1
0
mirror of synced 2024-11-30 16:54:30 +01:00

Use cPython to speed up some rendering by about 10%.

This commit is contained in:
Jennifer Taylor 2021-05-16 00:19:50 +00:00
parent 68feebc78e
commit 187783696b
3 changed files with 174 additions and 157 deletions

155
bemani/format/afp/blend.py Normal file
View File

@ -0,0 +1,155 @@
from typing import Tuple
from .types.generic import Color
def clamp(color: float) -> int:
return min(max(0, round(color)), 255)
def blend_normal(
# RGBA color tuple representing what's already at the dest.
dest: Tuple[int, int, int, int],
# RGBA color tuple representing the source we want to blend to the dest.
src: Tuple[int, int, int, int],
# A pre-scaled color where all values are 0.0-1.0, used to calculate the final color.
mult_color: Color,
# A RGBA color tuple where all values are 0-255, used to calculate the final color.
add_color: Tuple[int, int, int, int],
) -> Tuple[int, int, int, int]:
# "Normal" blend mode, which is just alpha blending. Various games use the DX
# equation Src * As + Dst * (1 - As). We premultiply Dst by Ad as well, since
# we are blitting onto a destination that could have transparency.
# Calculate multiplicative and additive colors against the source.
src = (
clamp((src[0] * mult_color.r) + add_color[0]),
clamp((src[1] * mult_color.g) + add_color[1]),
clamp((src[2] * mult_color.b) + add_color[2]),
clamp((src[3] * mult_color.a) + add_color[3]),
)
# Short circuit for speed.
if src[3] == 0:
return dest
if src[3] == 255:
return src
# Calculate alpha blending.
srcpercent = src[3] / 255.0
destpercent = dest[3] / 255.0
destremainder = 1.0 - srcpercent
return (
clamp((dest[0] * destpercent * destremainder) + (src[0] * srcpercent)),
clamp((dest[1] * destpercent * destremainder) + (src[1] * srcpercent)),
clamp((dest[2] * destpercent * destremainder) + (src[2] * srcpercent)),
clamp(255 * (srcpercent + destpercent * destremainder)),
)
def blend_addition(
# RGBA color tuple representing what's already at the dest.
dest: Tuple[int, int, int, int],
# RGBA color tuple representing the source we want to blend to the dest.
src: Tuple[int, int, int, int],
# A pre-scaled color where all values are 0.0-1.0, used to calculate the final color.
mult_color: Color,
# A RGBA color tuple where all values are 0-255, used to calculate the final color.
add_color: Tuple[int, int, int, int],
) -> Tuple[int, int, int, int]:
# "Addition" blend mode, which is used for fog/clouds/etc. Various games use the DX
# equation Src * As + Dst * 1. It appears jubeat does not premultiply the source
# by its alpha component.
# Calculate multiplicative and additive colors against the source.
src = (
clamp((src[0] * mult_color.r) + add_color[0]),
clamp((src[1] * mult_color.g) + add_color[1]),
clamp((src[2] * mult_color.b) + add_color[2]),
clamp((src[3] * mult_color.a) + add_color[3]),
)
