Ryujinx-uplift/Ryujinx.Tests/Cpu/CpuTest.cs
TSRBerry 905a191e28
Use upstream unicorn for Ryujinx.Tests.Unicorn (#3771)
* unicorn: Add modified ver of unicorns const gen

* unicorn: Use upstream consts

These consts were generated from the dev branch of unicorn

* unicorn: Split common consts into multiple enums

* unicorn: Remove arch prefix from consts

* unicorn: Add new windows dll

Windows 10 - MSVC x64 shared build

* unicorn: Use absolute path for const generation

* unicorn: Remove fspcr patch

* unicorn: Fix using the wrong file extension

For some reason _NativeLibraryExtension evaluates to ".so" even on Windows.

* unicorn: Add linux shared object again

* unicron: Add DllImportResolver

* unicorn: Try to import unicorn using an absolute path

* unicorn: Add clean target

* unicorn: Replace IsUnicornAvailable() methods

* unicorn: Skip tests instead of silently passing them if unicorn is missing

* unicorn: Write error message to stderr

* unicorn: Make Interface static

* unicron: Include prefixed unicorn libs (libunicorn.so)

Co-authored-by: merry <git@mary.rs>

* unicorn: Add lib prefix to shared object for linux

Co-authored-by: merry <git@mary.rs>
2022-11-20 20:18:21 +01:00

610 lines
24 KiB
C#

using ARMeilleure;
using ARMeilleure.State;
using ARMeilleure.Translation;
using NUnit.Framework;
using Ryujinx.Cpu.Jit;
using Ryujinx.Memory;
using Ryujinx.Tests.Unicorn;
using System;
using MemoryPermission = Ryujinx.Tests.Unicorn.MemoryPermission;
namespace Ryujinx.Tests.Cpu
{
[TestFixture]
public class CpuTest
{
protected const ulong Size = 0x1000;
protected const ulong CodeBaseAddress = 0x1000;
protected const ulong DataBaseAddress = CodeBaseAddress + Size;
private static bool Ignore_FpcrFz = false;
private static bool Ignore_FpcrDn = false;
private static bool IgnoreAllExcept_FpsrQc = false;
private ulong _currAddress;
private MemoryBlock _ram;
private MemoryManager _memory;
private ExecutionContext _context;
private CpuContext _cpuContext;
private static bool _unicornAvailable;
private UnicornAArch64 _unicornEmu;
private bool _usingMemory;
[OneTimeSetUp]
public void OneTimeSetup()
{
_unicornAvailable = UnicornAArch64.IsAvailable();
Assume.That(_unicornAvailable, "Unicorn is not available");
}
[SetUp]
public void Setup()
{
_currAddress = CodeBaseAddress;
_ram = new MemoryBlock(Size * 2);
_memory = new MemoryManager(_ram, 1ul << 16);
_memory.IncrementReferenceCount();
_memory.Map(CodeBaseAddress, 0, Size * 2);
_context = CpuContext.CreateExecutionContext();
Translator.IsReadyForTranslation.Set();
_cpuContext = new CpuContext(_memory, for64Bit: true);
// Prevent registering LCQ functions in the FunctionTable to avoid initializing and populating the table,
// which improves test durations.
Optimizations.AllowLcqInFunctionTable = false;
Optimizations.UseUnmanagedDispatchLoop = false;
if (_unicornAvailable)
{
_unicornEmu = new UnicornAArch64();
_unicornEmu.MemoryMap(CodeBaseAddress, Size, MemoryPermission.READ | MemoryPermission.EXEC);
