1
0
mirror of synced 2025-01-22 11:23:42 +01:00
2019-03-28 17:05:49 -04:00

290 lines
9.9 KiB
C#

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using Assimp;
using OpenTK;
using SN = System.Numerics;
namespace Switch_Toolbox.Library
{
public static class AssimpHelper
{
public static Matrix4x4 GetBoneMatrix(STBone bone)
{
var pos = Matrix4x4.FromTranslation(new Vector3D(bone.position[0], bone.position[1], bone.position[2]));
var rotx = Matrix4x4.FromRotationX(bone.rotation[0]);
var roty = Matrix4x4.FromRotationY(bone.rotation[1]);
var rotz = Matrix4x4.FromRotationZ(bone.rotation[2]);
var sca = Matrix4x4.FromScaling(new Vector3D(bone.scale[0], bone.scale[1], bone.scale[2]));
return sca * (rotx * roty * rotz) * pos;
}
public static string GetSaveFilter()
{
return "Supported Formats|*.dae;*.stl;*.obj; *.ply; *.x;*.3ds;*.json;|" +
"DAE |*.dae|" +
"OBJ |*.obj|" +
"STL |*.stl|" +
"PLY |*.ply|" +
"X |*.x|" +
"3DS |*.3ds|" +
"JSON WebGL |*.json|" +
"All files(*.*)|*.*";
}
public static Syroot.Maths.Matrix3x4 CalculateInverseMatrix(STBone bone)
{
return FromAssimpMatrix(AssimpCalculateInverseMatrix(bone));
}
public static Syroot.Maths.Matrix3x4 FromAssimpMatrix(Assimp.Matrix4x4 mat)
{
var mat4 = new Syroot.Maths.Matrix3x4();
mat4.M11 = mat.A1;
mat4.M12 = mat.A2;
mat4.M13 = mat.A3;
mat4.M14 = mat.A4;
mat4.M21 = mat.B1;
mat4.M22 = mat.B2;
mat4.M23 = mat.B3;
mat4.M24 = mat.B4;
mat4.M31 = mat.C1;
mat4.M32 = mat.C2;
mat4.M33 = mat.C3;
mat4.M34 = mat.C4;
/* mat4.M41 = mat.D1;
mat4.M42 = mat.D2;
mat4.M43 = mat.D3;
mat4.M44 = mat.D4;*/
return mat4;
}
public static Assimp.Matrix4x4 AssimpCalculateInverseMatrix(STBone bone)
{
Assimp.Matrix4x4 transf;
//Get parent transform for a smooth matrix
if (bone.Parent != null && bone.Parent is STBone)
transf = AssimpCalculateInverseMatrix((STBone)bone.Parent);
else
transf = Assimp.Matrix4x4.Identity;
//Now calculate the matrix with TK matrices
var trans = Assimp.Matrix4x4.FromTranslation(new Vector3D(bone.position[0], bone.position[1], bone.position[2]));
var scale = Assimp.Matrix4x4.FromScaling(new Vector3D(bone.scale[0], bone.scale[1], bone.scale[2]));
var rotX = Assimp.Matrix4x4.FromRotationX(bone.rotation[0]);
var rotY = Assimp.Matrix4x4.FromRotationY(bone.rotation[1]);
var rotZ = Assimp.Matrix4x4.FromRotationZ(bone.rotation[2]);
var result = scale * (rotX * rotY * rotZ) * trans;
result.Inverse();
return transf;
}
public static Vector3 FromVector(Vector3D vec)
{
Vector3 v;
v.X = vec.X;
v.Y = vec.Y;
v.Z = vec.Z;
return v;
}
public static Matrix4x4 ToMatrix4x4(this OpenTK.Matrix4 mat4)
{
Matrix4x4 outMat = new Matrix4x4(
mat4.M11, mat4.M12, mat4.M13, mat4.M14,
mat4.M21, mat4.M22, mat4.M23, mat4.M24,
mat4.M31, mat4.M32, mat4.M33, mat4.M34,
mat4.M41, mat4.M42, mat4.M43, mat4.M44);
return outMat;
}
public static OpenTK.Matrix4 TKMatrix(Assimp.Matrix4x4 input)
{
return new OpenTK.Matrix4(input.A1, input.B1, input.C1, input.D1,
input.A2, input.B2, input.C2, input.D2,
input.A3, input.B3, input.C3, input.D3,
input.A4, input.B4, input.C4, input.D4);
}
public static Vector3 ToEular(OpenTK.Quaternion q)
{
Matrix4 mat = Matrix4.CreateFromQuaternion(q);
float x, y, z;
y = (float)Math.Asin(Clamp(mat.M13, -1, 1));
if (Math.Abs(mat.M13) < 0.99999)
{
x = (float)Math.Atan2(-mat.M23, mat.M33);
z = (float)Math.Atan2(-mat.M12, mat.M11);
}
else
{
x = (float)Math.Atan2(mat.M32, mat.M22);
z = 0;
}
return new Vector3(x, y, z) * -1;
}
private static float Clamp(float v, float min, float max)
{
if (v < min) return min;
if (v > max) return max;
return v;
}
public static OpenTK.Quaternion TKQuaternion(Assimp.Quaternion rot)
{
OpenTK.Quaternion quat = new OpenTK.Quaternion();
quat.X = rot.X;
quat.Y = rot.Y;
quat.Z = rot.Z;
quat.W = rot.W;
return quat;
}
public static Matrix4x4 AssimpFromTKMatrix(Matrix4 tkMatrix)
{
Matrix4x4 m = new Matrix4x4();
m.A1 = tkMatrix.M11;
m.A2 = tkMatrix.M12;
m.A3 = tkMatrix.M13;
m.A4 = tkMatrix.M14;
m.B1 = tkMatrix.M21;
m.B2 = tkMatrix.M22;
m.B3 = tkMatrix.M23;
m.B4 = tkMatrix.M24;
m.C1 = tkMatrix.M31;
m.C2 = tkMatrix.M32;
m.C3 = tkMatrix.M33;
m.C4 = tkMatrix.M34;
m.D1 = tkMatrix.M41;
m.D2 = tkMatrix.M42;
m.D3 = tkMatrix.M43;
m.D4 = tkMatrix.M44;
return m;
}
public static void ToNumerics(this Assimp.Matrix4x4 matIn, out SN.Matrix4x4 matOut)
{
//Assimp matrices are column vector, so X,Y,Z axes are columns 1-3 and 4th column is translation.
