1
0
mirror of synced 2024-11-28 09:20:57 +01:00
Switch-Toolbox/Switch_Toolbox_Library/Texture Decoding/Gamecube/Decode_Gamecube.cs
2019-07-19 17:24:54 -04:00

976 lines
42 KiB
C#

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Toolbox.Library.IO;
using Chadsoft.CTools.Image;
using SuperBMDLib.Util;
namespace Toolbox.Library
{
public class Decode_Gamecube
{
//Code from https://github.com/Sage-of-Mirrors/SuperBMD/blob/ce1061e9b5f57de112f1d12f6459b938594664a0/SuperBMDLib/source/Materials/BinaryTextureImage.cs
//Adjusted for proper editing in ST
#region Data Types
public static TEX_FORMAT ToGenericFormat(TextureFormats Format)
{
switch (Format)
{
case TextureFormats.C14X2: return TEX_FORMAT.C14X2;
case TextureFormats.C4: return TEX_FORMAT.C4;
case TextureFormats.C8: return TEX_FORMAT.C8;
case TextureFormats.CMPR: return TEX_FORMAT.CMPR;
case TextureFormats.I4: return TEX_FORMAT.I4;
case TextureFormats.I8: return TEX_FORMAT.I8;
case TextureFormats.IA4: return TEX_FORMAT.IA4;
case TextureFormats.IA8: return TEX_FORMAT.IA8;
case TextureFormats.RGB565: return TEX_FORMAT.R5G5B5_UNORM;
case TextureFormats.RGB5A3: return TEX_FORMAT.R5G5B5A3_UNORM;
case TextureFormats.RGBA32: return TEX_FORMAT.R32G32B32A32_FLOAT;
default:
throw new Exception("Unknown Format " + Format);
}
}
public static PALETTE_FORMAT ToGenericPaletteFormat(PaletteFormats Format)
{
switch (Format)
{
case PaletteFormats.IA8: return PALETTE_FORMAT.IA8;
case PaletteFormats.RGB565: return PALETTE_FORMAT.RGB565;
case PaletteFormats.RGB5A3: return PALETTE_FORMAT.RGB5A3;
default:
throw new Exception("Unknown Palette Format " + Format);
}
}
public static PaletteFormats FromGenericPaletteFormat(PALETTE_FORMAT Format)
{
switch (Format)
{
case PALETTE_FORMAT.None: return PaletteFormats.IA8;
case PALETTE_FORMAT.IA8: return PaletteFormats.IA8;
case PALETTE_FORMAT.RGB565: return PaletteFormats.RGB565;
case PALETTE_FORMAT.RGB5A3: return PaletteFormats.RGB5A3;
default:
throw new Exception("Unknown Palette Format " + Format);
}
}
public static TextureFormats FromGenericFormat(TEX_FORMAT Format)
{
switch (Format)
{
case TEX_FORMAT.C14X2: return TextureFormats.C14X2;
case TEX_FORMAT.C4: return TextureFormats.C4;
case TEX_FORMAT.C8: return TextureFormats.C8;
case TEX_FORMAT.CMPR: return TextureFormats.CMPR;
case TEX_FORMAT.I4: return TextureFormats.I4;
case TEX_FORMAT.I8: return TextureFormats.I8;
case TEX_FORMAT.IA4: return TextureFormats.IA4;
case TEX_FORMAT.IA8: return TextureFormats.IA8;
case TEX_FORMAT.R5G5B5_UNORM: return TextureFormats.RGB565;
case TEX_FORMAT.R5G5B5A3_UNORM: return TextureFormats.RGB5A3;
case TEX_FORMAT.R32G32B32A32_FLOAT: return TextureFormats.RGBA32;
default:
throw new Exception("Unknown Format " + Format);
}
}
/// <summary>
/// ImageFormat specifies how the data within the image is encoded.
/// Included is a chart of how many bits per pixel there are,
/// the width/height of each block, how many bytes long the
/// actual block is, and a description of the type of data stored.
/// </summary>
public enum TextureFormats
{
//Bits per Pixel | Block Width | Block Height | Block Size | Type / Description
I4 = 0x00, // 4 | 8 | 8 | 32 | grey
I8 = 0x01, // 8 | 8 | 8 | 32 | grey
IA4 = 0x02, // 8 | 8 | 4 | 32 | grey + alpha
IA8 = 0x03, // 16 | 4 | 4 | 32 | grey + alpha
RGB565 = 0x04, // 16 | 4 | 4 | 32 | color
RGB5A3 = 0x05, // 16 | 4 | 4 | 32 | color + alpha
RGBA32 = 0x06, // 32 | 4 | 4 | 64 | color + alpha
C4 = 0x08, // 4 | 8 | 8 | 32 | palette choices (IA8, RGB565, RGB5A3)
C8 = 0x09, // 8 | 8 | 4 | 32 | palette choices (IA8, RGB565, RGB5A3)
C14X2 = 0x0a, // 16 | 4 | 4 | 32 | palette (IA8, RGB565, RGB5A3) NOTE: only 14 bits are used per pixel
CMPR = 0x0e, // 4 | 8 | 8 | 32 | mini palettes in each block, RGB565 or transparent.
