Ryujinx-uplift/Ryujinx.Memory/Tracking/RegionHandle.cs
riperiperi 54ea2285f0
POWER - Performance Optimizations With Extensive Ramifications (#2286)
* Refactoring of KMemoryManager class

* Replace some trivial uses of DRAM address with VA

* Get rid of GetDramAddressFromVa

* Abstracting more operations on derived page table class

* Run auto-format on KPageTableBase

* Managed to make TryConvertVaToPa private, few uses remains now

* Implement guest physical pages ref counting, remove manual freeing

* Make DoMmuOperation private and call new abstract methods only from the base class

* Pass pages count rather than size on Map/UnmapMemory

* Change memory managers to take host pointers

* Fix a guest memory leak and simplify KPageTable

* Expose new methods for host range query and mapping

* Some refactoring of MapPagesFromClientProcess to allow proper page ref counting and mapping without KPageLists

* Remove more uses of AddVaRangeToPageList, now only one remains (shared memory page checking)

* Add a SharedMemoryStorage class, will be useful for host mapping

* Sayonara AddVaRangeToPageList, you served us well

* Start to implement host memory mapping (WIP)

* Support memory tracking through host exception handling

* Fix some access violations from HLE service guest memory access and CPU

* Fix memory tracking

* Fix mapping list bugs, including a race and a error adding mapping ranges

* Simple page table for memory tracking

* Simple "volatile" region handle mode

* Update UBOs directly (experimental, rough)

* Fix the overlap check

* Only set non-modified buffers as volatile

* Fix some memory tracking issues

* Fix possible race in MapBufferFromClientProcess (block list updates were not locked)

* Write uniform update to memory immediately, only defer the buffer set.

* Fix some memory tracking issues

* Pass correct pages count on shared memory unmap

* Armeilleure Signal Handler v1 + Unix changes

Unix currently behaves like windows, rather than remapping physical

* Actually check if the host platform is unix

* Fix decommit on linux.

* Implement windows 10 placeholder shared memory, fix a buffer issue.

* Make PTC version something that will never match with master

* Remove testing variable for block count

* Add reference count for memory manager, fix dispose

Can still deadlock with OpenAL

* Add address validation, use page table for mapped check, add docs

Might clean up the page table traversing routines.

* Implement batched mapping/tracking.

* Move documentation, fix tests.

* Cleanup uniform buffer update stuff.

* Remove unnecessary assignment.

* Add unsafe host mapped memory switch

On by default. Would be good to turn this off for untrusted code (homebrew, exefs mods) and give the user the option to turn it on manually, though that requires some UI work.

* Remove C# exception handlers

They have issues due to current .NET limitations, so the meilleure one fully replaces them for now.

* Fix MapPhysicalMemory on the software MemoryManager.

* Null check for GetHostAddress, docs

* Add configuration for setting memory manager mode (not in UI yet)

* Add config to UI

* Fix type mismatch on Unix signal handler code emit

* Fix 6GB DRAM mode.

The size can be greater than `uint.MaxValue` when the DRAM is >4GB.

* Address some feedback.

* More detailed error if backing memory cannot be mapped.

* SetLastError on all OS functions for consistency

* Force pages dirty with UBO update instead of setting them directly.

Seems to be much faster across a few games. Need retesting.

* Rebase, configuration rework, fix mem tracking regression

* Fix race in FreePages

* Set memory managers null after decrementing ref count

* Remove readonly keyword, as this is now modified.

* Use a local variable for the signal handler rather than a register.

* Fix bug with buffer resize, and index/uniform buffer binding.

Should fix flickering in games.

* Add InvalidAccessHandler to MemoryTracking

Doesn't do anything yet

* Call invalid access handler on unmapped read/write.

Same rules as the regular memory manager.

* Make unsafe mapped memory its own MemoryManagerType

* Move FlushUboDirty into UpdateState.

* Buffer dirty cache, rather than ubo cache

Much cleaner, may be reusable for Inline2Memory updates.

* This doesn't return anything anymore.

* Add sigaction remove methods, correct a few function signatures.

* Return empty list of physical regions for size 0.

