1
0
mirror of synced 2025-01-27 00:13:41 +01:00

244 lines
8.2 KiB
C#

using System;
using System.Drawing;
using System.IO;
using Toolbox.Library.IO;
namespace Toolbox.Library
{
//From https://github.com/gdkchan/SPICA/blob/42c4181e198b0fd34f0a567345ee7e75b54cb58b/SPICA/PICA/Converters/TextureCompression.cs
public class ETC1
{
private static byte[] XT = { 0, 4, 0, 4 };
private static byte[] YT = { 0, 0, 4, 4 };
private static ulong Swap64(ulong Value)
{
Value = ((Value & 0xffffffff00000000ul) >> 32) | ((Value & 0x00000000fffffffful) << 32);
Value = ((Value & 0xffff0000ffff0000ul) >> 16) | ((Value & 0x0000ffff0000fffful) << 16);
Value = ((Value & 0xff00ff00ff00ff00ul) >> 8) | ((Value & 0x00ff00ff00ff00fful) << 8);
return Value;
}
public static byte[] ETC1Decompress(byte[] Input, int Width, int Height, bool Alpha)
{
byte[] Output = new byte[Width * Height * 4];
using (MemoryStream MS = new MemoryStream(Input))
{
BinaryReader Reader = new BinaryReader(MS);
for (int TY = 0; TY < Height; TY += 8)
{
for (int TX = 0; TX < Width; TX += 8)
{
for (int T = 0; T < 4; T++)
{
ulong AlphaBlock = 0xfffffffffffffffful;
if (Alpha) AlphaBlock = Reader.ReadUInt64();
ulong ColorBlock = Swap64(Reader.ReadUInt64());
byte[] Tile = ETC1Tile(ColorBlock);
int TileOffset = 0;
for (int PY = YT[T]; PY < 4 + YT[T]; PY++)
{
for (int PX = XT[T]; PX < 4 + XT[T]; PX++)
{
int OOffs = ((Height - 1 - (TY + PY)) * Width + TX + PX) * 4;
Buffer.BlockCopy(Tile, TileOffset, Output, OOffs, 3);
int AlphaShift = ((PX & 3) * 4 + (PY & 3)) << 2;
byte A = (byte)((AlphaBlock >> AlphaShift) & 0xf);
Output[OOffs + 3] = (byte)((A << 4) | A);
TileOffset += 4;
}
}
}
}
}
return Output;
}
}
public static byte[] ETC1Encode(byte[] Input, int Width, int Height, bool Alpha)
{
long OOffset = 0;
int IOffset = 0;
var mem = new System.IO.MemoryStream();
using (var writer = new FileWriter(mem))
{
for (int TY = 0; TY < Height; TY += 8)
{
for (int TX = 0; TX < Width; TX += 8)
{
for (int i = 0; i < 8; i += 4)
{
for (int j = 0; j < 8; j += 4)
{
EncodeETC1Block(writer, TX + j, TY + i, Input, IOffset, OOffset, Alpha);
OOffset += Alpha ? 16 : 8;
IOffset += 4;
}
}
}
}
}
return mem.ToArray();
}
public static void EncodeETC1Block(FileWriter writer, int blockX, int blockY, byte[] Input, long IOffset, long OOffset, bool Alpha)
{
}
private static byte[] ETC1Tile(ulong Block)
{
uint BlockLow = (uint)(Block >> 32);
uint BlockHigh = (uint)(Block >> 0);
bool Flip = (BlockHigh & 0x1000000) != 0;
bool Diff = (BlockHigh & 0x2000000) != 0;
uint R1, G1, B1;
uint R2, G2, B2;
if (Diff)
{
B1 = (BlockHigh & 0x0000f8) >> 0;
G1 = (BlockHigh & 0x00f800) >> 8;
