1
0
mirror of synced 2024-12-01 02:27:22 +01:00
Switch-Toolbox/File_Format_Library/GL/GFBMDL_Render.cs
2020-05-09 20:28:16 -04:00

481 lines
20 KiB
C#

using System;
using System.Collections.Generic;
using System.IO;
using System.Text;
using System.Threading.Tasks;
using GL_EditorFramework.GL_Core;
using GL_EditorFramework.Interfaces;
using Toolbox.Library.IO;
using Toolbox.Library;
using Toolbox.Library.Rendering;
using OpenTK;
using OpenTK.Graphics.OpenGL;
namespace FirstPlugin
{
public class GFBMDL_Render : AbstractGlDrawable, IMeshContainer
{
public GFBMDL GfbmdlFile;
public List<STGenericObject> Meshes { get; set; } = new List<STGenericObject>();
public Matrix4 ModelTransform = Matrix4.Identity;
// gl buffer objects
int vbo_position;
int ibo_elements;
private void GenerateBuffers()
{
GL.GenBuffers(1, out vbo_position);
GL.GenBuffers(1, out ibo_elements);
UpdateVertexData();
UpdateTextureMaps();
}
public void Destroy()
{
GL.DeleteBuffer(vbo_position);
GL.DeleteBuffer(ibo_elements);
}
public void UpdateVertexData()
{
if (!Runtime.OpenTKInitialized)
return;
GFLXMesh.DisplayVertex[] Vertices;
int[] Faces;
int poffset = 0;
int voffset = 0;
List<GFLXMesh.DisplayVertex> Vs = new List<GFLXMesh.DisplayVertex>();
List<int> Ds = new List<int>();
foreach (GFLXMesh shape in Meshes)
{
List<GFLXMesh.DisplayVertex> pv = shape.CreateDisplayVertices();
Vs.AddRange(pv);
int GroupOffset = 0;
int groupIndex = 0;
foreach (var group in shape.PolygonGroups)
{
group.Offset = poffset * 4;
for (int i = 0; i < group.displayFaceSize; i++)
{
Ds.Add(shape.display[GroupOffset + i] + voffset);
}
poffset += group.displayFaceSize;
GroupOffset += group.displayFaceSize;
Console.WriteLine($"GroupOffset {groupIndex++} " + GroupOffset);
}
voffset += pv.Count;
}
// Binds
Vertices = Vs.ToArray();
Faces = Ds.ToArray();
// Bind only once!
GL.BindBuffer(BufferTarget.ArrayBuffer, vbo_position);
GL.BufferData<GFLXMesh.DisplayVertex>(BufferTarget.ArrayBuffer, (IntPtr)(Vertices.Length * GFLXMesh.DisplayVertex.Size), Vertices, BufferUsageHint.StaticDraw);
GL.BindBuffer(BufferTarget.ElementArrayBuffer, ibo_elements);
GL.BufferData<int>(BufferTarget.ElementArrayBuffer, (IntPtr)(Faces.Length * sizeof(int)), Faces, BufferUsageHint.StaticDraw);
LibraryGUI.UpdateViewport();
}
public void UpdateTextureMaps()
{
if (!Runtime.OpenTKInitialized)
return;
LibraryGUI.UpdateViewport();
}
public ShaderProgram defaultShaderProgram;
public override void Prepare(GL_ControlModern control)
{
string pathFrag = System.IO.Path.Combine(Runtime.ExecutableDir, "Shader", "GFBModel.frag");
string pathVert = System.IO.Path.Combine(Runtime.ExecutableDir, "Shader", "GFBModel.vert");
string pathUtiltyFrag = System.IO.Path.Combine(Runtime.ExecutableDir, "Shader", "Utility") + "\\Utility.frag";
string pathPbrUtiltyFrag = System.IO.Path.Combine(Runtime.ExecutableDir, "Shader", "Utility") + "\\PbrUtility.frag";
var defaultFrag = new FragmentShader(File.ReadAllText(pathFrag));
var defaultVert = new VertexShader(File.ReadAllText(pathVert));
var utiltyFrag = new FragmentShader(System.IO.File.ReadAllText(pathUtiltyFrag));
var pbrUtiltyFrag = new FragmentShader(System.IO.File.ReadAllText(pathPbrUtiltyFrag));
defaultShaderProgram = new ShaderProgram(new Shader[]
{ utiltyFrag, pbrUtiltyFrag, defaultVert, defaultFrag }, control);
}
public override void Prepare(GL_ControlLegacy control)
{
}
public override void Draw(GL_ControlLegacy control, Pass pass)
{
