Refactor/reorganization of C++ modules.
This commit is contained in:
parent
3281e125cf
commit
b864148c3e
@ -1,392 +0,0 @@
|
||||
import multiprocessing
|
||||
import signal
|
||||
from PIL import Image # type: ignore
|
||||
from typing import Any, List, Optional, Sequence
|
||||
|
||||
from .types.generic import Color, Matrix, Point
|
||||
|
||||
|
||||
# If we compiled the faster cython code, we can use it instead!
|
||||
try:
|
||||
from .blendalt import affine_composite
|
||||
except ImportError:
|
||||
def clamp(color: float) -> int:
|
||||
return min(max(0, round(color)), 255)
|
||||
|
||||
def blend_normal(
|
||||
# RGBA color tuple representing what's already at the dest.
|
||||
dest: Sequence[int],
|
||||
# RGBA color tuple representing the source we want to blend to the dest.
|
||||
src: Sequence[int],
|
||||
) -> Sequence[int]:
|
||||
# "Normal" blend mode, which is just alpha blending. Various games use the DX
|
||||
# equation Src * As + Dst * (1 - As). We premultiply Dst by Ad as well, since
|
||||
# we are blitting onto a destination that could have transparency. Once we are
|
||||
# done, we divide out the premultiplied Ad in order to put the pixes back to
|
||||
# their full blended values since we are not setting the destination alpha to 1.0.
|
||||
# This enables partial transparent backgrounds to work properly.
|
||||
|
||||
# Short circuit for speed.
|
||||
if src[3] == 0:
|
||||
return dest
|
||||
if src[3] == 255:
|
||||
return src
|
||||
|
||||
# Calculate alpha blending.
|
||||
srcpercent = src[3] / 255.0
|
||||
destpercent = dest[3] / 255.0
|
||||
srcremainder = 1.0 - srcpercent
|
||||
new_alpha = max(min(0.0, srcpercent + destpercent * srcremainder), 1.0)
|
||||
return (
|
||||
clamp(((dest[0] * destpercent * srcremainder) + (src[0] * srcpercent)) / new_alpha),
|
||||
clamp(((dest[1] * destpercent * srcremainder) + (src[1] * srcpercent)) / new_alpha),
|
||||
clamp(((dest[2] * destpercent * srcremainder) + (src[2] * srcpercent)) / new_alpha),
|
||||
clamp(255 * new_alpha)
|
||||
)
|
||||
|
||||
def blend_addition(
|
||||
# RGBA color tuple representing what's already at the dest.
|
||||
dest: Sequence[int],
|
||||
# RGBA color tuple representing the source we want to blend to the dest.
|
||||
src: Sequence[int],
|
||||
) -> Sequence[int]:
|
||||
# "Addition" blend mode, which is used for fog/clouds/etc. Various games use the DX
|
||||
# equation Src * As + Dst * 1. It appears jubeat does not premultiply the source
|
||||
# by its alpha component.
|
||||
|
||||
# Short circuit for speed.
|
||||
if src[3] == 0:
|
||||
return dest
|
||||
|
||||
# Calculate final color blending.
|
||||
srcpercent = src[3] / 255.0
|
||||
return (
|
||||
clamp(dest[0] + (src[0] * srcpercent)),
|
||||
clamp(dest[1] + (src[1] * srcpercent)),
|
||||
clamp(dest[2] + (src[2] * srcpercent)),
|
||||
# Additive blending doesn't actually make sense on semi-transparent destinations,
|
||||
# as that implies that the semi-transparent pixel will be later displayed on top
|
||||
# of something else. That doesn't work since additive blending needs to non-linearly
|
||||
# mix with the destination. So, in reality, we should be doing what subtractive
|
||||
# blending does and keeping the destination alpha (which should always be 255),
|
||||
# but if somebody renders an animation with additive blending meant to go over a
|
||||
# background onto a transparent or semi-transparent background this will make the
|
||||
# resulting graphic look more correct.
|
||||
clamp(dest[3] + (255 * srcpercent)),
|
||||
)
|
||||
|
||||
def blend_subtraction(
|
||||
# RGBA color tuple representing what's already at the dest.
|
||||
dest: Sequence[int],
|
||||
# RGBA color tuple representing the source we want to blend to the dest.
|
||||
src: Sequence[int],
|
||||
) -> Sequence[int]:
|
||||
# "Subtraction" blend mode, used for darkening an image. Various games use the DX
|
||||
# equation Dst * 1 - Src * As. It appears jubeat does not premultiply the source
|
||||
# by its alpha component much like the "additive" blend above..
|
||||
|
||||
# Short circuit for speed.
|
||||
if src[3] == 0:
|
||||
return dest
|
||||
|
||||
# Calculate final color blending.
|
||||
srcpercent = src[3] / 255.0
|
||||
return (
|
||||
clamp(dest[0] - (src[0] * srcpercent)),
|
||||
clamp(dest[1] - (src[1] * srcpercent)),
|
||||
clamp(dest[2] - (src[2] * srcpercent)),
|
||||
dest[3],
|
||||
)
|
||||
|
||||
def blend_multiply(
|
||||
# RGBA color tuple representing what's already at the dest.
|
||||
dest: Sequence[int],
|
||||
# RGBA color tuple representing the source we want to blend to the dest.
|
||||
src: Sequence[int],
|
||||
) -> Sequence[int]:
|
||||
# "Multiply" blend mode, used for darkening an image. Various games use the DX
|
||||
# equation Src * 0 + Dst * Src. It appears jubeat uses the alternative formula
|
||||
# Src * Dst + Dst * (1 - As) which reduces to the first equation as long as the
|
||||
# source alpha is always 255.
|
||||
|
||||
# Calculate final color blending.
|
||||
return (
|
||||
clamp(255 * ((dest[0] / 255.0) * (src[0] / 255.0))),
|
||||
clamp(255 * ((dest[1] / 255.0) * (src[1] / 255.0))),
|
||||
clamp(255 * ((dest[2] / 255.0) * (src[2] / 255.0))),
|
||||
dest[3],
|
||||
)
|
||||
|
||||
def affine_composite(
|
||||
img: Image.Image,
|
||||
add_color: Color,
|
||||
mult_color: Color,
|
||||
transform: Matrix,
|
||||
mask: Optional[Image.Image],
|
||||
blendfunc: int,
|
||||
texture: Image.Image,
|
||||
single_threaded: bool = False,
|
||||
) -> Image.Image:
|
||||
# Calculate the inverse so we can map canvas space back to texture space.
|
||||
try:
|
||||
inverse = transform.inverse()
|
||||
except ZeroDivisionError:
|
||||
# If this happens, that means one of the scaling factors was zero, making
|
||||
# this object invisible. We can ignore this since the object should not
|
||||
# be drawn.
|
||||
return img
|
||||
|
||||
# Warn if we have an unsupported blend.
|
||||
if blendfunc not in {0, 1, 2, 3, 8, 9, 70, 256, 257}:
|
||||
print(f"WARNING: Unsupported blend {blendfunc}")
|
||||
return img
|
||||
|
||||
# These are calculated properties and caching them outside of the loop
|
||||
# speeds things up a bit.
|
||||
imgwidth = img.width
|
||||
imgheight = img.height
|
||||
texwidth = texture.width
|
||||
texheight = texture.height
|
||||
|
||||
# Calculate the maximum range of update this texture can possibly reside in.
|
||||
pix1 = transform.multiply_point(Point.identity())
|
||||
pix2 = transform.multiply_point(Point.identity().add(Point(texwidth, 0)))
|
||||
pix3 = transform.multiply_point(Point.identity().add(Point(0, texheight)))
|
||||
pix4 = transform.multiply_point(Point.identity().add(Point(texwidth, texheight)))
|
||||
|
||||
# Map this to the rectangle we need to sweep in the rendering image.
|
||||
minx = max(int(min(pix1.x, pix2.x, pix3.x, pix4.x)), 0)
|
||||
maxx = min(int(max(pix1.x, pix2.x, pix3.x, pix4.x)) + 1, imgwidth)
|
||||
miny = max(int(min(pix1.y, pix2.y, pix3.y, pix4.y)), 0)
|
||||
maxy = min(int(max(pix1.y, pix2.y, pix3.y, pix4.y)) + 1, imgheight)
|
||||
|
||||
if maxx <= minx or maxy <= miny:
|
||||
# This image is entirely off the screen!
|
||||
return img
|
||||
|
||||
cores = multiprocessing.cpu_count()
|
||||
if single_threaded or cores < 2:
|
||||
# Get the data in an easier to manipulate and faster to update fashion.
|
||||
imgmap = list(img.getdata())
|
||||
texmap = list(texture.getdata())
|
||||
if mask:
|
||||
alpha = mask.split()[-1]
|
||||
maskmap = alpha.tobytes('raw', 'L')
|
||||
else:
|
||||
maskmap = None
|
||||
|
||||
# We don't have enough CPU cores to bother multiprocessing.
|
||||
for imgy in range(miny, maxy):
|
||||
for imgx in range(minx, maxx):
|
||||
# Determine offset
|
||||
imgoff = imgx + (imgy * imgwidth)
|
||||
|
||||
# Calculate what texture pixel data goes here.
|
||||
texloc = inverse.multiply_point(Point(float(imgx + 0.5), float(imgy + 0.5)))
|
||||
texx, texy = texloc.as_tuple()
|
||||
|
||||
# If we're out of bounds, don't update.
|
||||
if texx < 0 or texy < 0 or texx >= texwidth or texy >= texheight:
|
||||
continue
|
||||
|
||||
# Blend it.
|
||||
texoff = texx + (texy * texwidth)
|
||||
if maskmap is not None and maskmap[imgoff] == 0:
|
||||
# This pixel is masked off!
|
||||
continue
|
||||
imgmap[imgoff] = blend_point(add_color, mult_color, texmap[texoff], imgmap[imgoff], blendfunc)
|
||||
|
||||
img.putdata(imgmap)
|
||||
else:
|
||||
imgbytes = img.tobytes('raw', 'RGBA')
|
||||
texbytes = texture.tobytes('raw', 'RGBA')
|
||||
if mask:
|
||||
alpha = mask.split()[-1]
|
||||
maskbytes = alpha.tobytes('raw', 'L')
|
||||
else:
|
||||
maskbytes = None
|
||||
|
||||
# Let's spread the load across multiple processors.
|
||||
procs: List[multiprocessing.Process] = []
|
||||
work: multiprocessing.Queue = multiprocessing.Queue()
|
||||
results: multiprocessing.Queue = multiprocessing.Queue()
|
||||
expected: int = 0
|
||||
interrupted: bool = False
|
||||
|
||||
def ctrlc(sig: Any, frame: Any) -> None:
|
||||
nonlocal interrupted
|
||||
interrupted = True
|
||||
|
||||
previous_handler = signal.getsignal(signal.SIGINT)
|
||||
signal.signal(signal.SIGINT, ctrlc)
|
||||
|
||||
for _ in range(cores):
|
||||
proc = multiprocessing.Process(
|
||||
target=pixel_renderer,
|
||||
args=(
|
||||
work,
|
||||
results,
|
||||
minx,
|
||||
maxx,
|
||||
imgwidth,
|
||||
texwidth,
|
||||
texheight,
|
||||
inverse,
|
||||
add_color,
|
||||
mult_color,
|
||||
blendfunc,
|
||||
imgbytes,
|
||||
texbytes,
|
||||
maskbytes,
|
||||
),
|
||||
)
|
||||
procs.append(proc)
|
||||
proc.start()
|
||||
|
||||
for imgy in range(miny, maxy):
|
||||
work.put(imgy)
|
||||
expected += 1
|
||||
|
||||
lines: List[bytes] = [
|
||||
imgbytes[x:(x + (imgwidth * 4))]
|
||||
for x in range(
|
||||
0,
|
||||
imgwidth * imgheight * 4,
|
||||
imgwidth * 4,
|
||||
)
|
||||
]
|
||||
for _ in range(expected):
|
||||
imgy, result = results.get()
|
||||
lines[imgy] = result
|
||||
|
||||
for proc in procs:
|
||||
work.put(None)
|
||||
for proc in procs:
|
||||
proc.join()
|
||||
|
||||
signal.signal(signal.SIGINT, previous_handler)
|
||||
if interrupted:
|
||||
raise KeyboardInterrupt()
|
||||
|
||||
img = Image.frombytes('RGBA', (imgwidth, imgheight), b''.join(lines))
|
||||
return img
|
||||
|
||||
def blend_mask_create(
|
||||
# RGBA color tuple representing what's already at the dest.
|
||||
dest: Sequence[int],
|
||||
# RGBA color tuple representing the source we want to blend to the dest.
|
||||
src: Sequence[int],
|
||||
) -> Sequence[int]:
|
||||
# Mask creating just allows a pixel to be drawn if the source image has a nonzero
|
||||
# alpha, according to the SWF spec.
|
||||
if src[3] != 0:
|
||||
return (255, 0, 0, 255)
|
||||
else:
|
||||
return (0, 0, 0, 0)
|
||||
|
||||
def blend_mask_combine(
|
||||
# RGBA color tuple representing what's already at the dest.
|
||||
dest: Sequence[int],
|
||||
# RGBA color tuple representing the source we want to blend to the dest.
|
||||
src: Sequence[int],
|
||||
) -> Sequence[int]:
|
||||
# Mask blending just takes the source and destination and ands them together, making
|
||||
# a final mask that is the intersection of the original mask and the new mask. The
|
||||
# reason we even have a color component to this is for debugging visibility.
|
||||
if dest[3] != 0 and src[3] != 0:
|
||||
return (255, 0, 0, 255)
|
||||
else:
|
||||
return (0, 0, 0, 0)
|
||||
|
||||
def pixel_renderer(
|
||||
work: multiprocessing.Queue,
|
||||
results: multiprocessing.Queue,
|
||||
minx: int,
|
||||
maxx: int,
|
||||
imgwidth: int,
|
||||
texwidth: int,
|
||||
texheight: int,
|
||||
inverse: Matrix,
|
||||
add_color: Color,
|
||||
mult_color: Color,
|
||||
blendfunc: int,
|
||||
imgbytes: bytes,
|
||||
texbytes: bytes,
|
||||
maskbytes: Optional[bytes],
|
||||
) -> None:
|
||||
while True:
|
||||
imgy = work.get()
|
||||
if imgy is None:
|
||||
return
|
||||
|
||||
result: List[Sequence[int]] = []
|
||||
for imgx in range(imgwidth):
|
||||
# Determine offset
|
||||
imgoff = imgx + (imgy * imgwidth)
|
||||
if imgx < minx or imgx >= maxx:
|
||||
result.append(imgbytes[(imgoff * 4):((imgoff + 1) * 4)])
|
||||
continue
|
||||
|
||||
# Calculate what texture pixel data goes here.
|
||||
texloc = inverse.multiply_point(Point(float(imgx + 0.5), float(imgy + 0.5)))
|
||||
texx, texy = texloc.as_tuple()
|
||||
|
||||
# If we're out of bounds, don't update.
|
||||
if texx < 0 or texy < 0 or texx >= texwidth or texy >= texheight:
|
||||
result.append(imgbytes[(imgoff * 4):((imgoff + 1) * 4)])
|
||||
continue
|
||||
|
||||
# Blend it.
|
||||
texoff = texx + (texy * texwidth)
|
||||
if maskbytes is not None and maskbytes[imgoff] == 0:
|
||||
# This pixel is masked off!
|
||||
result.append(imgbytes[(imgoff * 4):((imgoff + 1) * 4)])
|
||||
continue
|
||||
result.append(blend_point(add_color, mult_color, texbytes[(texoff * 4):((texoff + 1) * 4)], imgbytes[(imgoff * 4):((imgoff + 1) * 4)], blendfunc))
|
||||
|
||||
linebytes = bytes([channel for pixel in result for channel in pixel])
|
||||
results.put((imgy, linebytes))
|
||||
|
||||
def blend_point(
|
||||
add_color: Color,
|
||||
mult_color: Color,
|
||||
# This should be a sequence of exactly 4 values, either bytes or a tuple.
|
||||
src_color: Sequence[int],
|
||||
# This should be a sequence of exactly 4 values, either bytes or a tuple.
|
||||
dest_color: Sequence[int],
|
||||
blendfunc: int,
|
||||
) -> Sequence[int]:
|
||||
# Calculate multiplicative and additive colors against the source.
|
||||
src_color = (
|
||||
clamp((src_color[0] * mult_color.r) + (255 * add_color.r)),
|
||||
clamp((src_color[1] * mult_color.g) + (255 * add_color.g)),
|
||||
clamp((src_color[2] * mult_color.b) + (255 * add_color.b)),
|
||||
clamp((src_color[3] * mult_color.a) + (255 * add_color.a)),
|
||||
)
|
||||
|
||||
if blendfunc == 3:
|
||||
return blend_multiply(dest_color, src_color)
