mirror of
https://github.com/GreemDev/Ryujinx.git
synced 2024-12-19 05:15:55 +01:00
f0e27a23a5
* Add short duration texture cache This texture cache takes textures that lose their last pool reference and keeps them alive until the next frame, or until an incompatible overlap removes it. This is done since under certain circumstances, a texture's reference can be wiped from a pool despite it still being in use - though typically the reference will return when rendering the next frame. While this may slightly increase texture memory usage when quickly going through a bunch of temporary textures, it's still bounded due to the overlap removal rule. This greatly increases performance in Hyrule Warriors: Age of Calamity. It may positively affect some UE4 games which dip framerate severely under certain circumstances. * Small optimization * Don't forget this. * Add short cache dictionary * Address feedback * Address some feedback
473 lines
18 KiB
C#
473 lines
18 KiB
C#
using Ryujinx.Common.Logging;
|
|
using Ryujinx.Graphics.GAL;
|
|
using Ryujinx.Graphics.Texture;
|
|
using System;
|
|
using System.Collections.Concurrent;
|
|
using System.Collections.Generic;
|
|
|
|
namespace Ryujinx.Graphics.Gpu.Image
|
|
{
|
|
/// <summary>
|
|
/// Texture pool.
|
|
/// </summary>
|
|
class TexturePool : Pool<Texture, TextureDescriptor>, IPool<TexturePool>
|
|
{
|
|
private readonly GpuChannel _channel;
|
|
private readonly ConcurrentQueue<Texture> _dereferenceQueue = new ConcurrentQueue<Texture>();
|
|
private TextureDescriptor _defaultDescriptor;
|
|
|
|
/// <summary>
|
|
/// Linked list node used on the texture pool cache.
|
|
/// </summary>
|
|
public LinkedListNode<TexturePool> CacheNode { get; set; }
|
|
|
|
/// <summary>
|
|
/// Timestamp used by the texture pool cache, updated on every use of this texture pool.
|
|
/// </summary>
|
|
public ulong CacheTimestamp { get; set; }
|
|
|
|
/// <summary>
|
|
/// Creates a new instance of the texture pool.
|
|
/// </summary>
|
|
/// <param name="context">GPU context that the texture pool belongs to</param>
|
|
/// <param name="channel">GPU channel that the texture pool belongs to</param>
|
|
/// <param name="address">Address of the texture pool in guest memory</param>
|
|
/// <param name="maximumId">Maximum texture ID of the texture pool (equal to maximum textures minus one)</param>
|
|
public TexturePool(GpuContext context, GpuChannel channel, ulong address, int maximumId) : base(context, channel.MemoryManager.Physical, address, maximumId)
|
|
{
|
|
_channel = channel;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Gets the texture descripor and texture with the given ID with no bounds check or synchronization.
|
|
/// </summary>
|
|
/// <param name="id">ID of the texture. This is effectively a zero-based index</param>
|
|
/// <param name="texture">The texture with the given ID</param>
|
|
/// <returns>The texture descriptor with the given ID</returns>
|
|
private ref readonly TextureDescriptor GetInternal(int id, out Texture texture)
|
|
{
|
|
texture = Items[id];
|
|
|
|
ref readonly TextureDescriptor descriptor = ref GetDescriptorRef(id);
|
|
|
|
if (texture == null)
|
|
{
|
|
texture = PhysicalMemory.TextureCache.FindShortCache(descriptor);
|
|
|
|
if (texture == null)
|
|
{
|
|
TextureInfo info = GetInfo(descriptor, out int layerSize);
|
|
|
|
ProcessDereferenceQueue();
|
|
|
|
texture = PhysicalMemory.TextureCache.FindOrCreateTexture(_channel.MemoryManager, TextureSearchFlags.ForSampler, info, layerSize);
|
|
|
|
// If this happens, then the texture address is invalid, we can't add it to the cache.
|
|
if (texture == null)
|
|
{
|
|
return ref descriptor;
|
|
}
|
|
}
|
|
|
|
texture.IncrementReferenceCount(this, id);
|
|
|
|
Items[id] = texture;
|
|
|
|
DescriptorCache[id] = descriptor;
|
|
}
|
|
else
|
|
{
|
|
if (texture.ChangedSize)
|
|
{
|
|
// Texture changed size at one point - it may be a different size than the sampler expects.
|
|
// This can be triggered when the size is changed by a size hint on copy or draw, but the texture has been sampled before.
|
|
|
|
int baseLevel = descriptor.UnpackBaseLevel();
|
|
int width = Math.Max(1, descriptor.UnpackWidth() >> baseLevel);
|
|
int height = Math.Max(1, descriptor.UnpackHeight() >> baseLevel);
|
|
|
|
if (texture.Info.Width != width || texture.Info.Height != height)
|
|
{
|
|
texture.ChangeSize(width, height, texture.Info.DepthOrLayers);
|
|
}
|
|
}
|
|
|
|
// Memory is automatically synchronized on texture creation.