_unicornEmu.MemoryMap(DataBaseAddress, Size, MemoryPermission.READ | MemoryPermission.WRITE);
_unicornEmu.PC = CodeBaseAddress;
}
}
[TearDown]
public void Teardown()
{
if (_unicornAvailable)
{
_unicornEmu.Dispose();
_unicornEmu = null;
}
_memory.DecrementReferenceCount();
_context.Dispose();
_ram.Dispose();
_memory = null;
_context = null;
_cpuContext = null;
_unicornEmu = null;
_usingMemory = false;
}
protected void Reset()
{
Teardown();
Setup();
}
protected void Opcode(uint opcode)
{
_memory.Write(_currAddress, opcode);
if (_unicornAvailable)
{
_unicornEmu.MemoryWrite32(_currAddress, opcode);
}
_currAddress += 4;
}
protected ExecutionContext GetContext() => _context;
protected void SetContext(ulong x0 = 0,
ulong x1 = 0,
ulong x2 = 0,
ulong x3 = 0,
ulong x31 = 0,
V128 v0 = default,
V128 v1 = default,
V128 v2 = default,
V128 v3 = default,
V128 v4 = default,
V128 v5 = default,
V128 v30 = default,
V128 v31 = default,
bool overflow = false,
bool carry = false,
bool zero = false,
bool negative = false,
int fpcr = 0,
int fpsr = 0)
{
_context.SetX(0, x0);
_context.SetX(1, x1);
_context.SetX(2, x2);
_context.SetX(3, x3);
_context.SetX(31, x31);
_context.SetV(0, v0);
_context.SetV(1, v1);
_context.SetV(2, v2);
_context.SetV(3, v3);
_context.SetV(4, v4);
_context.SetV(5, v5);
_context.SetV(30, v30);
_context.SetV(31, v31);
_context.SetPstateFlag(PState.VFlag, overflow);
_context.SetPstateFlag(PState.CFlag, carry);
_context.SetPstateFlag(PState.ZFlag, zero);
_context.SetPstateFlag(PState.NFlag, negative);
_context.Fpcr = (FPCR)fpcr;
_context.Fpsr = (FPSR)fpsr;
if (_unicornAvailable)
{
_unicornEmu.X[0] = x0;
_unicornEmu.X[1] = x1;
_unicornEmu.X[2] = x2;
_unicornEmu.X[3] = x3;
_unicornEmu.SP = x31;
_unicornEmu.Q[0] = V128ToSimdValue(v0);
_unicornEmu.Q[1] = V128ToSimdValue(v1);
_unicornEmu.Q[2] = V128ToSimdValue(v2);
_unicornEmu.Q[3] = V128ToSimdValue(v3);
_unicornEmu.Q[4] = V128ToSimdValue(v4);
_unicornEmu.Q[5] = V128ToSimdValue(v5);
_unicornEmu.Q[30] = V128ToSimdValue(v30);
_unicornEmu.Q[31] = V128ToSimdValue(v31);
_unicornEmu.OverflowFlag = overflow;
_unicornEmu.CarryFlag = carry;
_unicornEmu.ZeroFlag = zero;
_unicornEmu.NegativeFlag = negative;
_unicornEmu.Fpcr = fpcr;
_unicornEmu.Fpsr = fpsr;
}
}
protected void ExecuteOpcodes(bool runUnicorn = true)
{
_cpuContext.Execute(_context, CodeBaseAddress);
if (_unicornAvailable && runUnicorn)
{
_unicornEmu.RunForCount((_currAddress - CodeBaseAddress - 4) / 4);
}
}
protected ExecutionContext SingleOpcode(uint opcode,
ulong x0 = 0,
ulong x1 = 0,
ulong x2 = 0,
ulong x3 = 0,
ulong x31 = 0,
V128 v0 = default,
V128 v1 = default,
V128 v2 = default,
V128 v3 = default,
V128 v4 = default,
V128 v5 = default,
V128 v30 = default,
V128 v31 = default,
bool overflow = false,
bool carry = false,
bool zero = false,
bool negative = false,
int fpcr = 0,
int fpsr = 0,
bool runUnicorn = true)
{
if (Ignore_FpcrFz)
{
fpcr &= ~(1 << (int)Fpcr.Fz);
}
if (Ignore_FpcrDn)
{
fpcr &= ~(1 << (int)Fpcr.Dn);
}
Opcode(opcode);
Opcode(0xD65F03C0); // RET