# Short circuit for speed.
if src[3] == 0:
return dest
# Calculate alpha blending.
srcpercent = src[3] / 255.0
return (
clamp(dest[0] + (src[0] * srcpercent)),
clamp(dest[1] + (src[1] * srcpercent)),
clamp(dest[2] + (src[2] * srcpercent)),
clamp(dest[3] + (255 * srcpercent)),
)
def blend_subtraction(
# RGBA color tuple representing what's already at the dest.
dest: Tuple[int, int, int, int],
# RGBA color tuple representing the source we want to blend to the dest.
src: Tuple[int, int, int, int],
# A pre-scaled color where all values are 0.0-1.0, used to calculate the final color.
mult_color: Color,
# A RGBA color tuple where all values are 0-255, used to calculate the final color.
add_color: Tuple[int, int, int, int],
) -> Tuple[int, int, int, int]:
# "Subtraction" blend mode, used for darkening an image. Various games use the DX
# equation Dst * 1 - Src * As. It appears jubeat does not premultiply the source
# by its alpha component much like the "additive" blend above..
# Calculate multiplicative and additive colors against the source.
src = (
clamp((src[0] * mult_color.r) + add_color[0]),
clamp((src[1] * mult_color.g) + add_color[1]),
clamp((src[2] * mult_color.b) + add_color[2]),
clamp((src[3] * mult_color.a) + add_color[3]),
)
# Short circuit for speed.
if src[3] == 0:
return dest
# Calculate alpha blending.
srcpercent = src[3] / 255.0
return (
clamp(dest[0] - (src[0] * srcpercent)),
clamp(dest[1] - (src[1] * srcpercent)),
clamp(dest[2] - (src[2] * srcpercent)),
clamp(dest[3] - (255 * srcpercent)),
)
def blend_multiply(
# RGBA color tuple representing what's already at the dest.
dest: Tuple[int, int, int, int],
# RGBA color tuple representing the source we want to blend to the dest.
src: Tuple[int, int, int, int],
# A pre-scaled color where all values are 0.0-1.0, used to calculate the final color.
mult_color: Color,
# A RGBA color tuple where all values are 0-255, used to calculate the final color.
add_color: Tuple[int, int, int, int],
) -> Tuple[int, int, int, int]:
# "Multiply" blend mode, used for darkening an image. Various games use the DX
# equation Src * 0 + Dst * Src. It appears jubeat uses the alternative formula
# Src * Dst + Dst * (1 - As) which reduces to the first equation as long as the
# source alpha is always 255.
# Calculate multiplicative and additive colors against the source.
src = (
clamp((src[0] * mult_color.r) + add_color[0]),
clamp((src[1] * mult_color.g) + add_color[1]),
clamp((src[2] * mult_color.b) + add_color[2]),
clamp((src[3] * mult_color.a) + add_color[3]),
)
# Short circuit for speed.
if src[3] == 0:
return dest
# Calculate alpha blending.
return (
clamp(255 * ((dest[0] / 255.0) * (src[0] / 255.0))),
clamp(255 * ((dest[1] / 255.0) * (src[1] / 255.0))),
clamp(255 * ((dest[2] / 255.0) * (src[2] / 255.0))),
clamp(255 * ((dest[3] / 255.0) * (src[3] / 255.0))),
)