}
/// <summary>
/// Defines how textures handle going out of [0..1] range for texcoords.
/// </summary>
public enum WrapModes
{
ClampToEdge = 0,
Repeat = 1,
MirroredRepeat = 2,
}
/// <summary>
/// PaletteFormat specifies how the data within the palette is stored. An
/// image uses a single palette (except CMPR which defines its own
/// mini-palettes within the Image data). Only C4, C8, and C14X2 use
/// palettes. For all other formats the type and count is zero.
/// </summary>
public enum PaletteFormats
{
IA8 = 0x00,
RGB565 = 0x01,
RGB5A3 = 0x02,
}
/// <summary>
/// FilterMode specifies what type of filtering the file should use for min/mag.
/// </summary>
public enum FilterMode
{
/* Valid in both Min and Mag Filter */
Nearest = 0x0, // Point Sampling, No Mipmap
Linear = 0x1, // Bilinear Filtering, No Mipmap
/* Valid in only Min Filter */
NearestMipmapNearest = 0x2, // Point Sampling, Discrete Mipmap
NearestMipmapLinear = 0x3, // Bilinear Filtering, Discrete Mipmap
LinearMipmapNearest = 0x4, // Point Sampling, Linear MipMap
LinearMipmapLinear = 0x5, // Trilinear Filtering
}
/// <summary>
/// The Palette simply stores the color data as loaded from the file.
/// It does not convert the files based on the Palette type to RGBA8.
/// </summary>
private sealed class Palette
{
private byte[] _paletteData;
public void Load(byte[] paletteData)
{
_paletteData = paletteData;
}
public void Load(FileReader reader, uint paletteEntryCount)
{
//Files that don't have palettes have an entry count of zero.
if (paletteEntryCount == 0)
{
_paletteData = new byte[0];
return;
}
//All palette formats are 2 bytes per entry.
_paletteData = reader.ReadBytes((int)paletteEntryCount * 2);
}
public byte[] GetBytes()
{
return _paletteData;
}
}
#endregion
#region Decoding
public static byte[] DecodeData(byte[] ImageData, byte[] PaletteData, uint width, uint height, TEX_FORMAT format, PALETTE_FORMAT palleteFormat)
{
var FormatGC = FromGenericFormat(format);
var PalleteFormatGC = FromGenericPaletteFormat(palleteFormat);
Palette Palette = new Palette();
Palette.Load(PaletteData);
Console.WriteLine($"Decoding GC {FormatGC}");
return DecodeData(new FileReader(ImageData), width, height, FormatGC, Palette, PalleteFormatGC);
}
private static byte[] DecodeData(FileReader stream, uint width, uint height, TextureFormats format, Palette imagePalette, PaletteFormats paletteFormat)
{
stream.SetByteOrder(true);
switch (format)
{
case TextureFormats.I4:
return DecodeI4(stream, width, height);
case TextureFormats.I8:
return DecodeI8(stream, width, height);
case TextureFormats.IA4:
return DecodeIA4(stream, width, height);
case TextureFormats.IA8:
return DecodeIA8(stream, width, height);
case TextureFormats.RGB565:
return DecodeRgb565(stream, width, height);
case TextureFormats.RGB5A3:
return DecodeRgb5A3(stream, width, height);
case TextureFormats.RGBA32:
return DecodeRgba32(stream, width, height);
case TextureFormats.C4:
return DecodeC4(stream, width, height, imagePalette, paletteFormat);
case TextureFormats.C8:
return DecodeC8(stream, width, height, imagePalette, paletteFormat);
case TextureFormats.CMPR:
return DecodeCmpr(stream, width, height);
case TextureFormats.C14X2:
default:
Console.WriteLine("Unsupported Binary Texture Image format {0}, unable to decode!", format);
return new byte[0];
}
}
private static byte[] DecodeRgba32(FileReader stream, uint width, uint height)
{
uint numBlocksW = width / 4; //4 byte block width
uint numBlocksH = height / 4; //4 byte block height
byte[] decodedData = new byte[width * height * 4];
for (int yBlock = 0; yBlock < numBlocksH; yBlock++)
{
for (int xBlock = 0; xBlock < numBlocksW; xBlock++)
{
//For each block, we're going to examine block width / block height number of 'pixels'
for (int pY = 0; pY < 4; pY++)
{
for (int pX = 0; pX < 4; pX++)
{
//Ensure the pixel we're checking is within bounds of the image.