if (!Runtime.OpenTKInitialized)
return;
}
public override void Draw(GL_ControlModern control, Pass pass)
{
if (!Runtime.OpenTKInitialized || pass == Pass.TRANSPARENT)
return;
bool buffersWereInitialized = ibo_elements != 0 && vbo_position != 0;
if (!buffersWereInitialized)
GenerateBuffers();
ShaderProgram shader = defaultShaderProgram;
control.CurrentShader = shader;
control.UpdateModelMatrix(Matrix4.CreateScale(Runtime.previewScale) * ModelTransform);
Matrix4 camMat = control.ModelMatrix * control.CameraMatrix * control.ProjectionMatrix;
Matrix4 invertedCamera = Matrix4.Identity;
if (invertedCamera.Determinant != 0)
invertedCamera = camMat.Inverted();
Vector3 lightDirection = new Vector3(0f, 0f, -1f);
shader.SetVector3("difLightDirection", Vector3.TransformNormal(lightDirection, invertedCamera).Normalized());
// GL.Enable(EnableCap.AlphaTest);
// GL.AlphaFunc(AlphaFunction.Gequal, 0.1f);
SetRenderSettings(shader);
DrawModels(shader, control);
GL.UseProgram(0);
GL.Disable(EnableCap.DepthTest);
GL.Enable(EnableCap.DepthTest);
GL.Enable(EnableCap.CullFace);
}
private static void SetBoneUniforms(GLControl control, ShaderProgram shader, GFLXMesh mesh)
{
int i = 0;
foreach (var bone in mesh.ParentModel.Skeleton.bones)
{
Matrix4 transform = bone.invert * bone.Transform;
GL.UniformMatrix4(GL.GetUniformLocation(shader.programs[control], String.Format("bones[{0}]", i++)), false, ref transform);
}
/* foreach (var FaceGroup in fshp.Shape.FaceGroups)
{
if (FaceGroup.BoneIndexList == null)
continue;
for (int i = 0; i < FaceGroup.BoneIndexList.Length; i++)
{
GL.Uniform1(GL.GetUniformLocation(shader.programs[control], String.Format("boneIds[{0}]", i)), FaceGroup.BoneIndexList[i]);
Matrix4 transform = fmdl.Skeleton.Renderable.bones[(int)FaceGroup.BoneIndexList[i]].invert * fmdl.Skeleton.Renderable.bones[(int)FaceGroup.BoneIndexList[i]].Transform;
GL.UniformMatrix4(GL.GetUniformLocation(shader.programs[control], String.Format("bones[{0}]", i)), false, ref transform);
}
}*/
}
private void SetUniformBlocks(GFLXMaterialData mat, ShaderProgram shader, GFLXMesh m, int id)
{
/* shader.UniformBlockBinding("TexCoord1", 3);
GL.GetActiveUniformBlock(shader.program,
shader.GetUniformBlockIndex("TexCoord1"),
ActiveUniformBlockParameter.UniformBlockBinding, out int binding);*/
/* GL.BindBuffer(BufferTarget.UniformBuffer, TexCoord1Buffer);
GL.BufferData(BufferTarget.UniformBuffer,
(IntPtr)MTOBWrapper.TexCoord1.Size,
ref mat.TexCoord1Buffer,
BufferUsageHint.StaticDraw);
GL.BindBuffer(BufferTarget.UniformBuffer, 0);
GL.BindBufferRange(BufferRangeTarget.UniformBuffer, 0, TexCoord1Buffer, (IntPtr)0,
MTOBWrapper.TexCoord1.Size);
GL.BindBuffer(BufferTarget.UniformBuffer, TexCoord1Buffer);
GL.BINDBUFFER*/
}
private static void SetUniforms(GFLXMaterialData mat, ShaderProgram shader, GFLXMesh m, int id)
{
// Texture Maps
/* shader.SetBoolToInt("useColorTex", false);
shader.SetBoolToInt("EmissionMaskUse", false);
shader.SetBoolToInt("SwitchPriority", false);
shader.SetBoolToInt("Layer1Enable", false);
shader.SetBoolToInt("AmbientMapEnable", false);
shader.SetBoolToInt("NormalMapEnable", false);
shader.SetBoolToInt("LightTableEnable", false);
shader.SetBoolToInt("BaseColorAddEnable", false);
shader.SetBoolToInt("SphereMapEnable", false);
shader.SetBoolToInt("EffectVal", false);*/
//Switch UVs
shader.SetBoolToInt("SwitchEmissionMaskTexUV", false);
shader.SetBoolToInt("SwitchAmbientTexUV", false);