|
|
texture.SynchronizeMemory();
|
|
}
|
|
|
|
return ref descriptor;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Gets the texture with the given ID.
|
|
/// </summary>
|
|
/// <param name="id">ID of the texture. This is effectively a zero-based index</param>
|
|
/// <returns>The texture with the given ID</returns>
|
|
public override Texture Get(int id)
|
|
{
|
|
if ((uint)id >= Items.Length)
|
|
{
|
|
return null;
|
|
}
|
|
|
|
if (SequenceNumber != Context.SequenceNumber)
|
|
{
|
|
SequenceNumber = Context.SequenceNumber;
|
|
|
|
SynchronizeMemory();
|
|
}
|
|
|
|
GetInternal(id, out Texture texture);
|
|
|
|
return texture;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Gets the texture descriptor and texture with the given ID.
|
|
/// </summary>
|
|
/// <remarks>
|
|
/// This method assumes that the pool has been manually synchronized before doing binding.
|
|
/// </remarks>
|
|
/// <param name="id">ID of the texture. This is effectively a zero-based index</param>
|
|
/// <param name="texture">The texture with the given ID</param>
|
|
/// <returns>The texture descriptor with the given ID</returns>
|
|
public ref readonly TextureDescriptor GetForBinding(int id, out Texture texture)
|
|
{
|
|
if ((uint)id >= Items.Length)
|
|
{
|
|
texture = null;
|
|
return ref _defaultDescriptor;
|
|
}
|
|
|
|
// When getting for binding, assume the pool has already been synchronized.
|
|
|
|
return ref GetInternal(id, out texture);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Checks if the pool was modified, and returns the last sequence number where a modification was detected.
|
|
/// </summary>
|
|
/// <returns>A number that increments each time a modification is detected</returns>
|
|
public int CheckModified()
|
|
{
|
|
if (SequenceNumber != Context.SequenceNumber)
|
|
{
|
|
SequenceNumber = Context.SequenceNumber;
|
|
|
|
SynchronizeMemory();
|
|
}
|
|
|
|
return ModifiedSequenceNumber;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Forcibly remove a texture from this pool's items.
|
|
/// If deferred, the dereference will be queued to occur on the render thread.
|
|
/// </summary>
|
|
/// <param name="texture">The texture being removed</param>
|
|
/// <param name="id">The ID of the texture in this pool</param>
|
|
/// <param name="deferred">If true, queue the dereference to happen on the render thread, otherwise dereference immediately</param>
|
|
public void ForceRemove(Texture texture, int id, bool deferred)
|
|
{
|
|
Items[id] = null;
|
|
|
|
if (deferred)
|
|
{
|
|
_dereferenceQueue.Enqueue(texture);
|
|
}
|
|
else
|
|
{
|
|
texture.DecrementReferenceCount();
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Process the dereference queue, decrementing the reference count for each texture in it.
|
|
/// This is used to ensure that texture disposal happens on the render thread.
|
|
/// </summary>
|
|
private void ProcessDereferenceQueue()
|
|
{
|
|
while (_dereferenceQueue.TryDequeue(out Texture toRemove))
|
|
{
|
|
toRemove.DecrementReferenceCount();
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Implementation of the texture pool range invalidation.
|
|
/// </summary>
|
|
/// <param name="address">Start address of the range of the texture pool</param>
|
|
/// <param name="size">Size of the range being invalidated</param>
|
|
protected override void InvalidateRangeImpl(ulong address, ulong size)
|
|
{
|
|
ProcessDereferenceQueue();
|
|
|
|
ulong endAddress = address + size;
|
|
|
|
for (; address < endAddress; address += DescriptorSize)
|
|
{
|
|
int id = (int)((address - Address) / DescriptorSize);
|
|
|
|
Texture texture = Items[id];
|
|
|
|
if (texture != null)
|
|
{
|
|
ref TextureDescriptor cachedDescriptor = ref DescriptorCache[id];
|
|
ref readonly TextureDescriptor descriptor = ref GetDescriptorRefAddress(address);
|
|
|
|
// If the descriptors are the same, the texture is the same,
|
|
// we don't need to remove as it was not modified. Just continue.
|
|
if (descriptor.Equals(ref cachedDescriptor))
|
|
{
|
|
continue;
|
|
}
|
|
|
|
if (texture.HasOneReference())
|
|
{
|
|
_channel.MemoryManager.Physical.TextureCache.AddShortCache(texture, ref cachedDescriptor);
|
|
}
|
|
|
|
texture.DecrementReferenceCount(this, id);
|
|
|
|
Items[id] = null;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Gets texture information from a texture descriptor.