SetContext(x0, x1, x2, x3, x31, v0, v1, v2, v3, v4, v5, v30, v31, overflow, carry, zero, negative, fpcr, fpsr);
ExecuteOpcodes(runUnicorn);
return GetContext();
}
protected void SetWorkingMemory(ulong offset, byte[] data)
{
_memory.Write(DataBaseAddress + offset, data);
if (_unicornAvailable)
{
_unicornEmu.MemoryWrite(DataBaseAddress + offset, data);
}
_usingMemory = true; // When true, CompareAgainstUnicorn checks the working memory for equality too.
}
protected void SetWorkingMemory(ulong offset, byte data)
{
_memory.Write(DataBaseAddress + offset, data);
if (_unicornAvailable)
{
_unicornEmu.MemoryWrite8(DataBaseAddress + offset, data);
}
_usingMemory = true; // When true, CompareAgainstUnicorn checks the working memory for equality too.
}
/// <summary>Rounding Mode control field.</summary>
public enum RMode
{
/// <summary>Round to Nearest mode.</summary>
Rn,
/// <summary>Round towards Plus Infinity mode.</summary>
Rp,
/// <summary>Round towards Minus Infinity mode.</summary>
Rm,
/// <summary>Round towards Zero mode.</summary>
Rz
};
/// <summary>Floating-point Control Register.</summary>
protected enum Fpcr
{
/// <summary>Rounding Mode control field.</summary>
RMode = 22,
/// <summary>Flush-to-zero mode control bit.</summary>
Fz = 24,
/// <summary>Default NaN mode control bit.</summary>
Dn = 25,
/// <summary>Alternative half-precision control bit.</summary>
Ahp = 26
}
/// <summary>Floating-point Status Register.</summary>
[Flags] protected enum Fpsr
{
None = 0,
/// <summary>Invalid Operation cumulative floating-point exception bit.</summary>
Ioc = 1 << 0,
/// <summary>Divide by Zero cumulative floating-point exception bit.</summary>
Dzc = 1 << 1,
/// <summary>Overflow cumulative floating-point exception bit.</summary>
Ofc = 1 << 2,
/// <summary>Underflow cumulative floating-point exception bit.</summary>
Ufc = 1 << 3,
/// <summary>Inexact cumulative floating-point exception bit.</summary>
Ixc = 1 << 4,
/// <summary>Input Denormal cumulative floating-point exception bit.</summary>
Idc = 1 << 7,
/// <summary>Cumulative saturation bit.</summary>
Qc = 1 << 27
}
[Flags] protected enum FpSkips
{
None = 0,
IfNaNS = 1,
IfNaND = 2,
IfUnderflow = 4,
IfOverflow = 8
}
protected enum FpTolerances
{
None,
UpToOneUlpsS,
UpToOneUlpsD
}
protected void CompareAgainstUnicorn(
Fpsr fpsrMask = Fpsr.None,
FpSkips fpSkips = FpSkips.None,
FpTolerances fpTolerances = FpTolerances.None)
{
if (!_unicornAvailable)
{
return;
}
if (IgnoreAllExcept_FpsrQc)
{
fpsrMask &= Fpsr.Qc;
}
if (fpSkips != FpSkips.None)
{
ManageFpSkips(fpSkips);
}
Assert.That(_context.GetX(0), Is.EqualTo(_unicornEmu.X[0]), "X0");
Assert.That(_context.GetX(1), Is.EqualTo(_unicornEmu.X[1]), "X1");
Assert.That(_context.GetX(2), Is.EqualTo(_unicornEmu.X[2]), "X2");
Assert.That(_context.GetX(3), Is.EqualTo(_unicornEmu.X[3]), "X3");
Assert.That(_context.GetX(4), Is.EqualTo(_unicornEmu.X[4]));
Assert.That(_context.GetX(5), Is.EqualTo(_unicornEmu.X[5]));
Assert.That(_context.GetX(6), Is.EqualTo(_unicornEmu.X[6]));