if ((xBlock * 4 + pX >= width) || (yBlock * 4 + pY >= height))
continue;
//Now we're looping through each pixel in a block, but a pixel is four bytes long.
uint destIndex = (uint)(4 * (width * ((yBlock * 4) + pY) + (xBlock * 4) + pX));
decodedData[destIndex + 3] = stream.ReadByte(); //Alpha
decodedData[destIndex + 2] = stream.ReadByte(); //Red
}
}
//...but we have to do it twice, because RGBA32 stores two sub-blocks per block. (AR, and GB)
for (int pY = 0; pY < 4; pY++)
{
for (int pX = 0; pX < 4; pX++)
{
//Ensure the pixel we're checking is within bounds of the image.
if ((xBlock * 4 + pX >= width) || (yBlock * 4 + pY >= height))
continue;
//Now we're looping through each pixel in a block, but a pixel is four bytes long.
uint destIndex = (uint)(4 * (width * ((yBlock * 4) + pY) + (xBlock * 4) + pX));
decodedData[destIndex + 1] = stream.ReadByte(); //Green
decodedData[destIndex + 0] = stream.ReadByte(); //Blue
}
}
}
}
return decodedData;
}
private static byte[] DecodeC4(FileReader stream, uint width, uint height, Palette imagePalette, PaletteFormats paletteFormat)
{
//4 bpp, 8 block width/height, block size 32 bytes, possible palettes (IA8, RGB565, RGB5A3)
uint numBlocksW = width / 8;
uint numBlocksH = height / 8;
byte[] decodedData = new byte[width * height * 8];
//Read the indexes from the file
for (int yBlock = 0; yBlock < numBlocksH; yBlock++)
{
for (int xBlock = 0; xBlock < numBlocksW; xBlock++)
{
//Inner Loop for pixels
for (int pY = 0; pY < 8; pY++)
{
for (int pX = 0; pX < 8; pX += 2)
{
//Ensure we're not reading past the end of the image.
if ((xBlock * 8 + pX >= width) || (yBlock * 8 + pY >= height))
continue;
byte data = stream.ReadByte();
byte t = (byte)(data & 0xF0);
byte t2 = (byte)(data & 0x0F);
decodedData[width * ((yBlock * 8) + pY) + (xBlock * 8) + pX + 0] = (byte)(t >> 4);
decodedData[width * ((yBlock * 8) + pY) + (xBlock * 8) + pX + 1] = t2;
}
}
}
}
//Now look them up in the palette and turn them into actual colors.
byte[] finalDest = new byte[decodedData.Length / 2];
int pixelSize = paletteFormat == PaletteFormats.IA8 ? 2 : 4;
int destOffset = 0;
for (int y = 0; y < height; y++)
{
for (int x = 0; x < width; x++)
{
UnpackPixelFromPalette(decodedData[y * width + x], ref finalDest, destOffset, imagePalette.GetBytes(), paletteFormat);
destOffset += pixelSize;
}
}
return finalDest;
}
private static byte[] DecodeC8(FileReader stream, uint width, uint height, Palette imagePalette, PaletteFormats paletteFormat)
{
//4 bpp, 8 block width/4 block height, block size 32 bytes, possible palettes (IA8, RGB565, RGB5A3)
uint numBlocksW = width / 8;
uint numBlocksH = height / 4;
byte[] decodedData = new byte[width * height * 8];
//Read the indexes from the file
for (int yBlock = 0; yBlock < numBlocksH; yBlock++)
{
for (int xBlock = 0; xBlock < numBlocksW; xBlock++)
{
//Inner Loop for pixels
for (int pY = 0; pY < 4; pY++)
{
for (int pX = 0; pX < 8; pX++)
{
//Ensure we're not reading past the end of the image.
if ((xBlock * 8 + pX >= width) || (yBlock * 4 + pY >= height))
continue;
byte data = stream.ReadByte();
decodedData[width * ((yBlock * 4) + pY) + (xBlock * 8) + pX] = data;
}
}
}
}
//Now look them up in the palette and turn them into actual colors.
byte[] finalDest = new byte[decodedData.Length / 2];
int pixelSize = paletteFormat == PaletteFormats.IA8 ? 2 : 4;
int destOffset = 0;
for (int y = 0; y < height; y++)
{
for (int x = 0; x < width; x++)
{
UnpackPixelFromPalette(decodedData[y * width + x], ref finalDest, destOffset, imagePalette.GetBytes(), paletteFormat);
destOffset += pixelSize;
}
}
return finalDest;
}
private static byte[] DecodeRgb565(FileReader stream, uint width, uint height)
{
//16 bpp, 4 block width/height, block size 32 bytes, color.