//Columns => Rows to make it compatible with numerics
matOut = new System.Numerics.Matrix4x4(matIn.A1, matIn.B1, matIn.C1, matIn.D1, //X
matIn.A2, matIn.B2, matIn.C2, matIn.D2, //Y
matIn.A3, matIn.B3, matIn.C3, matIn.D3, //Z
matIn.A4, matIn.B4, matIn.C4, matIn.D4); //Translation
}
public static void FromNumerics(this SN.Matrix4x4 matIn, out Assimp.Matrix4x4 matOut)
{
//Numerics matrix are row vector, so X,Y,Z axes are rows 1-3 and 4th row is translation.
//Rows => Columns to make it compatible with assimp
//X
matOut.A1 = matIn.M11;
matOut.B1 = matIn.M12;
matOut.C1 = matIn.M13;
matOut.D1 = matIn.M14;
//Y
matOut.A2 = matIn.M21;
matOut.B2 = matIn.M22;
matOut.C2 = matIn.M23;
matOut.D2 = matIn.M24;
//Z
matOut.A3 = matIn.M31;
matOut.B3 = matIn.M32;
matOut.C3 = matIn.M33;
matOut.D3 = matIn.M34;
//Translation
matOut.A4 = matIn.M41;
matOut.B4 = matIn.M42;
matOut.C4 = matIn.M43;
matOut.D4 = matIn.M44;
}
public static Matrix4x4 FromNumerics(this SN.Matrix4x4 matIn)
{
Matrix4x4 matOut = new Matrix4x4();
//Numerics matrix are row vector, so X,Y,Z axes are rows 1-3 and 4th row is translation.
//Rows => Columns to make it compatible with assimp
//X
matOut.A1 = matIn.M11;
matOut.B1 = matIn.M12;
matOut.C1 = matIn.M13;
matOut.D1 = matIn.M14;
//Y
matOut.A2 = matIn.M21;
matOut.B2 = matIn.M22;
matOut.C2 = matIn.M23;
matOut.D2 = matIn.M24;
//Z
matOut.A3 = matIn.M31;
matOut.B3 = matIn.M32;
matOut.C3 = matIn.M33;
matOut.D3 = matIn.M34;
//Translation
matOut.A4 = matIn.M41;
matOut.B4 = matIn.M42;
matOut.C4 = matIn.M43;
matOut.D4 = matIn.M44;
return matOut;
}
public static Vector3 ToEulerAngles(Assimp.Quaternion q)
{
float PI = (float)Math.PI;
// Store the Euler angles in radians
Vector3 pitchYawRoll = new Vector3();
double sqw = q.W * q.W;
double sqx = q.X * q.X;
double sqy = q.Y * q.Y;
double sqz = q.Z * q.Z;
// If quaternion is normalised the unit is one, otherwise it is the correction factor
double unit = sqx + sqy + sqz + sqw;
double test = q.X * q.Y + q.Z * q.W;
if (test > 0.499f * unit)
{
// Singularity at north pole
pitchYawRoll.Y = 2f * (float)Math.Atan2(q.X, q.W); // Yaw
pitchYawRoll.X = PI * 0.5f; // Pitch
pitchYawRoll.Z = 0f; // Roll
return pitchYawRoll;
}
else if (test < -0.499f * unit)
{
// Singularity at south pole
pitchYawRoll.Y = -2f * (float)Math.Atan2(q.X, q.W); // Yaw
pitchYawRoll.X = -PI * 0.5f; // Pitch
pitchYawRoll.Z = 0f; // Roll
return pitchYawRoll;
}
pitchYawRoll.Y = (float)Math.Atan2(2 * q.Y * q.W - 2 * q.X * q.Z, sqx - sqy - sqz + sqw); // Yaw
pitchYawRoll.X = (float)Math.Asin(2 * test / unit); // Pitch
pitchYawRoll.Z = (float)Math.Atan2(2 * q.X * q.W - 2 * q.Y * q.Z, -sqx + sqy - sqz + sqw); // Roll
return pitchYawRoll;
}
}
}