shader.SetBoolToInt("SwitchNormalMapUV", false);
//UV Scale
shader.SetFloat("ColorUVScaleU", 1);
shader.SetFloat("ColorUVScaleV", 1);
//UV Translate
shader.SetFloat("ColorUVTranslateU", 0);
shader.SetFloat("ColorUVTranslateV", 0);
SetUniformData(mat, shader, "ColorUVScaleU");
SetUniformData(mat, shader, "ColorUVScaleV");
SetUniformData(mat, shader, "ColorUVTranslateU");
SetUniformData(mat, shader, "ColorUVTranslateV");
SetUniformData(mat, shader, "ColorBaseU");
SetUniformData(mat, shader, "ColorBaseV");
}
private static void SetUniformData(GFLXMaterialData mat, ShaderProgram shader, string propertyName)
{
if (mat.SwitchParams.ContainsKey(propertyName))
{
bool Value = (bool)mat.SwitchParams[propertyName].Value;
shader.SetBoolToInt(propertyName, Value);
}
if (mat.ValueParams.ContainsKey(propertyName))
{
var Value = mat.ValueParams[propertyName].Value;
shader.SetFloat(propertyName, (float)Value);
}
if (mat.ColorParams.ContainsKey(propertyName))
{
Vector3 Value = (Vector3)mat.ColorParams[propertyName].Value;
shader.SetVector3(propertyName, Value);
}
}
private static void SetTextureUniforms(GFLXMaterialData mat, GFLXMesh m, ShaderProgram shader)
{
if (!mat.HasVertexColors())
shader.SetBoolToInt("renderVertColor", false);
else
shader.SetBoolToInt("renderVertColor", Runtime.renderVertColor);
SetDefaultTextureAttributes(mat, shader);
GL.ActiveTexture(TextureUnit.Texture0 + 1);
GL.BindTexture(TextureTarget.Texture2D, RenderTools.defaultTex.RenderableTex.TexID);
GL.Uniform1(shader["debugOption"], 2);
GL.ActiveTexture(TextureUnit.Texture11);
GL.Uniform1(shader["weightRamp1"], 11);
GL.BindTexture(TextureTarget.Texture2D, RenderTools.BoneWeightGradient.Id);
GL.ActiveTexture(TextureUnit.Texture12);
GL.Uniform1(shader["weightRamp2"], 12);
GL.BindTexture(TextureTarget.Texture2D, RenderTools.BoneWeightGradient2.Id);
GL.ActiveTexture(TextureUnit.Texture10);
GL.Uniform1(shader["UVTestPattern"], 10);
GL.BindTexture(TextureTarget.Texture2D, RenderTools.uvTestPattern.RenderableTex.TexID);
shader.SetInt("RedChannel", 0);
shader.SetInt("GreenChannel", 1);
shader.SetInt("BlueChannel", 2);
shader.SetInt("AlphaChannel", 3);
LoadPBRMaps(shader);
foreach (STGenericMatTexture matex in mat.TextureMaps)
{
if (matex.Type == STGenericMatTexture.TextureType.Diffuse)
{
shader.SetBoolToInt("HasDiffuse", true);
TextureUniform(shader, mat, true, "DiffuseMap", matex);
}
if (matex.Type == STGenericMatTexture.TextureType.Normal)
{
shader.SetBoolToInt("HasNormalMap", true);
TextureUniform(shader, mat, true, "NormalMap", matex);
}
if (matex.Type == STGenericMatTexture.TextureType.AO)
{
shader.SetBoolToInt("HasAmbientMap", true);
TextureUniform(shader, mat, true, "AmbientMap", matex);
}
}
}
private static void LoadPBRMaps(ShaderProgram shader)
{
GL.ActiveTexture(TextureUnit.Texture0 + 26);
RenderTools.specularPbr.Bind();
shader.SetInt("specularIbl", 26);
// GL.GenerateMipmap(GenerateMipmapTarget.TextureCubeMap);
// PBR IBL
GL.ActiveTexture(TextureUnit.Texture0 + 25);
RenderTools.diffusePbr.Bind();
shader.SetInt("irradianceMap", 25);
GL.ActiveTexture(TextureUnit.Texture0 + 27);
RenderTools.brdfPbr.Bind();
shader.SetInt("brdfLUT", 27);
}
private static void TextureUniform(ShaderProgram shader, GFLXMaterialData mat, bool hasTex, string name, STGenericMatTexture mattex)
{
if (mattex.textureState == STGenericMatTexture.TextureState.Binded)
return;
// Bind the texture and create the uniform if the material has the right textures.