uint numBlocksW = width / 4;
uint numBlocksH = height / 4;
byte[] decodedData = new byte[width * height * 4];
//Read the indexes from the file
for (int yBlock = 0; yBlock < numBlocksH; yBlock++)
{
for (int xBlock = 0; xBlock < numBlocksW; xBlock++)
{
//Inner Loop for pixels
for (int pY = 0; pY < 4; pY++)
{
for (int pX = 0; pX < 4; pX++)
{
//Ensure we're not reading past the end of the image.
if ((xBlock * 4 + pX >= width) || (yBlock * 4 + pY >= height))
continue;
ushort sourcePixel = stream.ReadUInt16();
RGB565ToRGBA8(sourcePixel, ref decodedData,
(int)(4 * (width * ((yBlock * 4) + pY) + (xBlock * 4) + pX)));
}
}
}
}
return decodedData;
}
private static byte[] DecodeCmpr(FileReader stream, uint width, uint height)
{
//Decode S3TC1
byte[] buffer = new byte[width * height * 4];
for (int y = 0; y < height / 4; y += 2)
{
for (int x = 0; x < width / 4; x += 2)
{
for (int dy = 0; dy < 2; ++dy)
{
for (int dx = 0; dx < 2; ++dx)
{
if (4 * (x + dx) < width && 4 * (y + dy) < height)
{
byte[] fileData = stream.ReadBytes(8);
Buffer.BlockCopy(fileData, 0, buffer, (int)(8 * ((y + dy) * width / 4 + x + dx)), 8);
}
}
}
}
}
for (int i = 0; i < width * height / 2; i += 8)
{
// Micro swap routine needed
Swap(ref buffer[i], ref buffer[i + 1]);
Swap(ref buffer[i + 2], ref buffer[i + 3]);
buffer[i + 4] = S3TC1ReverseByte(buffer[i + 4]);
buffer[i + 5] = S3TC1ReverseByte(buffer[i + 5]);
buffer[i + 6] = S3TC1ReverseByte(buffer[i + 6]);
buffer[i + 7] = S3TC1ReverseByte(buffer[i + 7]);
}
//Now decompress the DXT1 data within it.
return DecompressDxt1(buffer, width, height);
}
private static void Swap(ref byte b1, ref byte b2)
{
byte tmp = b1; b1 = b2; b2 = tmp;
}
private static ushort Read16Swap(byte[] data, uint offset)
{
return (ushort)((Buffer.GetByte(data, (int)offset + 1) << 8) | Buffer.GetByte(data, (int)offset));
}
private static uint Read32Swap(byte[] data, uint offset)
{
return (uint)((Buffer.GetByte(data, (int)offset + 3) << 24) | (Buffer.GetByte(data, (int)offset + 2) << 16) | (Buffer.GetByte(data, (int)offset + 1) << 8) | Buffer.GetByte(data, (int)offset));
}
private static byte S3TC1ReverseByte(byte b)
{
byte b1 = (byte)(b & 0x3);
byte b2 = (byte)(b & 0xC);
byte b3 = (byte)(b & 0x30);
byte b4 = (byte)(b & 0xC0);
return (byte)((b1 << 6) | (b2 << 2) | (b3 >> 2) | (b4 >> 6));
}
private static byte[] DecompressDxt1(byte[] src, uint width, uint height)
{
uint dataOffset = 0;
byte[] finalData = new byte[width * height * 4];
for (int y = 0; y < height; y += 4)
{
for (int x = 0; x < width; x += 4)
{
// Haha this is in little-endian (DXT1) so we have to swap the already swapped bytes.
