8]));
Assert.That(V128ToSimdValue(_context.GetV(9)), Is.EqualTo(_unicornEmu.Q[9]));
Assert.That(V128ToSimdValue(_context.GetV(10)), Is.EqualTo(_unicornEmu.Q[10]));
Assert.That(V128ToSimdValue(_context.GetV(11)), Is.EqualTo(_unicornEmu.Q[11]));
Assert.That(V128ToSimdValue(_context.GetV(12)), Is.EqualTo(_unicornEmu.Q[12]));
Assert.That(V128ToSimdValue(_context.GetV(13)), Is.EqualTo(_unicornEmu.Q[13]));
Assert.That(V128ToSimdValue(_context.GetV(14)), Is.EqualTo(_unicornEmu.Q[14]));
Assert.That(V128ToSimdValue(_context.GetV(15)), Is.EqualTo(_unicornEmu.Q[15]));
Assert.That(V128ToSimdValue(_context.GetV(16)), Is.EqualTo(_unicornEmu.Q[16]));
Assert.That(V128ToSimdValue(_context.GetV(17)), Is.EqualTo(_unicornEmu.Q[17]));
Assert.That(V128ToSimdValue(_context.GetV(18)), Is.EqualTo(_unicornEmu.Q[18]));
Assert.That(V128ToSimdValue(_context.GetV(19)), Is.EqualTo(_unicornEmu.Q[19]));
Assert.That(V128ToSimdValue(_context.GetV(20)), Is.EqualTo(_unicornEmu.Q[20]));
Assert.That(V128ToSimdValue(_context.GetV(21)), Is.EqualTo(_unicornEmu.Q[21]));
Assert.That(V128ToSimdValue(_context.GetV(22)), Is.EqualTo(_unicornEmu.Q[22]));
Assert.That(V128ToSimdValue(_context.GetV(23)), Is.EqualTo(_unicornEmu.Q[23]));
Assert.That(V128ToSimdValue(_context.GetV(24)), Is.EqualTo(_unicornEmu.Q[24]));
Assert.That(V128ToSimdValue(_context.GetV(25)), Is.EqualTo(_unicornEmu.Q[25]));
Assert.That(V128ToSimdValue(_context.GetV(26)), Is.EqualTo(_unicornEmu.Q[26]));
Assert.That(V128ToSimdValue(_context.GetV(27)), Is.EqualTo(_unicornEmu.Q[27]));
Assert.That(V128ToSimdValue(_context.GetV(28)), Is.EqualTo(_unicornEmu.Q[28]));
Assert.That(V128ToSimdValue(_context.GetV(29)), Is.EqualTo(_unicornEmu.Q[29]));
Assert.That(V128ToSimdValue(_context.GetV(30)), Is.EqualTo(_unicornEmu.Q[30]));
Assert.That(V128ToSimdValue(_context.GetV(31)), Is.EqualTo(_unicornEmu.Q[31]));
Assert.That((int)_context.Fpcr, Is.EqualTo(_unicornEmu.Fpcr));
Assert.That((int)_context.Fpsr & (int)fpsrMask, Is.EqualTo(_unicornEmu.Fpsr & (int)fpsrMask));
Assert.That(_context.GetPstateFlag(PState.VFlag), Is.EqualTo(_unicornEmu.OverflowFlag));
Assert.That(_context.GetPstateFlag(PState.CFlag), Is.EqualTo(_unicornEmu.CarryFlag));
Assert.That(_context.GetPstateFlag(PState.ZFlag), Is.EqualTo(_unicornEmu.ZeroFlag));
Assert.That(_context.GetPstateFlag(PState.NFlag), Is.EqualTo(_unicornEmu.NegativeFlag));
}
private void ManageFpSkips(FpSkips fpSkips)
{
if (fpSkips.HasFlag(FpSkips.IfNaNS))
{
if (float.IsNaN(_unicornEmu.Q[0].AsFloat()))
{
Assert.Ignore("NaN test.");
}
}
else if (fpSkips.HasFlag(FpSkips.IfNaND))
{
if (double.IsNaN(_unicornEmu.Q[0].AsDouble()))
{
Assert.Ignore("NaN test.");
}
}
if (fpSkips.HasFlag(FpSkips.IfUnderflow))
{
if ((_unicornEmu.Fpsr & (int)Fpsr.Ufc) != 0)
{
Assert.Ignore("Underflow test.");
}
}
if (fpSkips.HasFlag(FpSkips.IfOverflow))
{
if ((_unicornEmu.Fpsr & (int)Fpsr.Ofc) != 0)
{
Assert.Ignore("Overflow test.");
}
}
}
private void ManageFpTolerances(FpTolerances fpTolerances)
{
bool IsNormalOrSubnormalS(float f) => float.IsNormal(f) || float.IsSubnormal(f);