Assert.That(_context.GetX(7), Is.EqualTo(_unicornEmu.X[7]));
Assert.That(_context.GetX(8), Is.EqualTo(_unicornEmu.X[8]));
Assert.That(_context.GetX(9), Is.EqualTo(_unicornEmu.X[9]));
Assert.That(_context.GetX(10), Is.EqualTo(_unicornEmu.X[10]));
Assert.That(_context.GetX(11), Is.EqualTo(_unicornEmu.X[11]));
Assert.That(_context.GetX(12), Is.EqualTo(_unicornEmu.X[12]));
Assert.That(_context.GetX(13), Is.EqualTo(_unicornEmu.X[13]));
Assert.That(_context.GetX(14), Is.EqualTo(_unicornEmu.X[14]));
Assert.That(_context.GetX(15), Is.EqualTo(_unicornEmu.X[15]));
Assert.That(_context.GetX(16), Is.EqualTo(_unicornEmu.X[16]));
Assert.That(_context.GetX(17), Is.EqualTo(_unicornEmu.X[17]));
Assert.That(_context.GetX(18), Is.EqualTo(_unicornEmu.X[18]));
Assert.That(_context.GetX(19), Is.EqualTo(_unicornEmu.X[19]));
Assert.That(_context.GetX(20), Is.EqualTo(_unicornEmu.X[20]));
Assert.That(_context.GetX(21), Is.EqualTo(_unicornEmu.X[21]));
Assert.That(_context.GetX(22), Is.EqualTo(_unicornEmu.X[22]));
Assert.That(_context.GetX(23), Is.EqualTo(_unicornEmu.X[23]));
Assert.That(_context.GetX(24), Is.EqualTo(_unicornEmu.X[24]));
Assert.That(_context.GetX(25), Is.EqualTo(_unicornEmu.X[25]));
Assert.That(_context.GetX(26), Is.EqualTo(_unicornEmu.X[26]));
Assert.That(_context.GetX(27), Is.EqualTo(_unicornEmu.X[27]));
Assert.That(_context.GetX(28), Is.EqualTo(_unicornEmu.X[28]));
Assert.That(_context.GetX(29), Is.EqualTo(_unicornEmu.X[29]));
Assert.That(_context.GetX(30), Is.EqualTo(_unicornEmu.X[30]));
Assert.That(_context.GetX(31), Is.EqualTo(_unicornEmu.SP), "X31");
if (fpTolerances == FpTolerances.None)
{
Assert.That(V128ToSimdValue(_context.GetV(0)), Is.EqualTo(_unicornEmu.Q[0]), "V0");
}
else
{
ManageFpTolerances(fpTolerances);
}
Assert.That(V128ToSimdValue(_context.GetV(1)), Is.EqualTo(_unicornEmu.Q[1]), "V1");
Assert.That(V128ToSimdValue(_context.GetV(2)), Is.EqualTo(_unicornEmu.Q[2]), "V2");
Assert.That(V128ToSimdValue(_context.GetV(3)), Is.EqualTo(_unicornEmu.Q[3]), "V3");
Assert.That(V128ToSimdValue(_context.GetV(4)), Is.EqualTo(_unicornEmu.Q[4]), "V4");
Assert.That(V128ToSimdValue(_context.GetV(5)), Is.EqualTo(_unicornEmu.Q[5]), "V5");
Assert.That(V128ToSimdValue(_context.GetV(6)), Is.EqualTo(_unicornEmu.Q[6]));
Assert.That(V128ToSimdValue(_context.GetV(7)), Is.EqualTo(_unicornEmu.Q[7]));
Assert.That(V128ToSimdValue(_context.GetV(8)), Is.EqualTo(_unicornEmu.Q[8]));
Assert.That(V128ToSimdValue(_context.GetV(9)), Is.EqualTo(_unicornEmu.Q[9]));
Assert.That(V128ToSimdValue(_context.GetV(10)), Is.EqualTo(_unicornEmu.Q[10]));
Assert.That(V128ToSimdValue(_context.GetV(11)), Is.EqualTo(_unicornEmu.Q[11]));
Assert.That(V128ToSimdValue(_context.GetV(12)), Is.EqualTo(_unicornEmu.Q[12]));
Assert.That(V128ToSimdValue(_context.GetV(13)), Is.EqualTo(_unicornEmu.Q[13]));
Assert.That(V128ToSimdValue(_context.GetV(14)), Is.EqualTo(_unicornEmu.Q[14]));
Assert.That(V128ToSimdValue(_context.GetV(15)), Is.EqualTo(_unicornEmu.Q[15]));