ushort color1 = Read16Swap(src, dataOffset);
ushort color2 = Read16Swap(src, dataOffset + 2);
uint bits = Read32Swap(src, dataOffset + 4);
dataOffset += 8;
byte[][] ColorTable = new byte[4][];
for (int i = 0; i < 4; i++)
ColorTable[i] = new byte[4];
RGB565ToRGBA8(color1, ref ColorTable[0], 0);
RGB565ToRGBA8(color2, ref ColorTable[1], 0);
if (color1 > color2)
{
ColorTable[2][0] = (byte)((2 * ColorTable[0][0] + ColorTable[1][0] + 1) / 3);
ColorTable[2][1] = (byte)((2 * ColorTable[0][1] + ColorTable[1][1] + 1) / 3);
ColorTable[2][2] = (byte)((2 * ColorTable[0][2] + ColorTable[1][2] + 1) / 3);
ColorTable[2][3] = 0xFF;
ColorTable[3][0] = (byte)((ColorTable[0][0] + 2 * ColorTable[1][0] + 1) / 3);
ColorTable[3][1] = (byte)((ColorTable[0][1] + 2 * ColorTable[1][1] + 1) / 3);
ColorTable[3][2] = (byte)((ColorTable[0][2] + 2 * ColorTable[1][2] + 1) / 3);
ColorTable[3][3] = 0xFF;
}
else
{
ColorTable[2][0] = (byte)((ColorTable[0][0] + ColorTable[1][0] + 1) / 2);
ColorTable[2][1] = (byte)((ColorTable[0][1] + ColorTable[1][1] + 1) / 2);
ColorTable[2][2] = (byte)((ColorTable[0][2] + ColorTable[1][2] + 1) / 2);
ColorTable[2][3] = 0xFF;
ColorTable[3][0] = (byte)((ColorTable[0][0] + 2 * ColorTable[1][0] + 1) / 3);
ColorTable[3][1] = (byte)((ColorTable[0][1] + 2 * ColorTable[1][1] + 1) / 3);
ColorTable[3][2] = (byte)((ColorTable[0][2] + 2 * ColorTable[1][2] + 1) / 3);
ColorTable[3][3] = 0x00;
}
for (int iy = 0; iy < 4; ++iy)
{
for (int ix = 0; ix < 4; ++ix)
{
if (((x + ix) < width) && ((y + iy) < height))
{
int di = (int)(4 * ((y + iy) * width + x + ix));
int si = (int)(bits & 0x3);
finalData[di + 0] = ColorTable[si][0];
finalData[di + 1] = ColorTable[si][1];
finalData[di + 2] = ColorTable[si][2];
finalData[di + 3] = ColorTable[si][3];
}
bits >>= 2;
}
}
}
}
return finalData;
}
private static byte[] DecodeIA8(FileReader stream, uint width, uint height)
{
uint numBlocksW = width / 4; //4 byte block width
uint numBlocksH = height / 4; //4 byte block height
byte[] decodedData = new byte[width * height * 4];
for (int yBlock = 0; yBlock < numBlocksH; yBlock++)
{
for (int xBlock = 0; xBlock < numBlocksW; xBlock++)
{
//For each block, we're going to examine block width / block height number of 'pixels'
for (int pY = 0; pY < 4; pY++)
{
for (int pX = 0; pX < 4; pX++)
{
//Ensure the pixel we're checking is within bounds of the image.
if ((xBlock * 4 + pX >= width) || (yBlock * 4 + pY >= height))
continue;
//Now we're looping through each pixel in a block, but a pixel is four bytes long.
uint destIndex = (uint)(4 * (width * ((yBlock * 4) + pY) + (xBlock * 4) + pX));
byte byte0 = stream.ReadByte();
byte byte1 = stream.ReadByte();
decodedData[destIndex + 3] = byte0;
decodedData[destIndex + 2] = byte1;
decodedData[destIndex + 1] = byte1;
decodedData[destIndex + 0] = byte1;
}
}
}
}
return decodedData;
}
private static byte[] DecodeIA4(FileReader stream, uint width, uint height)
{
uint numBlocksW = width / 8;
uint numBlocksH = height / 4;
byte[] decodedData = new byte[width * height * 4];
for (int yBlock = 0; yBlock < height; yBlock++)
{
for (int xBlock = 0; xBlock < width; xBlock++)
{
//For each block, we're going to examine block width / block height number of 'pixels'
for (int pY = 0; pY < 4; pY++)
{
for (int pX = 0; pX < 8; pX++)
{
//Ensure the pixel we're checking is within bounds of the image.
if ((xBlock * 8 + pX >= width) || (yBlock * 4 + pY >= height))
continue;
byte value = stream.ReadByte();
byte alpha = (byte)((value & 0xF0) >> 4);
byte lum = (byte)(value & 0x0F);
uint destIndex = (uint)(4 * (width * ((yBlock * 4) + pY) + (xBlock * 8) + pX));
decodedData[destIndex + 0] = (byte)(lum * 0x11);
decodedData[destIndex + 1] = (byte)(lum * 0x11);
decodedData[destIndex + 2] = (byte)(lum * 0x11);
decodedData[destIndex + 3] = (byte)(alpha * 0x11);
}
}
}
}
return decodedData;
}
private static byte[] DecodeI4(FileReader stream, uint width, uint height)
{
uint numBlocksW = width / 8; //8 byte block width
uint numBlocksH = height / 8; //8 byte block height
byte[] decodedData = new byte[width * height * 4];
for (int yBlock = 0; yBlock < numBlocksH; yBlock++)
{
for (int xBlock = 0; xBlock < numBlocksW; xBlock++)
{
//For each block, we're going to examine block width / block height number of 'pixels'
for (int pY = 0; pY < 8; pY++)
{
for (int pX = 0; pX < 8; pX += 2)
{
//Ensure the pixel we're checking is within bounds of the image.