|
||||
# TODO: blend mode 4, which is "screen" blending according to SWF references. I've only seen this
|
||||
# in Jubeat and it implements it using OpenGL equation Src * (1 - Dst) + Dst * 1.
|
||||
# TODO: blend mode 5, which is "lighten" blending according to SWF references. Jubeat does not
|
||||
# premultiply by alpha, but the GL/DX equation is max(Src * As, Dst * 1).
|
||||
# TODO: blend mode 6, which is "darken" blending according to SWF references. Jubeat does not
|
||||
# premultiply by alpha, but the GL/DX equation is min(Src * As, Dst * 1).
|
||||
# TODO: blend mode 10, which is "invert" according to SWF references. The only game I could find
|
||||
# that implemented this had equation Src * (1 - Dst) + Dst * (1 - As).
|
||||
# TODO: blend mode 13, which is "overlay" according to SWF references. The equation seems to be
|
||||
# Src * Dst + Dst * Src but Jubeat thinks it should be Src * Dst + Dst * (1 - As).
|
||||
elif blendfunc == 8:
|
||||
return blend_addition(dest_color, src_color)
|
||||
elif blendfunc == 9 or blendfunc == 70:
|
||||
return blend_subtraction(dest_color, src_color)
|
||||
# TODO: blend mode 75, which is not in the SWF spec and appears to have the equation
|
||||
# Src * (1 - Dst) + Dst * (1 - Src).
|
||||
elif blendfunc == 256:
|
||||
# Dummy blend function for calculating masks.
|
||||
return blend_mask_combine(dest_color, src_color)
|
||||
elif blendfunc == 257:
|
||||
# Dummy blend function for calculating masks.
|
||||
return blend_mask_create(dest_color, src_color)
|
||||
else:
|
||||
return blend_normal(dest_color, src_color)
|
9
bemani/format/afp/blend/__init__.py
Normal file
9
bemani/format/afp/blend/__init__.py
Normal file
@ -0,0 +1,9 @@
|
||||
try:
|
||||
# If we compiled the faster cython/c++ code, we can use it instead!
|
||||
from .blendcpp import affine_composite
|
||||
except ImportError:
|
||||
# If we didn't, then fall back to the pure python implementation.
|
||||
from .blend import affine_composite
|
||||
|
||||
|
||||
__all__ = ["affine_composite"]
|
397
bemani/format/afp/blend/blend.py
Normal file
397
bemani/format/afp/blend/blend.py
Normal file
@ -0,0 +1,397 @@
|
||||
import multiprocessing
|
||||
import signal
|
||||
from PIL import Image # type: ignore
|
||||
from typing import Any, List, Optional, Sequence
|
||||
|
||||
from ..types import Color, Matrix, Point
|
||||
|
||||
|
||||
def clamp(color: float) -> int:
|
||||
return min(max(0, round(color)), 255)
|
||||
|
||||
|
||||
def blend_normal(
|
||||
# RGBA color tuple representing what's already at the dest.
|
||||
dest: Sequence[int],
|
||||
# RGBA color tuple representing the source we want to blend to the dest.
|
||||
src: Sequence[int],
|
||||
) -> Sequence[int]:
|
||||
# "Normal" blend mode, which is just alpha blending. Various games use the DX
|
||||
# equation Src * As + Dst * (1 - As). We premultiply Dst by Ad as well, since
|
||||
# we are blitting onto a destination that could have transparency. Once we are
|
||||
# done, we divide out the premultiplied Ad in order to put the pixes back to
|
||||
# their full blended values since we are not setting the destination alpha to 1.0.
|
||||
# This enables partial transparent backgrounds to work properly.
|
||||
|
||||
# Short circuit for speed.
|
||||
if src[3] == 0:
|
||||
return dest
|
||||
if src[3] == 255:
|
||||
return src
|
||||
|
||||
# Calculate alpha blending.
|
||||
srcpercent = src[3] / 255.0
|
||||
destpercent = dest[3] / 255.0
|
||||
srcremainder = 1.0 - srcpercent
|
||||
new_alpha = max(min(0.0, srcpercent + destpercent * srcremainder), 1.0)
|
||||
return (
|
||||
clamp(((dest[0] * destpercent * srcremainder) + (src[0] * srcpercent)) / new_alpha),
|
||||
clamp(((dest[1] * destpercent * srcremainder) + (src[1] * srcpercent)) / new_alpha),
|
||||
clamp(((dest[2] * destpercent * srcremainder) + (src[2] * srcpercent)) / new_alpha),
|
||||
clamp(255 * new_alpha)
|
||||
)
|
||||
|
||||
|
||||
def blend_addition(
|
||||
# RGBA color tuple representing what's already at the dest.
|
||||
dest: Sequence[int],
|
||||
# RGBA color tuple representing the source we want to blend to the dest.
|
||||
src: Sequence[int],
|
||||
) -> Sequence[int]:
|
||||
# "Addition" blend mode, which is used for fog/clouds/etc. Various games use the DX
|
||||
# equation Src * As + Dst * 1. It appears jubeat does not premultiply the source
|
||||
# by its alpha component.
|
||||
|
||||
# Short circuit for speed.
|
||||
if src[3] == 0:
|
||||
return dest
|
||||
|
||||
# Calculate final color blending.
|
||||
srcpercent = src[3] / 255.0
|
||||
return (
|
||||
clamp(dest[0] + (src[0] * srcpercent)),
|
||||
clamp(dest[1] + (src[1] * srcpercent)),
|
||||
clamp(dest[2] + (src[2] * srcpercent)),
|
||||
# Additive blending doesn't actually make sense on semi-transparent destinations,
|
||||
# as that implies that the semi-transparent pixel will be later displayed on top
|
||||
# of something else. That doesn't work since additive blending needs to non-linearly
|
||||
# mix with the destination. So, in reality, we should be doing what subtractive
|
||||
# blending does and keeping the destination alpha (which should always be 255),
|
||||
# but if somebody renders an animation with additive blending meant to go over a
|
||||
# background onto a transparent or semi-transparent background this will make the
|
||||
# resulting graphic look more correct.
|
||||
clamp(dest[3] + (255 * srcpercent)),
|
||||
)
|
||||
|
||||
|
||||
def blend_subtraction(
|
||||
# RGBA color tuple representing what's already at the dest.
|
||||
dest: Sequence[int],
|
||||
# RGBA color tuple representing the source we want to blend to the dest.
|
||||
src: Sequence[int],
|
||||
) -> Sequence[int]:
|
||||
# "Subtraction" blend mode, used for darkening an image. Various games use the DX
|
||||
# equation Dst * 1 - Src * As. It appears jubeat does not premultiply the source
|
||||
# by its alpha component much like the "additive" blend above..
|
||||
|
||||
# Short circuit for speed.
|
||||
if src[3] == 0:
|
||||
return dest
|
||||
|
||||
# Calculate final color blending.
|
||||
srcpercent = src[3] / 255.0
|
||||
return (
|
||||
clamp(dest[0] - (src[0] * srcpercent)),
|
||||
clamp(dest[1] - (src[1] * srcpercent)),
|
||||
clamp(dest[2] - (src[2] * srcpercent)),
|
||||
dest[3],
|
||||
)
|
||||
|
||||
|
||||
def blend_multiply(
|
||||
# RGBA color tuple representing what's already at the dest.
|
||||
dest: Sequence[int],
|
||||
# RGBA color tuple representing the source we want to blend to the dest.
|
||||
src: Sequence[int],
|
||||
) -> Sequence[int]:
|
||||
# "Multiply" blend mode, used for darkening an image. Various games use the DX
|
||||
# equation Src * 0 + Dst * Src. It appears jubeat uses the alternative formula
|
||||
# Src * Dst + Dst * (1 - As) which reduces to the first equation as long as the
|
||||
# source alpha is always 255.
|
||||
|
||||
# Calculate final color blending.
|
||||
return (
|
||||
clamp(255 * ((dest[0] / 255.0) * (src[0] / 255.0))),
|
||||
clamp(255 * ((dest[1] / 255.0) * (src[1] / 255.0))),
|
||||
clamp(255 * ((dest[2] / 255.0) * (src[2] / 255.0))),
|
||||
dest[3],
|
||||
)
|
||||
|
||||
|
||||
def affine_composite(
|
||||
img: Image.Image,
|
||||
add_color: Color,
|
||||
mult_color: Color,
|
||||
transform: Matrix,
|
||||
mask: Optional[Image.Image],
|
||||
blendfunc: int,
|
||||
texture: Image.Image,
|
||||
single_threaded: bool = False,
|
||||
) -> Image.Image:
|
||||
# Calculate the inverse so we can map canvas space back to texture space.
|
||||
try:
|
||||
inverse = transform.inverse()
|
||||
except ZeroDivisionError:
|
||||
# If this happens, that means one of the scaling factors was zero, making
|
||||
# this object invisible. We can ignore this since the object should not
|
||||
# be drawn.
|
||||
return img
|
||||
|
||||
# Warn if we have an unsupported blend.
|
||||
if blendfunc not in {0, 1, 2, 3, 8, 9, 70, 256, 257}:
|
||||
print(f"WARNING: Unsupported blend {blendfunc}")
|
||||
return img
|
||||
|
||||
# These are calculated properties and caching them outside of the loop
|
||||
# speeds things up a bit.
|
||||
imgwidth = img.width
|
||||
imgheight = img.height
|
||||
texwidth = texture.width
|
||||
texheight = texture.height
|
||||
|
||||
# Calculate the maximum range of update this texture can possibly reside in.
|
||||
pix1 = transform.multiply_point(Point.identity())
|
||||
pix2 = transform.multiply_point(Point.identity().add(Point(texwidth, 0)))
|
||||
pix3 = transform.multiply_point(Point.identity().add(Point(0, texheight)))
|
||||
pix4 = transform.multiply_point(Point.identity().add(Point(texwidth, texheight)))