R1 = (BlockHigh & 0xf80000) >> 16;
B2 = (uint)((sbyte)(B1 >> 3) + ((sbyte)((BlockHigh & 0x000007) << 5) >> 5));
G2 = (uint)((sbyte)(G1 >> 3) + ((sbyte)((BlockHigh & 0x000700) >> 3) >> 5));
R2 = (uint)((sbyte)(R1 >> 3) + ((sbyte)((BlockHigh & 0x070000) >> 11) >> 5));
B1 |= B1 >> 5;
G1 |= G1 >> 5;
R1 |= R1 >> 5;
B2 = (B2 << 3) | (B2 >> 2);
G2 = (G2 << 3) | (G2 >> 2);
R2 = (R2 << 3) | (R2 >> 2);
}
else
{
B1 = (BlockHigh & 0x0000f0) >> 0;
G1 = (BlockHigh & 0x00f000) >> 8;
R1 = (BlockHigh & 0xf00000) >> 16;
B2 = (BlockHigh & 0x00000f) << 4;
G2 = (BlockHigh & 0x000f00) >> 4;
R2 = (BlockHigh & 0x0f0000) >> 12;
B1 |= B1 >> 4;
G1 |= G1 >> 4;
R1 |= R1 >> 4;
B2 |= B2 >> 4;
G2 |= G2 >> 4;
R2 |= R2 >> 4;
}
uint Table1 = (BlockHigh >> 29) & 7;
uint Table2 = (BlockHigh >> 26) & 7;
byte[] Output = new byte[4 * 4 * 4];
if (!Flip)
{
for (int Y = 0; Y < 4; Y++)
{
for (int X = 0; X < 2; X++)
{
Color Color1 = ETC1Pixel(R1, G1, B1, X + 0, Y, BlockLow, Table1);
Color Color2 = ETC1Pixel(R2, G2, B2, X + 2, Y, BlockLow, Table2);
int Offset1 = (Y * 4 + X) * 4;
Output[Offset1 + 0] = Color1.B;
Output[Offset1 + 1] = Color1.G;
Output[Offset1 + 2] = Color1.R;
int Offset2 = (Y * 4 + X + 2) * 4;
Output[Offset2 + 0] = Color2.B;
Output[Offset2 + 1] = Color2.G;
Output[Offset2 + 2] = Color2.R;
}
}
}
else
{
for (int Y = 0; Y < 2; Y++)
{
for (int X = 0; X < 4; X++)
{
Color Color1 = ETC1Pixel(R1, G1, B1, X, Y + 0, BlockLow, Table1);
Color Color2 = ETC1Pixel(R2, G2, B2, X, Y + 2, BlockLow, Table2);
int Offset1 = (Y * 4 + X) * 4;
Output[Offset1 + 0] = Color1.B;
Output[Offset1 + 1] = Color1.G;
Output[Offset1 + 2] = Color1.R;
int Offset2 = ((Y + 2) * 4 + X) * 4;
Output[Offset2 + 0] = Color2.B;
Output[Offset2 + 1] = Color2.G;
Output[Offset2 + 2] = Color2.R;
}
}
}
return Output;
}
private static int[,] ETC1LUT =
{
{ 2, 8, -2, -8 },
{ 5, 17, -5, -17 },
{ 9, 29, -9, -29 },
{ 13, 42, -13, -42 },
{ 18, 60, -18, -60 },
{ 24, 80, -24, -80 },
{ 33, 106, -33, -106 },
{ 47, 183, -47, -183 }
};
private static Color ETC1Pixel(uint R, uint G, uint B, int X, int Y, uint Block, uint Table)
{
int Index = X * 4 + Y;
uint MSB = Block << 1;
int Pixel = Index < 8
? ETC1LUT[Table, ((Block >> (Index + 24)) & 1) + ((MSB >> (Index + 8)) & 2)]
: ETC1LUT[Table, ((Block >> (Index + 8)) & 1) + ((MSB >> (Index - 8)) & 2)];
R = Saturate((int)(R + Pixel));
G = Saturate((int)(G + Pixel));
B = Saturate((int)(B + Pixel));
return Color.FromArgb((int)R, (int)G, (int)B);
}
private static byte Saturate(int Value)
{
if (Value > byte.MaxValue) return byte.MaxValue;
if (Value < byte.MinValue) return byte.MinValue;
return (byte)Value;
}
}
}