|
|
/// </summary>
|
|
/// <param name="descriptor">The texture descriptor</param>
|
|
/// <param name="layerSize">Layer size for textures using a sub-range of mipmap levels, otherwise 0</param>
|
|
/// <returns>The texture information</returns>
|
|
private TextureInfo GetInfo(in TextureDescriptor descriptor, out int layerSize)
|
|
{
|
|
int depthOrLayers = descriptor.UnpackDepth();
|
|
int levels = descriptor.UnpackLevels();
|
|
|
|
TextureMsaaMode msaaMode = descriptor.UnpackTextureMsaaMode();
|
|
|
|
int samplesInX = msaaMode.SamplesInX();
|
|
int samplesInY = msaaMode.SamplesInY();
|
|
|
|
int stride = descriptor.UnpackStride();
|
|
|
|
TextureDescriptorType descriptorType = descriptor.UnpackTextureDescriptorType();
|
|
|
|
bool isLinear = descriptorType == TextureDescriptorType.Linear;
|
|
|
|
Target target = descriptor.UnpackTextureTarget().Convert((samplesInX | samplesInY) != 1);
|
|
|
|
int width = target == Target.TextureBuffer ? descriptor.UnpackBufferTextureWidth() : descriptor.UnpackWidth();
|
|
int height = descriptor.UnpackHeight();
|
|
|
|
if (target == Target.Texture2DMultisample || target == Target.Texture2DMultisampleArray)
|
|
{
|
|
// This is divided back before the backend texture is created.
|
|
width *= samplesInX;
|
|
height *= samplesInY;
|
|
}
|
|
|
|
// We use 2D targets for 1D textures as that makes texture cache
|
|
// management easier. We don't know the target for render target
|
|
// and copies, so those would normally use 2D targets, which are
|
|
// not compatible with 1D targets. By doing that we also allow those
|
|
// to match when looking for compatible textures on the cache.
|
|
if (target == Target.Texture1D)
|
|
{
|
|
target = Target.Texture2D;
|
|
height = 1;
|
|
}
|
|
else if (target == Target.Texture1DArray)
|
|
{
|
|
target = Target.Texture2DArray;
|
|
height = 1;
|
|
}
|
|
|
|
uint format = descriptor.UnpackFormat();
|
|
bool srgb = descriptor.UnpackSrgb();
|
|
|
|
ulong gpuVa = descriptor.UnpackAddress();
|
|
|
|
if (!FormatTable.TryGetTextureFormat(format, srgb, out FormatInfo formatInfo))
|
|
{
|
|
if (gpuVa != 0 && (int)format > 0)
|
|
{
|
|
Logger.Error?.Print(LogClass.Gpu, $"Invalid texture format 0x{format:X} (sRGB: {srgb}).");
|
|
}
|
|
|
|
formatInfo = FormatInfo.Default;
|
|
}
|
|
|
|
int gobBlocksInY = descriptor.UnpackGobBlocksInY();
|
|
int gobBlocksInZ = descriptor.UnpackGobBlocksInZ();
|
|
|
|
int gobBlocksInTileX = descriptor.UnpackGobBlocksInTileX();
|
|
|
|
layerSize = 0;
|
|
|
|
int minLod = descriptor.UnpackBaseLevel();
|
|
int maxLod = descriptor.UnpackMaxLevelInclusive();
|
|
|
|
// Linear textures don't support mipmaps, so we don't handle this case here.
|
|
if ((minLod != 0 || maxLod + 1 != levels) && target != Target.TextureBuffer && !isLinear)
|
|
{
|
|
int depth = TextureInfo.GetDepth(target, depthOrLayers);
|
|
int layers = TextureInfo.GetLayers(target, depthOrLayers);
|
|
|
|
SizeInfo sizeInfo = SizeCalculator.GetBlockLinearTextureSize(
|
|
width,
|
|
height,
|
|
depth,
|
|
levels,
|
|
layers,
|
|
formatInfo.BlockWidth,
|
|
formatInfo.BlockHeight,
|
|
formatInfo.BytesPerPixel,
|
|
gobBlocksInY,
|
|
gobBlocksInZ,
|
|
gobBlocksInTileX);
|
|
|
|
layerSize = sizeInfo.LayerSize;
|
|
|
|
if (minLod != 0 && minLod < levels)
|
|
{
|
|
// If the base level is not zero, we additionally add the mip level offset
|
|
// to the address, this allows the texture manager to find the base level from the
|
|
// address if there is a overlapping texture on the cache that can contain the new texture.