* Also on AddressSpaceManager

Co-authored-by: gdkchan <gab.dark.100@gmail.com>
2021-05-24 22:52:44 +02:00

258 lines
8.4 KiB
C#

using Ryujinx.Memory.Range;
using System;
using System.Collections.Generic;
using System.Threading;
namespace Ryujinx.Memory.Tracking
{
/// <summary>
/// A tracking handle for a given region of virtual memory. The Dirty flag is updated whenever any changes are made,
/// and an action can be performed when the region is read to or written from.
/// </summary>
public class RegionHandle : IRegionHandle, IRange
{
/// <summary>
/// If more than this number of checks have been performed on a dirty flag since its last reprotect,
/// then it is dirtied infrequently.
/// </summary>
private static int CheckCountForInfrequent = 3;
/// <summary>
/// Number of frequent dirty/consume in a row to make this handle volatile.
/// </summary>
private static int VolatileThreshold = 5;
public bool Dirty { get; private set; }
public bool Unmapped { get; private set; }
public ulong Address { get; }
public ulong Size { get; }
public ulong EndAddress { get; }
internal IMultiRegionHandle Parent { get; set; }
internal int SequenceNumber { get; set; }
private event Action _onDirty;
private RegionSignal _preAction; // Action to perform before a read or write. This will block the memory access.
private readonly List<VirtualRegion> _regions;
private readonly MemoryTracking _tracking;
private bool _disposed;
private int _checkCount = 0;
private int _volatileCount = 0;
private bool _volatile;
internal MemoryPermission RequiredPermission => _preAction != null ? MemoryPermission.None : (Dirty ? MemoryPermission.ReadAndWrite : MemoryPermission.Read);
internal RegionSignal PreAction => _preAction;
/// <summary>
/// Create a new region handle. The handle is registered with the given tracking object,
/// and will be notified of any changes to the specified region.
/// </summary>
/// <param name="tracking">Tracking object for the target memory block</param>
/// <param name="address">Virtual address of the region to track</param>
/// <param name="size">Size of the region to track</param>
/// <param name="mapped">True if the region handle starts mapped</param>
internal RegionHandle(MemoryTracking tracking, ulong address, ulong size, bool mapped = true)
{
Dirty = mapped;
Unmapped = !mapped;
Address = address;
Size = size;
EndAddress = address + size;
_tracking = tracking;
_regions = tracking.GetVirtualRegionsForHandle(address, size);
foreach (var region in _regions)
{
region.Handles.Add(this);
}
}
/// <summary>
/// Clear the volatile state of this handle.
/// </summary>
private void ClearVolatile()
{
_volatileCount = 0;
_volatile = false;
}
/// <summary>
/// Check if this handle is dirty, or if it is volatile. (changes very often)
/// </summary>
/// <returns>True if the handle is dirty or volatile, false otherwise</returns>
public bool DirtyOrVolatile()
{
_checkCount++;
return Dirty || _volatile;
}
/// <summary>
/// Signal that a memory action occurred within this handle's virtual regions.
/// </summary>
/// <param name="write">Whether the region was written to or read</param>
internal void Signal(ulong address, ulong size, bool write)
{
RegionSignal action = Interlocked.Exchange(ref _preAction, null);
action?.Invoke(address, size);
if (write)
{
bool oldDirty = Dirty;
Dirty = true;
if (!oldDirty)
{
_onDirty?.Invoke();
}
Parent?.SignalWrite();
}
}
/// <summary>
/// Force this handle to be dirty, without reprotecting.
/// </summary>
public void ForceDirty()
{
Dirty = true;
}
/// <summary>
/// Consume the dirty flag for this handle, and reprotect so it can be set on the next write.
/// </summary>
public void Reprotect(bool asDirty = false)
{
if (_volatile) return;
Dirty = asDirty;
bool protectionChanged = false;
lock (_tracking.TrackingLock)
{
foreach (VirtualRegion region in _regions)
{
protectionChanged |= region.UpdateProtection();
}
}
if (!protectionChanged)
{
// Counteract the check count being incremented when this handle was forced dirty.
// It doesn't count for protected write tracking.
_checkCount--;
}
else if (!asDirty)
{
if (_checkCount > 0 && _checkCount < CheckCountForInfrequent)
{
if (++_volatileCount >= VolatileThreshold && _preAction == null)
{
_volatile = true;
return;
}
}
else
{
_volatileCount = 0;
}
_checkCount = 0;
}
}
/// <summary>
/// Register an action to perform when the tracked region is read or written.
/// The action is automatically removed after it runs.
/// </summary>
/// <param name="action">Action to call on read or write</param>
public void RegisterAction(RegionSignal action)
{
ClearVolatile();
RegionSignal lastAction = Interlocked.Exchange(ref _preAction, action);
if (lastAction == null && action != lastAction)
{
lock (_tracking.TrackingLock)
{
foreach (VirtualRegion region in _regions)
{
region.UpdateProtection();
}
}
}
}
/// <summary>
/// Register an action to perform when the region is written to.
/// This action will not be removed when it is called - it is called each time the dirty flag is set.
/// </summary>
/// <param name="action">Action to call on dirty</param>
public void RegisterDirtyEvent(Action action)
{
_onDirty += action;
}
/// <summary>
/// Add a child virtual region to this handle.
/// </summary>
/// <param name="region">Virtual region to add as a child</param>
internal void AddChild(VirtualRegion region)
{
_regions.Add(region);
}
/// <summary>
/// Signal that this handle has been mapped or unmapped.
/// </summary>
/// <param name="mapped">True if the handle has been mapped, false if unmapped</param>
internal void SignalMappingChanged(bool mapped)
{
if (Unmapped == mapped)
{
Unmapped = !mapped;
if (Unmapped)
{
ClearVolatile();
Dirty = false;
}
}
}
/// <summary>
/// Check if this region overlaps with another.
/// </summary>
/// <param name="address">Base address</param>
/// <param name="size">Size of the region</param>
/// <returns>True if overlapping, false otherwise</returns>
public bool OverlapsWith(ulong address, ulong size)
{
return Address < address + size && address < EndAddress;
}
/// <summary>
/// Dispose the handle. Within the tracking lock, this removes references from virtual regions.
/// </summary>
public void Dispose()
{
if (_disposed)
{
throw new ObjectDisposedException(GetType().FullName);
}
_disposed = true;
lock (_tracking.TrackingLock)
{
foreach (VirtualRegion region in _regions)
{
region.RemoveHandle(this);
}
}
}
}
}