if ((xBlock * 8 + pX >= width) || (yBlock * 8 + pY >= height))
continue;
byte data = stream.ReadByte();
byte t = (byte)((data & 0xF0) >> 4);
byte t2 = (byte)(data & 0x0F);
uint destIndex = (uint)(4 * (width * ((yBlock * 8) + pY) + (xBlock * 8) + pX));
decodedData[destIndex + 0] = (byte)(t * 0x11);
decodedData[destIndex + 1] = (byte)(t * 0x11);
decodedData[destIndex + 2] = (byte)(t * 0x11);
decodedData[destIndex + 3] = (byte)(t * 0x11);
decodedData[destIndex + 4] = (byte)(t2 * 0x11);
decodedData[destIndex + 5] = (byte)(t2 * 0x11);
decodedData[destIndex + 6] = (byte)(t2 * 0x11);
decodedData[destIndex + 7] = (byte)(t2 * 0x11);
}
}
}
}
return decodedData;
}
private static byte[] DecodeI8(FileReader stream, uint width, uint height)
{
uint numBlocksW = width / 8; //8 pixel block width
uint numBlocksH = height / 4; //4 pixel block height
byte[] decodedData = new byte[width * height * 4];
for (int yBlock = 0; yBlock < numBlocksH; yBlock++)
{
for (int xBlock = 0; xBlock < numBlocksW; xBlock++)
{
//For each block, we're going to examine block width / block height number of 'pixels'
for (int pY = 0; pY < 4; pY++)
{
for (int pX = 0; pX < 8; pX++)
{
//Ensure the pixel we're checking is within bounds of the image.
if ((xBlock * 8 + pX >= width) || (yBlock * 4 + pY >= height))
continue;
byte data = stream.ReadByte();
uint destIndex = (uint)(4 * (width * ((yBlock * 4) + pY) + (xBlock * 8) + pX));
decodedData[destIndex + 0] = data;
decodedData[destIndex + 1] = data;
decodedData[destIndex + 2] = data;
decodedData[destIndex + 3] = data;
}
}
}
}
return decodedData;
}
private static byte[] DecodeRgb5A3(FileReader stream, uint width, uint height)
{
uint numBlocksW = width / 4; //4 byte block width
uint numBlocksH = height / 4; //4 byte block height
byte[] decodedData = new byte[width * height * 4];
for (int yBlock = 0; yBlock < numBlocksH; yBlock++)
{
for (int xBlock = 0; xBlock < numBlocksW; xBlock++)
{
//For each block, we're going to examine block width / block height number of 'pixels'
for (int pY = 0; pY < 4; pY++)
{
for (int pX = 0; pX < 4; pX++)
{
//Ensure the pixel we're checking is within bounds of the image.
if ((xBlock * 4 + pX >= width) || (yBlock * 4 + pY >= height))
continue;
ushort sourcePixel = stream.ReadUInt16();
RGB5A3ToRGBA8(sourcePixel, ref decodedData,
(int)(4 * (width * ((yBlock * 4) + pY) + (xBlock * 4) + pX)));
}
}
}
}
return decodedData;
}
private static void UnpackPixelFromPalette(int paletteIndex, ref byte[] dest, int offset, byte[] paletteData, PaletteFormats format)
{
switch (format)
{
case PaletteFormats.IA8:
dest[0] = paletteData[2 * paletteIndex + 1];
dest[1] = paletteData[2 * paletteIndex + 0];
break;
case PaletteFormats.RGB565:
{
ushort palettePixelData = (ushort)((Buffer.GetByte(paletteData, 2 * paletteIndex) << 8) | Buffer.GetByte(paletteData, 2 * paletteIndex + 1));
RGB565ToRGBA8(palettePixelData, ref dest, offset);
}
break;
case PaletteFormats.RGB5A3:
{
ushort palettePixelData = (ushort)((Buffer.GetByte(paletteData, 2 * paletteIndex) << 8) | Buffer.GetByte(paletteData, 2 * paletteIndex + 1));
RGB5A3ToRGBA8(palettePixelData, ref dest, offset);
}
break;
}
}
/// <summary>
/// Convert a RGB565 encoded pixel (two bytes in length) to a RGBA (4 byte in length)
/// pixel.
/// </summary>
/// <param name="sourcePixel">RGB565 encoded pixel.</param>
/// <param name="dest">Destination array for RGBA pixel.</param>
/// <param name="destOffset">Offset into destination array to write RGBA pixel.</param>
private static void RGB565ToRGBA8(ushort sourcePixel, ref byte[] dest, int destOffset)
{
byte r, g, b;
r = (byte)((sourcePixel & 0xF100) >> 11);
g = (byte)((sourcePixel & 0x7E0) >> 5);
b = (byte)((sourcePixel & 0x1F));
r = (byte)((r << (8 - 5)) | (r >> (10 - 8)));
g = (byte)((g << (8 - 6)) | (g >> (12 - 8)));
b = (byte)((b << (8 - 5)) | (b >> (10 - 8)));
dest[destOffset] = b;
dest[destOffset + 1] = g;
dest[destOffset + 2] = r;
dest[destOffset + 3] = 0xFF; //Set alpha to 1
}
/// <summary>
/// Convert a RGB5A3 encoded pixel (two bytes in length) to an RGBA (4 byte in length)
/// pixel.