Assert.That(V128ToSimdValue(_context.GetV(16)), Is.EqualTo(_unicornEmu.Q[16]));
Assert.That(V128ToSimdValue(_context.GetV(17)), Is.EqualTo(_unicornEmu.Q[17]));
Assert.That(V128ToSimdValue(_context.GetV(18)), Is.EqualTo(_unicornEmu.Q[18]));
Assert.That(V128ToSimdValue(_context.GetV(19)), Is.EqualTo(_unicornEmu.Q[19]));
Assert.That(V128ToSimdValue(_context.GetV(20)), Is.EqualTo(_unicornEmu.Q[20]));
Assert.That(V128ToSimdValue(_context.GetV(21)), Is.EqualTo(_unicornEmu.Q[21]));
Assert.That(V128ToSimdValue(_context.GetV(22)), Is.EqualTo(_unicornEmu.Q[22]));
Assert.That(V128ToSimdValue(_context.GetV(23)), Is.EqualTo(_unicornEmu.Q[23]));
Assert.That(V128ToSimdValue(_context.GetV(24)), Is.EqualTo(_unicornEmu.Q[24]));
Assert.That(V128ToSimdValue(_context.GetV(25)), Is.EqualTo(_unicornEmu.Q[25]));
Assert.That(V128ToSimdValue(_context.GetV(26)), Is.EqualTo(_unicornEmu.Q[26]));
Assert.That(V128ToSimdValue(_context.GetV(27)), Is.EqualTo(_unicornEmu.Q[27]));
Assert.That(V128ToSimdValue(_context.GetV(28)), Is.EqualTo(_unicornEmu.Q[28]));
Assert.That(V128ToSimdValue(_context.GetV(29)), Is.EqualTo(_unicornEmu.Q[29]));
Assert.That(V128ToSimdValue(_context.GetV(30)), Is.EqualTo(_unicornEmu.Q[30]), "V30");
Assert.That(V128ToSimdValue(_context.GetV(31)), Is.EqualTo(_unicornEmu.Q[31]), "V31");
Assert.Multiple(() =>
{
Assert.That(_context.GetPstateFlag(PState.VFlag), Is.EqualTo(_unicornEmu.OverflowFlag), "VFlag");
Assert.That(_context.GetPstateFlag(PState.CFlag), Is.EqualTo(_unicornEmu.CarryFlag), "CFlag");
Assert.That(_context.GetPstateFlag(PState.ZFlag), Is.EqualTo(_unicornEmu.ZeroFlag), "ZFlag");
Assert.That(_context.GetPstateFlag(PState.NFlag), Is.EqualTo(_unicornEmu.NegativeFlag), "NFlag");
});
Assert.That((int)_context.Fpcr, Is.EqualTo(_unicornEmu.Fpcr), "Fpcr");
Assert.That((int)_context.Fpsr & (int)fpsrMask, Is.EqualTo(_unicornEmu.Fpsr & (int)fpsrMask), "Fpsr");
if (_usingMemory)
{
byte[] mem = _memory.GetSpan(DataBaseAddress, (int)Size).ToArray();
byte[] unicornMem = _unicornEmu.MemoryRead(DataBaseAddress, Size);
Assert.That(mem, Is.EqualTo(unicornMem), "Data");
}
}
private void ManageFpSkips(FpSkips fpSkips)
{
if (fpSkips.HasFlag(FpSkips.IfNaNS))
{
if (float.IsNaN(_unicornEmu.Q[0].AsFloat()))
{
Assert.Ignore("NaN test.");
}
}
else if (fpSkips.HasFlag(FpSkips.IfNaND))
{
if (double.IsNaN(_unicornEmu.Q[0].AsDouble()))
{
Assert.Ignore("NaN test.");
}
}
if (fpSkips.HasFlag(FpSkips.IfUnderflow))
{
if ((_unicornEmu.Fpsr & (int)Fpsr.Ufc) != 0)
{
Assert.Ignore("Underflow test.");
}
}
if (fpSkips.HasFlag(FpSkips.IfOverflow))
{
if ((_unicornEmu.Fpsr & (int)Fpsr.Ofc) != 0)
{
Assert.Ignore("Overflow test.");
}
}
}
private void ManageFpTolerances(FpTolerances fpTolerances)
{
bool IsNormalOrSubnormalS(float f) => float.IsNormal(f) || float.IsSubnormal(f);
bool IsNormalOrSubnormalD(double d) => double.IsNormal(d) || double.IsSubnormal(d);
if (!Is.EqualTo(_unicornEmu.Q[0]).ApplyTo(V128ToSimdValue(_context.GetV(0))).IsSuccess)
{
if (fpTolerances == FpTolerances.UpToOneUlpsS)
{