if (hasTex)
{
GL.Uniform1(shader[name], BindTexture(mattex, shader));
}
}
public static int BindTexture(STGenericMatTexture tex, ShaderProgram shader)
{
GL.ActiveTexture(TextureUnit.Texture0 + tex.textureUnit + 1);
GL.BindTexture(TextureTarget.Texture2D, RenderTools.defaultTex.RenderableTex.TexID);
string activeTex = tex.Name;
foreach (var bntx in PluginRuntime.bntxContainers)
{
if (bntx.Textures.ContainsKey(activeTex))
{
BindBNTX(bntx, tex, shader, activeTex);
return tex.textureUnit + 1;
}
}
return tex.textureUnit + 1;
}
private static void BindBNTX(BNTX bntx, STGenericMatTexture tex, ShaderProgram shader, string activeTex)
{
if (bntx.Textures[activeTex].RenderableTex == null ||
!bntx.Textures[activeTex].RenderableTex.GLInitialized)
{
bntx.Textures[activeTex].LoadOpenGLTexture();
}
BindGLTexture(tex, shader, bntx.Textures[activeTex]);
}
private static void BindGLTexture(STGenericMatTexture tex, ShaderProgram shader, STGenericTexture texture)
{
if (tex.Type == STGenericMatTexture.TextureType.Diffuse)
{
shader.SetInt("RedChannel", (int)texture.RedChannel);
shader.SetInt("GreenChannel", (int)texture.GreenChannel);
shader.SetInt("BlueChannel", (int)texture.BlueChannel);
shader.SetInt("AlphaChannel", (int)texture.AlphaChannel);
}
// GL.ActiveTexture(TextureUnit.Texture0 + texid);
GL.BindTexture(TextureTarget.Texture2D, texture.RenderableTex.TexID);
GL.TexParameter(TextureTarget.Texture2D, TextureParameterName.TextureWrapS, (int)STGenericMatTexture.wrapmode[tex.WrapModeS]);
GL.TexParameter(TextureTarget.Texture2D, TextureParameterName.TextureWrapT, (int)STGenericMatTexture.wrapmode[tex.WrapModeT]);
GL.TexParameter(TextureTarget.Texture2D, TextureParameterName.TextureMinFilter, (int)STGenericMatTexture.minfilter[tex.MinFilter]);
GL.TexParameter(TextureTarget.Texture2D, TextureParameterName.TextureMagFilter, (int)STGenericMatTexture.magfilter[tex.MagFilter]);
GL.TexParameter(TextureTarget.Texture2D, (TextureParameterName)ExtTextureFilterAnisotropic.TextureMaxAnisotropyExt, 0.0f);
}
private static void SetDefaultTextureAttributes(GFLXMaterialData mat, ShaderProgram shader)
{
}
private void SetRenderSettings(ShaderProgram shader)
{
shader.SetInt("renderType", (int)Runtime.viewportShading);
shader.SetInt("selectedBoneIndex", Runtime.SelectedBoneIndex);
shader.SetBoolToInt("renderVertColor", Runtime.renderVertColor);
}
private void DrawModels(ShaderProgram shader, GL_ControlModern control)
{
shader.EnableVertexAttributes();
foreach (GFLXMesh shp in Meshes)
{
if (shp.Checked && shp.AnimationController.IsVisible)
DrawModel(control, shp, shader);
}
shader.DisableVertexAttributes();
}
private void SetVertexAttributes(GFLXMesh m, ShaderProgram shader)
{