/// </summary>
/// <param name="sourcePixel">RGB5A3 encoded pixel.</param>
/// <param name="dest">Destination array for RGBA pixel.</param>
/// <param name="destOffset">Offset into destination array to write RGBA pixel.</param>
private static void RGB5A3ToRGBA8(ushort sourcePixel, ref byte[] dest, int destOffset)
{
byte r, g, b, a;
//No alpha bits
if ((sourcePixel & 0x8000) == 0x8000)
{
a = 0xFF;
r = (byte)((sourcePixel & 0x7C00) >> 10);
g = (byte)((sourcePixel & 0x3E0) >> 5);
b = (byte)(sourcePixel & 0x1F);
r = (byte)((r << (8 - 5)) | (r >> (10 - 8)));
g = (byte)((g << (8 - 5)) | (g >> (10 - 8)));
b = (byte)((b << (8 - 5)) | (b >> (10 - 8)));
}
//Alpha bits
else
{
a = (byte)((sourcePixel & 0x7000) >> 12);
r = (byte)((sourcePixel & 0xF00) >> 8);
g = (byte)((sourcePixel & 0xF0) >> 4);
b = (byte)(sourcePixel & 0xF);
a = (byte)((a << (8 - 3)) | (a << (8 - 6)) | (a >> (9 - 8)));
r = (byte)((r << (8 - 4)) | r);
g = (byte)((g << (8 - 4)) | g);
b = (byte)((b << (8 - 4)) | b);
}
dest[destOffset + 0] = b;
dest[destOffset + 1] = g;
dest[destOffset + 2] = r;
dest[destOffset + 3] = a;
}
#endregion
#region Encoding
public static Tuple<byte[], ushort[]> EncodeData(byte[] m_rgbaImageData, TextureFormats Format, PaletteFormats PaletteFormat, int Width, int Height)
{
switch (Format)
{
case TextureFormats.I4:
return new Tuple<byte[], ushort[]>(ImageDataFormat.I4.ConvertTo(m_rgbaImageData, Width, Height, null), new ushort[0]);
case TextureFormats.I8:
return new Tuple<byte[], ushort[]>(ImageDataFormat.I8.ConvertTo(m_rgbaImageData, Width, Height, null), new ushort[0]);
case TextureFormats.IA4:
return new Tuple<byte[], ushort[]>(ImageDataFormat.IA4.ConvertTo(m_rgbaImageData, Width, Height, null), new ushort[0]);
case TextureFormats.IA8:
return new Tuple<byte[], ushort[]>(ImageDataFormat.IA8.ConvertTo(m_rgbaImageData, Width, Height, null), new ushort[0]);
case TextureFormats.RGB565:
return new Tuple<byte[], ushort[]>(ImageDataFormat.RGB565.ConvertTo(m_rgbaImageData, Width, Height, null), new ushort[0]);
case TextureFormats.RGB5A3:
return new Tuple<byte[], ushort[]>(ImageDataFormat.RGB5A3.ConvertTo(m_rgbaImageData, Width, Height, null), new ushort[0]);
case TextureFormats.RGBA32:
return new Tuple<byte[], ushort[]>(ImageDataFormat.Rgba32.ConvertTo(m_rgbaImageData, Width, Height, null), new ushort[0]);
case TextureFormats.C4:
return EncodeC4(PaletteFormat, m_rgbaImageData, Width, Height);
case TextureFormats.C8:
return EncodeC8(PaletteFormat, m_rgbaImageData, Width, Height);
case TextureFormats.CMPR:
return new Tuple<byte[], ushort[]>(ImageDataFormat.Cmpr.ConvertTo(m_rgbaImageData, Width, Height, null), new ushort[0]);
default:
return new Tuple<byte[], ushort[]>(new byte[0], new ushort[0]);
}
}
private static Tuple<byte[], ushort[]> EncodeC4(PaletteFormats PaletteFormat, byte[] m_rgbaImageData, int Width, int Height)
{
List<Color32> palColors = new List<Color32>();
uint numBlocksW = (uint)Width / 8;
uint numBlocksH = (uint)Height / 8;
byte[] pixIndices = new byte[numBlocksH * numBlocksW * 8 * 8];
for (int i = 0; i < (Width * Height) * 4; i += 4)
palColors.Add(new Color32(m_rgbaImageData[i + 2], m_rgbaImageData[i + 1], m_rgbaImageData[i + 0], m_rgbaImageData[i + 3]));
List<ushort> rawColorData = new List<ushort>();
Dictionary<Color32, byte> pixelColorIndexes = new Dictionary<Color32, byte>();
foreach (Color32 col in palColors)
{