View File

@ -1,6 +1,7 @@
from typing import Dict, List, Tuple, Optional, Union
from PIL import Image # type: ignore
from .blend import blend_normal, blend_addition, blend_subtraction, blend_multiply
from .swf import SWF, Frame, Tag, AP2ShapeTag, AP2DefineSpriteTag, AP2PlaceObjectTag, AP2RemoveObjectTag, AP2DoActionTag, AP2DefineFontTag, AP2DefineEditTextTag
from .types import Color, Matrix, Point
from .geo import Shape, DrawParams
@ -488,9 +489,9 @@ class AFPRenderer(VerboseOutput):
texoff = texx + (texy * texwidth)
if blend == 0 or blend == 2:
imgmap[imgoff] = self.__blend_normal(imgmap[imgoff], texmap[texoff], mult_color, add_color)
imgmap[imgoff] = blend_normal(imgmap[imgoff], texmap[texoff], mult_color, add_color)
elif blend == 3:
imgmap[imgoff] = self.__blend_multiply(imgmap[imgoff], texmap[texoff], mult_color, add_color)
imgmap[imgoff] = blend_multiply(imgmap[imgoff], texmap[texoff], mult_color, add_color)
# TODO: blend mode 4, which is "screen" blending according to SWF references. I've only seen this
# in Jubeat and it implements it using OpenGL equation Src * (1 - Dst) + Dst * 1.
# TODO: blend mode 5, which is "lighten" blending according to SWF references. Jubeat does not
@ -502,9 +503,9 @@ class AFPRenderer(VerboseOutput):
# TODO: blend mode 13, which is "overlay" according to SWF references. The equation seems to be
# Src * Dst + Dst * Src but Jubeat thinks it should be Src * Dst + Dst * (1 - As).
elif blend == 8:
imgmap[imgoff] = self.__blend_addition(imgmap[imgoff], texmap[texoff], mult_color, add_color)
imgmap[imgoff] = blend_addition(imgmap[imgoff], texmap[texoff], mult_color, add_color)
elif blend == 9 or blend == 70:
imgmap[imgoff] = self.__blend_subtraction(imgmap[imgoff], texmap[texoff], mult_color, add_color)
imgmap[imgoff] = blend_subtraction(imgmap[imgoff], texmap[texoff], mult_color, add_color)
# TODO: blend mode 75, which is not in the SWF spec and appears to have the equation
# Src * (1 - Dst) + Dst * (1 - Src).
else:
@ -512,163 +513,12 @@ class AFPRenderer(VerboseOutput):
# Don't print it for every pixel.
print(f"WARNING: Unsupported blend {blend}")
announced = True
imgmap[imgoff] = self.__blend_normal(imgmap[imgoff], texmap[texoff], mult_color, add_color)
imgmap[imgoff] = blend_normal(imgmap[imgoff], texmap[texoff], mult_color, add_color)
img.putdata(imgmap)
else:
raise Exception(f"Unknown placed object type to render {renderable}!")
def __clamp(self, color: Union[float, int]) -> int:
return min(max(0, round(color)), 255)
def __blend_normal(
self,
# RGBA color tuple representing what's already at the dest.
dest: Tuple[int, int, int, int],
# RGBA color tuple representing the source we want to blend to the dest.
src: Tuple[int, int, int, int],
# A pre-scaled color where all values are 0.0-1.0, used to calculate the final color.
mult_color: Color,
# A RGBA color tuple where all values are 0-255, used to calculate the final color.
add_color: Tuple[int, int, int, int],
) -> Tuple[int, int, int, int]:
# "Normal" blend mode, which is just alpha blending. Various games use the DX
# equation Src * As + Dst * (1 - As). We premultiply Dst by Ad as well, since
# we are blitting onto a destination that could have transparency.
# Calculate multiplicative and additive colors against the source.
src = (
self.__clamp((src[0] * mult_color.r) + add_color[0]),
self.__clamp((src[1] * mult_color.g) + add_color[1]),
self.__clamp((src[2] * mult_color.b) + add_color[2]),
self.__clamp((src[3] * mult_color.a) + add_color[3]),
)
# Short circuit for speed.
if src[3] == 0:
return dest
if src[3] == 255:
return src
# Calculate alpha blending.
srcpercent = src[3] / 255.0
destpercent = dest[3] / 255.0
destremainder = 1.0 - srcpercent
return (
self.__clamp((dest[0] * destpercent * destremainder) + (src[0] * srcpercent)),
self.__clamp((dest[1] * destpercent * destremainder) + (src[1] * srcpercent)),
self.__clamp((dest[2] * destpercent * destremainder) + (src[2] * srcpercent)),
self.__clamp(255 * (srcpercent + destpercent * destremainder)),
)
def __blend_addition(
self,
# RGBA color tuple representing what's already at the dest.
dest: Tuple[int, int, int, int],
# RGBA color tuple representing the source we want to blend to the dest.
src: Tuple[int, int, int, int],
# A pre-scaled color where all values are 0.0-1.0, used to calculate the final color.
mult_color: Color,
# A RGBA color tuple where all values are 0-255, used to calculate the final color.
add_color: Tuple[int, int, int, int],