GL.BindBuffer(BufferTarget.ArrayBuffer, vbo_position);
GL.VertexAttribPointer(shader.GetAttribute("vPosition"), 3, VertexAttribPointerType.Float, false, GFLXMesh.DisplayVertex.Size, 0); //+12
GL.VertexAttribPointer(shader.GetAttribute("vNormal"), 3, VertexAttribPointerType.Float, false, GFLXMesh.DisplayVertex.Size, 12); //+12
GL.VertexAttribPointer(shader.GetAttribute("vTangent"), 3, VertexAttribPointerType.Float, false, GFLXMesh.DisplayVertex.Size, 24); //+12
GL.VertexAttribPointer(shader.GetAttribute("vUV0"), 2, VertexAttribPointerType.Float, false, GFLXMesh.DisplayVertex.Size, 36); //+8
GL.VertexAttribPointer(shader.GetAttribute("vColor"), 4, VertexAttribPointerType.Float, false, GFLXMesh.DisplayVertex.Size, 44); //+16
GL.VertexAttribIPointer(shader.GetAttribute("vBone"), 4, VertexAttribIntegerType.Int, GFLXMesh.DisplayVertex.Size, new IntPtr(60)); //+16
GL.VertexAttribPointer(shader.GetAttribute("vWeight"), 4, VertexAttribPointerType.Float, false, GFLXMesh.DisplayVertex.Size, 76);//+16
GL.VertexAttribPointer(shader.GetAttribute("vUV1"), 2, VertexAttribPointerType.Float, false, GFLXMesh.DisplayVertex.Size, 92);//+8
GL.VertexAttribPointer(shader.GetAttribute("vUV2"), 2, VertexAttribPointerType.Float, false, GFLXMesh.DisplayVertex.Size, 100);//+8
GL.VertexAttribPointer(shader.GetAttribute("vBinormal"), 3, VertexAttribPointerType.Float, false, GFLXMesh.DisplayVertex.Size, 108); //+12
GL.BindBuffer(BufferTarget.ElementArrayBuffer, ibo_elements);
}
private void DrawModel(GLControl control, GFLXMesh m, ShaderProgram shader)
{
foreach (var group in m.PolygonGroups)
{
if (group.faces.Count <= 3)
return;
var Material = m.ParentModel.GenericMaterials[group.MaterialIndex];
SetUniforms(m.GetMaterial(group), shader, m, m.DisplayId);
SetUniformBlocks(m.GetMaterial(group), shader, m, m.DisplayId);
SetBoneUniforms(control, shader, m);
SetVertexAttributes(m, shader);
SetTextureUniforms(m.GetMaterial(group), m, shader);
if (m.IsSelected)
{
DrawModelSelection(group, shader);
}
else
{
if (Runtime.RenderModels)
{
GL.DrawElements(PrimitiveType.Triangles, group.displayFaceSize, DrawElementsType.UnsignedInt, group.Offset);
}
}
}
}
private static void DrawModelSelection(STGenericPolygonGroup p, ShaderProgram shader)
{
GL.Uniform1(shader["colorOverride"], 1);
GL.PolygonMode(MaterialFace.Front, PolygonMode.Line);
GL.Enable(EnableCap.LineSmooth);
GL.LineWidth(1.3f);
GL.DrawElements(PrimitiveType.Triangles, p.displayFaceSize, DrawElementsType.UnsignedInt, p.Offset);
GL.PolygonMode(MaterialFace.FrontAndBack, PolygonMode.Fill);
GL.Uniform1(shader["colorOverride"], 0);
GL.DrawElements(PrimitiveType.Triangles, p.displayFaceSize, DrawElementsType.UnsignedInt, p.Offset);
}
}
}