if (IsNormalOrSubnormalS(_unicornEmu.Q[0].AsFloat()) &&
IsNormalOrSubnormalS(_context.GetV(0).As<float>()))
{
Assert.Multiple(() =>
{
Assert.That (_context.GetV(0).Extract<float>(0),
Is.EqualTo(_unicornEmu.Q[0].GetFloat(0)).Within(1).Ulps, "V0[0]");
Assert.That (_context.GetV(0).Extract<float>(1),
Is.EqualTo(_unicornEmu.Q[0].GetFloat(1)).Within(1).Ulps, "V0[1]");
Assert.That (_context.GetV(0).Extract<float>(2),
Is.EqualTo(_unicornEmu.Q[0].GetFloat(2)).Within(1).Ulps, "V0[2]");
Assert.That (_context.GetV(0).Extract<float>(3),
Is.EqualTo(_unicornEmu.Q[0].GetFloat(3)).Within(1).Ulps, "V0[3]");
});
Console.WriteLine(fpTolerances);
}
else
{
Assert.That(V128ToSimdValue(_context.GetV(0)), Is.EqualTo(_unicornEmu.Q[0]));
}
}
if (fpTolerances == FpTolerances.UpToOneUlpsD)
{
if (IsNormalOrSubnormalD(_unicornEmu.Q[0].AsDouble()) &&
IsNormalOrSubnormalD(_context.GetV(0).As<double>()))
{
Assert.Multiple(() =>
{
Assert.That (_context.GetV(0).Extract<double>(0),
Is.EqualTo(_unicornEmu.Q[0].GetDouble(0)).Within(1).Ulps, "V0[0]");
Assert.That (_context.GetV(0).Extract<double>(1),
Is.EqualTo(_unicornEmu.Q[0].GetDouble(1)).Within(1).Ulps, "V0[1]");
});
Console.WriteLine(fpTolerances);
}
else
{
Assert.That(V128ToSimdValue(_context.GetV(0)), Is.EqualTo(_unicornEmu.Q[0]));
}
}
}
}
private static SimdValue V128ToSimdValue(V128 value)
{
return new SimdValue(value.Extract<ulong>(0), value.Extract<ulong>(1));
}
protected static V128 MakeVectorScalar(float value) => new V128(value);
protected static V128 MakeVectorScalar(double value) => new V128(value);
protected static V128 MakeVectorE0(ulong e0) => new V128(e0, 0);
protected static V128 MakeVectorE1(ulong e1) => new V128(0, e1);
protected static V128 MakeVectorE0E1(ulong e0, ulong e1) => new V128(e0, e1);
protected static ulong GetVectorE0(V128 vector) => vector.Extract<ulong>(0);
protected static ulong GetVectorE1(V128 vector) => vector.Extract<ulong>(1);
protected static ushort GenNormalH()
{
uint rnd;
do rnd = TestContext.CurrentContext.Random.NextUShort();
while (( rnd & 0x7C00u) == 0u ||
(~rnd & 0x7C00u) == 0u);
return (ushort)rnd;
}
protected static ushort GenSubnormalH()
{
uint rnd;
do rnd = TestContext.CurrentContext.Random.NextUShort();
while ((rnd & 0x03FFu) == 0u);
return (ushort)(rnd & 0x83FFu);
}
protected static uint GenNormalS()
{
uint rnd;
do rnd = TestContext.CurrentContext.Random.NextUInt();
while (( rnd & 0x7F800000u) == 0u ||
(~rnd & 0x7F800000u) == 0u);
return rnd;
}
protected static uint GenSubnormalS()
{
uint rnd;
do rnd = TestContext.CurrentContext.Random.NextUInt();
while ((rnd & 0x007FFFFFu) == 0u);
return rnd & 0x807FFFFFu;
}
protected static ulong GenNormalD()
{
ulong rnd;
do rnd = TestContext.CurrentContext.Random.NextULong();
while (( rnd & 0x7FF0000000000000ul) == 0ul ||
(~rnd & 0x7FF0000000000000ul) == 0ul);
return rnd;
}
protected static ulong GenSubnormalD()
{
ulong rnd;
do rnd = TestContext.CurrentContext.Random.NextULong();
while ((rnd & 0x000FFFFFFFFFFFFFul) == 0ul);
return rnd & 0x800FFFFFFFFFFFFFul;
}
}
}