|
||||
|
||||
# Map this to the rectangle we need to sweep in the rendering image.
|
||||
minx = max(int(min(pix1.x, pix2.x, pix3.x, pix4.x)), 0)
|
||||
maxx = min(int(max(pix1.x, pix2.x, pix3.x, pix4.x)) + 1, imgwidth)
|
||||
miny = max(int(min(pix1.y, pix2.y, pix3.y, pix4.y)), 0)
|
||||
maxy = min(int(max(pix1.y, pix2.y, pix3.y, pix4.y)) + 1, imgheight)
|
||||
|
||||
if maxx <= minx or maxy <= miny:
|
||||
# This image is entirely off the screen!
|
||||
return img
|
||||
|
||||
cores = multiprocessing.cpu_count()
|
||||
if single_threaded or cores < 2:
|
||||
# Get the data in an easier to manipulate and faster to update fashion.
|
||||
imgmap = list(img.getdata())
|
||||
texmap = list(texture.getdata())
|
||||
if mask:
|
||||
alpha = mask.split()[-1]
|
||||
maskmap = alpha.tobytes('raw', 'L')
|
||||
else:
|
||||
maskmap = None
|
||||
|
||||
# We don't have enough CPU cores to bother multiprocessing.
|
||||
for imgy in range(miny, maxy):
|
||||
for imgx in range(minx, maxx):
|
||||
# Determine offset
|
||||
imgoff = imgx + (imgy * imgwidth)
|
||||
|
||||
# Calculate what texture pixel data goes here.
|
||||
texloc = inverse.multiply_point(Point(float(imgx + 0.5), float(imgy + 0.5)))
|
||||
texx, texy = texloc.as_tuple()
|
||||
|
||||
# If we're out of bounds, don't update.
|
||||
if texx < 0 or texy < 0 or texx >= texwidth or texy >= texheight:
|
||||
continue
|
||||
|
||||
# Blend it.
|
||||
texoff = texx + (texy * texwidth)
|
||||
if maskmap is not None and maskmap[imgoff] == 0:
|
||||
# This pixel is masked off!
|
||||
continue
|
||||
imgmap[imgoff] = blend_point(add_color, mult_color, texmap[texoff], imgmap[imgoff], blendfunc)
|
||||
|
||||
img.putdata(imgmap)
|
||||
else:
|
||||
imgbytes = img.tobytes('raw', 'RGBA')
|
||||
texbytes = texture.tobytes('raw', 'RGBA')
|
||||
if mask:
|
||||
alpha = mask.split()[-1]
|
||||
maskbytes = alpha.tobytes('raw', 'L')
|
||||
else:
|
||||
maskbytes = None
|
||||
|
||||
# Let's spread the load across multiple processors.
|
||||
procs: List[multiprocessing.Process] = []
|
||||
work: multiprocessing.Queue = multiprocessing.Queue()
|
||||
results: multiprocessing.Queue = multiprocessing.Queue()
|
||||
expected: int = 0
|
||||
interrupted: bool = False
|
||||
|
||||
def ctrlc(sig: Any, frame: Any) -> None:
|
||||
nonlocal interrupted
|
||||
interrupted = True
|
||||
|
||||
previous_handler = signal.getsignal(signal.SIGINT)
|
||||
signal.signal(signal.SIGINT, ctrlc)
|
||||
|
||||
for _ in range(cores):
|
||||
proc = multiprocessing.Process(
|
||||
target=pixel_renderer,
|
||||
args=(
|
||||
work,
|
||||
results,
|
||||
minx,
|
||||
maxx,
|
||||
imgwidth,
|
||||
texwidth,
|
||||
texheight,
|
||||
inverse,
|
||||
add_color,
|
||||
mult_color,
|
||||
blendfunc,
|
||||
imgbytes,
|
||||
texbytes,
|
||||
maskbytes,
|
||||
),
|
||||
)
|
||||
procs.append(proc)
|
||||
proc.start()
|
||||
|
||||
for imgy in range(miny, maxy):
|
||||
work.put(imgy)
|
||||
expected += 1
|
||||
|
||||
lines: List[bytes] = [
|
||||
imgbytes[x:(x + (imgwidth * 4))]
|
||||
for x in range(
|
||||
0,
|
||||
imgwidth * imgheight * 4,
|
||||
imgwidth * 4,
|
||||
)
|
||||
]
|
||||
for _ in range(expected):
|
||||
imgy, result = results.get()
|
||||
lines[imgy] = result
|
||||
|
||||
for proc in procs:
|
||||
work.put(None)
|
||||
for proc in procs:
|
||||
proc.join()
|
||||
|
||||
signal.signal(signal.SIGINT, previous_handler)
|
||||
if interrupted:
|
||||
raise KeyboardInterrupt()
|
||||
|
||||
img = Image.frombytes('RGBA', (imgwidth, imgheight), b''.join(lines))