bool IsNormalOrSubnormalD(double d) => double.IsNormal(d) || double.IsSubnormal(d);
if (!Is.EqualTo(_unicornEmu.Q[0]).ApplyTo(V128ToSimdValue(_context.GetV(0))).IsSuccess)
{
if (fpTolerances == FpTolerances.UpToOneUlpsS)
{
if (IsNormalOrSubnormalS(_unicornEmu.Q[0].AsFloat()) &&
IsNormalOrSubnormalS(_context.GetV(0).AsFloat()))
{
Assert.That (_context.GetV(0).GetFloat(0),
Is.EqualTo(_unicornEmu.Q[0].GetFloat(0)).Within(1).Ulps);
Assert.That (_context.GetV(0).GetFloat(1),
Is.EqualTo(_unicornEmu.Q[0].GetFloat(1)).Within(1).Ulps);
Assert.That (_context.GetV(0).GetFloat(2),
Is.EqualTo(_unicornEmu.Q[0].GetFloat(2)).Within(1).Ulps);
Assert.That (_context.GetV(0).GetFloat(3),
Is.EqualTo(_unicornEmu.Q[0].GetFloat(3)).Within(1).Ulps);
Console.WriteLine(fpTolerances);
}
else
{
Assert.That(V128ToSimdValue(_context.GetV(0)), Is.EqualTo(_unicornEmu.Q[0]));
}
}
if (fpTolerances == FpTolerances.UpToOneUlpsD)
{
if (IsNormalOrSubnormalD(_unicornEmu.Q[0].AsDouble()) &&
IsNormalOrSubnormalD(_context.GetV(0).AsDouble()))
{
Assert.That (_context.GetV(0).GetDouble(0),
Is.EqualTo(_unicornEmu.Q[0].GetDouble(0)).Within(1).Ulps);
Assert.That (_context.GetV(0).GetDouble(1),
Is.EqualTo(_unicornEmu.Q[0].GetDouble(1)).Within(1).Ulps);
Console.WriteLine(fpTolerances);
}
else
{
Assert.That(V128ToSimdValue(_context.GetV(0)), Is.EqualTo(_unicornEmu.Q[0]));
}
}
}
}
private static SimdValue V128ToSimdValue(V128 value)
{
return new SimdValue(value.GetUInt64(0), value.GetUInt64(1));
}
protected static V128 MakeVectorScalar(float value) => new V128(value);
protected static V128 MakeVectorScalar(double value) => new V128(value);
protected static V128 MakeVectorE0(ulong e0) => new V128(e0, 0);
protected static V128 MakeVectorE1(ulong e1) => new V128(0, e1);
protected static V128 MakeVectorE0E1(ulong e0, ulong e1) => new V128(e0, e1);
protected static ulong GetVectorE0(V128 vector) => vector.GetUInt64(0);
protected static ulong GetVectorE1(V128 vector) => vector.GetUInt64(1);
protected static ushort GenNormalH()
{
uint rnd;
do rnd = TestContext.CurrentContext.Random.NextUShort();
while (( rnd & 0x7C00u) == 0u ||
(~rnd & 0x7C00u) == 0u);
return (ushort)rnd;
}
protected static ushort GenSubnormalH()
{
uint rnd;
do rnd = TestContext.CurrentContext.Random.NextUShort();
while ((rnd & 0x03FFu) == 0u);
return (ushort)(rnd & 0x83FFu);
}
protected static uint GenNormalS()
{
uint rnd;
do rnd = TestContext.CurrentContext.Random.NextUInt();
while (( rnd & 0x7F800000u) == 0u ||
(~rnd & 0x7F800000u) == 0u);
return rnd;
}
protected static uint GenSubnormalS()
{
uint rnd;
do rnd = TestContext.CurrentContext.Random.NextUInt();
while ((rnd & 0x007FFFFFu) == 0u);
return rnd & 0x807FFFFFu;
}
protected static ulong GenNormalD()
{
ulong rnd;
do rnd = TestContext.CurrentContext.Random.NextULong();
while (( rnd & 0x7FF0000000000000ul) == 0ul ||
(~rnd & 0x7FF0000000000000ul) == 0ul);
return rnd;
}
protected static ulong GenSubnormalD()
{
ulong rnd;
do rnd = TestContext.CurrentContext.Random.NextULong();
while ((rnd & 0x000FFFFFFFFFFFFFul) == 0ul);
return rnd & 0x800FFFFFFFFFFFFFul;
}
}
}