EncodeColor(PaletteFormat, col, rawColorData, pixelColorIndexes);
}
int pixIndex = 0;
for (int yBlock = 0; yBlock < numBlocksH; yBlock++)
{
for (int xBlock = 0; xBlock < numBlocksW; xBlock++)
{
for (int pY = 0; pY < 8; pY++)
{
for (int pX = 0; pX < 8; pX += 2)
{
byte color1 = (byte)(pixelColorIndexes[palColors[Width * ((yBlock * 8) + pY) + (xBlock * 8) + pX]] & 0xF);
byte color2 = (byte)(pixelColorIndexes[palColors[Width * ((yBlock * 8) + pY) + (xBlock * 8) + pX + 1]] & 0xF);
pixIndices[pixIndex] = (byte)(color1 << 4);
pixIndices[pixIndex++] |= color2;
}
}
}
}
// PaletteCount = (ushort)rawColorData.Count;
// PalettesEnabled = true;
return new Tuple<byte[], ushort[]>(pixIndices, rawColorData.ToArray());
}
private static Tuple<byte[], ushort[]> EncodeC8(PaletteFormats PaletteFormat, byte[] m_rgbaImageData, int Width, int Height)
{
List<Color32> palColors = new List<Color32>();
uint numBlocksW = (uint)Width / 8;
uint numBlocksH = (uint)Height / 4;
byte[] pixIndices = new byte[numBlocksH * numBlocksW * 8 * 4];
for (int i = 0; i < (Width * Height) * 4; i += 4)
palColors.Add(new Color32(m_rgbaImageData[i + 2], m_rgbaImageData[i + 1], m_rgbaImageData[i + 0], m_rgbaImageData[i + 3]));
List<ushort> rawColorData = new List<ushort>();
Dictionary<Color32, byte> pixelColorIndexes = new Dictionary<Color32, byte>();
foreach (Color32 col in palColors)
{
EncodeColor(PaletteFormat, col, rawColorData, pixelColorIndexes);
}
int pixIndex = 0;
for (int yBlock = 0; yBlock < numBlocksH; yBlock++)
{
for (int xBlock = 0; xBlock < numBlocksW; xBlock++)
{
for (int pY = 0; pY < 4; pY++)
{
for (int pX = 0; pX < 8; pX++)
{
pixIndices[pixIndex++] = pixelColorIndexes[palColors[Width * ((yBlock * 4) + pY) + (xBlock * 8) + pX]];
}
}
}
}
// PaletteCount = (ushort)rawColorData.Count;
// PalettesEnabled = true;
return new Tuple<byte[], ushort[]>(pixIndices, rawColorData.ToArray());
}
private static void EncodeColor(PaletteFormats PaletteFormat, Color32 col, List<ushort> rawColorData, Dictionary<Color32, byte> pixelColorIndexes)
{
switch (PaletteFormat)
{
case PaletteFormats.IA8:
byte i = (byte)((col.R * 0.2126) + (col.G * 0.7152) + (col.B * 0.0722));
ushort fullIA8 = (ushort)((i << 8) | (col.A));
if (!rawColorData.Contains(fullIA8))
rawColorData.Add(fullIA8);
if (!pixelColorIndexes.ContainsKey(col))
pixelColorIndexes.Add(col, (byte)rawColorData.IndexOf(fullIA8));
break;
case PaletteFormats.RGB565:
ushort r_565 = (ushort)(col.R >> 3);
ushort g_565 = (ushort)(col.G >> 2);
ushort b_565 = (ushort)(col.B >> 3);
ushort fullColor565 = 0;
fullColor565 |= b_565;
fullColor565 |= (ushort)(g_565 << 5);
fullColor565 |= (ushort)(r_565 << 11);
if (!rawColorData.Contains(fullColor565))
rawColorData.Add(fullColor565);
if (!pixelColorIndexes.ContainsKey(col))
pixelColorIndexes.Add(col, (byte)rawColorData.IndexOf(fullColor565));
break;
case PaletteFormats.RGB5A3:
ushort r_53 = (ushort)(col.R >> 4);
ushort g_53 = (ushort)(col.G >> 4);
ushort b_53 = (ushort)(col.B >> 4);
ushort a_53 = (ushort)(col.A >> 5);
ushort fullColor53 = 0;
fullColor53 |= b_53;
fullColor53 |= (ushort)(g_53 << 4);
fullColor53 |= (ushort)(r_53 << 8);
fullColor53 |= (ushort)(a_53 << 12);
if (!rawColorData.Contains(fullColor53))
rawColorData.Add(fullColor53);
if (!pixelColorIndexes.ContainsKey(col))
pixelColorIndexes.Add(col, (byte)rawColorData.IndexOf(fullColor53));
break;
}
}
#endregion
}
}