) -> Tuple[int, int, int, int]:
# "Addition" blend mode, which is used for fog/clouds/etc. Various games use the DX
# equation Src * As + Dst * 1. It appears jubeat does not premultiply the source
# by its alpha component.
# Calculate multiplicative and additive colors against the source.
src = (
self.__clamp((src[0] * mult_color.r) + add_color[0]),
self.__clamp((src[1] * mult_color.g) + add_color[1]),
self.__clamp((src[2] * mult_color.b) + add_color[2]),
self.__clamp((src[3] * mult_color.a) + add_color[3]),
)
# Short circuit for speed.
if src[3] == 0:
return dest
# Calculate alpha blending.
srcpercent = src[3] / 255.0
return (
self.__clamp(dest[0] + (src[0] * srcpercent)),
self.__clamp(dest[1] + (src[1] * srcpercent)),
self.__clamp(dest[2] + (src[2] * srcpercent)),
self.__clamp(dest[3] + (255 * srcpercent)),
)
def __blend_subtraction(
self,
# RGBA color tuple representing what's already at the dest.
dest: Tuple[int, int, int, int],
# RGBA color tuple representing the source we want to blend to the dest.
src: Tuple[int, int, int, int],
# A pre-scaled color where all values are 0.0-1.0, used to calculate the final color.
mult_color: Color,
# A RGBA color tuple where all values are 0-255, used to calculate the final color.
add_color: Tuple[int, int, int, int],
) -> Tuple[int, int, int, int]:
# "Subtraction" blend mode, used for darkening an image. Various games use the DX
# equation Dst * 1 - Src * As. It appears jubeat does not premultiply the source
# by its alpha component much like the "additive" blend above..
# Calculate multiplicative and additive colors against the source.
src = (
self.__clamp((src[0] * mult_color.r) + add_color[0]),
self.__clamp((src[1] * mult_color.g) + add_color[1]),
self.__clamp((src[2] * mult_color.b) + add_color[2]),
self.__clamp((src[3] * mult_color.a) + add_color[3]),
)
# Short circuit for speed.
if src[3] == 0:
return dest
# Calculate alpha blending.
srcpercent = src[3] / 255.0
return (
self.__clamp(dest[0] - (src[0] * srcpercent)),
self.__clamp(dest[1] - (src[1] * srcpercent)),
self.__clamp(dest[2] - (src[2] * srcpercent)),
self.__clamp(dest[3] - (255 * srcpercent)),
)
def __blend_multiply(
self,
# RGBA color tuple representing what's already at the dest.
dest: Tuple[int, int, int, int],
# RGBA color tuple representing the source we want to blend to the dest.
src: Tuple[int, int, int, int],
# A pre-scaled color where all values are 0.0-1.0, used to calculate the final color.
mult_color: Color,
# A RGBA color tuple where all values are 0-255, used to calculate the final color.
add_color: Tuple[int, int, int, int],
) -> Tuple[int, int, int, int]:
# "Multiply" blend mode, used for darkening an image. Various games use the DX
# equation Src * 0 + Dst * Src. It appears jubeat uses the alternative formula
# Src * Dst + Dst * (1 - As) which reduces to the first equation as long as the
# source alpha is always 255.
# Calculate multiplicative and additive colors against the source.
src = (
self.__clamp((src[0] * mult_color.r) + add_color[0]),
self.__clamp((src[1] * mult_color.g) + add_color[1]),
self.__clamp((src[2] * mult_color.b) + add_color[2]),
self.__clamp((src[3] * mult_color.a) + add_color[3]),
)
# Short circuit for speed.
if src[3] == 0:
return dest
# Calculate alpha blending.
return (
self.__clamp(255 * ((dest[0] / 255.0) * (src[0] / 255.0))),
self.__clamp(255 * ((dest[1] / 255.0) * (src[1] / 255.0))),
self.__clamp(255 * ((dest[2] / 255.0) * (src[2] / 255.0))),
self.__clamp(255 * ((dest[3] / 255.0) * (src[3] / 255.0))),
)
def __process_tags(self, clip: PlacedClip, prefix: str = " ") -> bool:
self.vprint(f"{prefix}Handling placed clip {clip.object_id} at depth {clip.depth}")
@ -767,7 +617,7 @@ class AFPRenderer(VerboseOutput):
# Now, render out the placed objects. We sort by depth so that we can
# get the layering correct, but its important to preserve the original
# insertion order for delete requests.
curimage = Image.new("RGBA", (swf.location.width, swf.location.height), color=color.as_tuple())
curimage = Image.new("RGBA", (int(swf.location.width), int(swf.location.height)), color=color.as_tuple())
clip = self.__find_renderable(root_clip, visible_tag)
if clip:

View File

@ -117,6 +117,18 @@ setup(
"bemani/protocol/xml.py",
]
),
Extension(
"bemani.format.afp.blend",
[
"bemani/format/afp/blend.py",
]
),
Extension(
"bemani.format.afp.types.generic",
[
"bemani/format/afp/types/generic.py",
]
),
],
language_level=3,
),