|
|
gpuVa += (ulong)sizeInfo.GetMipOffset(minLod);
|
|
|
|
width = Math.Max(1, width >> minLod);
|
|
height = Math.Max(1, height >> minLod);
|
|
|
|
if (target == Target.Texture3D)
|
|
{
|
|
depthOrLayers = Math.Max(1, depthOrLayers >> minLod);
|
|
}
|
|
|
|
(gobBlocksInY, gobBlocksInZ) = SizeCalculator.GetMipGobBlockSizes(height, depth, formatInfo.BlockHeight, gobBlocksInY, gobBlocksInZ);
|
|
}
|
|
|
|
levels = (maxLod - minLod) + 1;
|
|
}
|
|
|
|
SwizzleComponent swizzleR = descriptor.UnpackSwizzleR().Convert();
|
|
SwizzleComponent swizzleG = descriptor.UnpackSwizzleG().Convert();
|
|
SwizzleComponent swizzleB = descriptor.UnpackSwizzleB().Convert();
|
|
SwizzleComponent swizzleA = descriptor.UnpackSwizzleA().Convert();
|
|
|
|
DepthStencilMode depthStencilMode = GetDepthStencilMode(
|
|
formatInfo.Format,
|
|
swizzleR,
|
|
swizzleG,
|
|
swizzleB,
|
|
swizzleA);
|
|
|
|
if (formatInfo.Format.IsDepthOrStencil())
|
|
{
|
|
swizzleR = SwizzleComponent.Red;
|
|
swizzleG = SwizzleComponent.Red;
|
|
swizzleB = SwizzleComponent.Red;
|
|
|
|
if (depthStencilMode == DepthStencilMode.Depth)
|
|
{
|
|
swizzleA = SwizzleComponent.One;
|
|
}
|
|
else
|
|
{
|
|
swizzleA = SwizzleComponent.Red;
|
|
}
|
|
}
|
|
|
|
return new TextureInfo(
|
|
gpuVa,
|
|
width,
|
|
height,
|
|
depthOrLayers,
|
|
levels,
|
|
samplesInX,
|
|
samplesInY,
|
|
stride,
|
|
isLinear,
|
|
gobBlocksInY,
|
|
gobBlocksInZ,
|
|
gobBlocksInTileX,
|
|
target,
|
|
formatInfo,
|
|
depthStencilMode,
|
|
swizzleR,
|
|
swizzleG,
|
|
swizzleB,
|
|
swizzleA);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Gets the texture depth-stencil mode, based on the swizzle components of each color channel.
|
|
/// The depth-stencil mode is determined based on how the driver sets those parameters.
|
|
/// </summary>
|
|
/// <param name="format">The format of the texture</param>
|
|
/// <param name="components">The texture swizzle components</param>
|
|
/// <returns>The depth-stencil mode</returns>
|
|
private static DepthStencilMode GetDepthStencilMode(Format format, params SwizzleComponent[] components)
|
|
{
|
|
// R = Depth, G = Stencil.
|
|
// On 24-bits depth formats, this is inverted (Stencil is R etc).
|
|
// NVN setup:
|
|
// For depth, A is set to 1.0f, the other components are set to Depth.
|
|
// For stencil, all components are set to Stencil.
|
|
SwizzleComponent component = components[0];
|
|
|
|
for (int index = 1; index < 4 && !IsRG(component); index++)
|
|
{
|
|
component = components[index];
|
|
}
|
|
|
|
if (!IsRG(component))
|
|
{
|
|
return DepthStencilMode.Depth;
|
|
}
|
|
|
|
if (format == Format.D24UnormS8Uint)
|
|
{
|
|
return component == SwizzleComponent.Red
|
|
? DepthStencilMode.Stencil
|
|
: DepthStencilMode.Depth;
|
|
}
|
|
else
|
|
{
|
|
return component == SwizzleComponent.Red
|
|
? DepthStencilMode.Depth
|
|
: DepthStencilMode.Stencil;
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Checks if the swizzle component is equal to the red or green channels.
|
|
/// </summary>
|
|
/// <param name="component">The swizzle component to check</param>
|
|
/// <returns>True if the swizzle component is equal to the red or green, false otherwise</returns>
|
|
private static bool IsRG(SwizzleComponent component)
|
|
{
|
|
return component == SwizzleComponent.Red ||
|
|
component == SwizzleComponent.Green;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Decrements the reference count of the texture.
|
|
/// This indicates that the texture pool is not using it anymore.
|
|
/// </summary>
|
|
/// <param name="item">The texture to be deleted</param>
|
|
protected override void Delete(Texture item)
|
|
{
|
|
item?.DecrementReferenceCount(this);
|
|
}
|
|
|
|
public override void Dispose()
|
|
{
|
|
ProcessDereferenceQueue();
|
|
|
|
base.Dispose();
|
|
}
|
|
}
|
|
} |