|
||||
return img
|
||||
|
||||
|
||||
def blend_mask_create(
|
||||
# RGBA color tuple representing what's already at the dest.
|
||||
dest: Sequence[int],
|
||||
# RGBA color tuple representing the source we want to blend to the dest.
|
||||
src: Sequence[int],
|
||||
) -> Sequence[int]:
|
||||
# Mask creating just allows a pixel to be drawn if the source image has a nonzero
|
||||
# alpha, according to the SWF spec.
|
||||
if src[3] != 0:
|
||||
return (255, 0, 0, 255)
|
||||
else:
|
||||
return (0, 0, 0, 0)
|
||||
|
||||
|
||||
def blend_mask_combine(
|
||||
# RGBA color tuple representing what's already at the dest.
|
||||
dest: Sequence[int],
|
||||
# RGBA color tuple representing the source we want to blend to the dest.
|
||||
src: Sequence[int],
|
||||
) -> Sequence[int]:
|
||||
# Mask blending just takes the source and destination and ands them together, making
|
||||
# a final mask that is the intersection of the original mask and the new mask. The
|
||||
# reason we even have a color component to this is for debugging visibility.
|
||||
if dest[3] != 0 and src[3] != 0:
|
||||
return (255, 0, 0, 255)
|
||||
else:
|
||||
return (0, 0, 0, 0)
|
||||
|
||||
|
||||
def pixel_renderer(
|
||||
work: multiprocessing.Queue,
|
||||
results: multiprocessing.Queue,
|
||||
minx: int,
|
||||
maxx: int,
|
||||
imgwidth: int,
|
||||
texwidth: int,
|
||||
texheight: int,
|
||||
inverse: Matrix,
|
||||
add_color: Color,
|
||||
mult_color: Color,
|
||||
blendfunc: int,
|
||||
imgbytes: bytes,
|
||||
texbytes: bytes,
|
||||
maskbytes: Optional[bytes],
|
||||
) -> None:
|
||||
while True:
|
||||
imgy = work.get()
|
||||
if imgy is None:
|
||||
return
|
||||
|
||||
result: List[Sequence[int]] = []
|
||||
for imgx in range(imgwidth):
|
||||
# Determine offset
|
||||
imgoff = imgx + (imgy * imgwidth)
|
||||
if imgx < minx or imgx >= maxx:
|
||||
result.append(imgbytes[(imgoff * 4):((imgoff + 1) * 4)])
|
||||
continue
|
||||
|
||||
# Calculate what texture pixel data goes here.
|
||||
texloc = inverse.multiply_point(Point(float(imgx + 0.5), float(imgy + 0.5)))
|
||||
texx, texy = texloc.as_tuple()
|
||||
|
||||
# If we're out of bounds, don't update.
|
||||
if texx < 0 or texy < 0 or texx >= texwidth or texy >= texheight:
|
||||
result.append(imgbytes[(imgoff * 4):((imgoff + 1) * 4)])
|
||||
continue
|
||||
|
||||
# Blend it.
|
||||
texoff = texx + (texy * texwidth)
|
||||
if maskbytes is not None and maskbytes[imgoff] == 0:
|
||||
# This pixel is masked off!
|
||||
result.append(imgbytes[(imgoff * 4):((imgoff + 1) * 4)])
|
||||
continue
|
||||
result.append(blend_point(add_color, mult_color, texbytes[(texoff * 4):((texoff + 1) * 4)], imgbytes[(imgoff * 4):((imgoff + 1) * 4)], blendfunc))
|
||||
|
||||
linebytes = bytes([channel for pixel in result for channel in pixel])
|
||||
results.put((imgy, linebytes))
|
||||
|
||||
|
||||
def blend_point(
|
||||
add_color: Color,
|
||||
mult_color: Color,
|
||||
# This should be a sequence of exactly 4 values, either bytes or a tuple.
|
||||
src_color: Sequence[int],
|
||||
# This should be a sequence of exactly 4 values, either bytes or a tuple.
|
||||
dest_color: Sequence[int],
|
||||
blendfunc: int,
|
||||
) -> Sequence[int]:
|
||||
# Calculate multiplicative and additive colors against the source.
|
||||
src_color = (
|
||||
clamp((src_color[0] * mult_color.r) + (255 * add_color.r)),
|
||||
clamp((src_color[1] * mult_color.g) + (255 * add_color.g)),
|
||||
clamp((src_color[2] * mult_color.b) + (255 * add_color.b)),
|
||||
clamp((src_color[3] * mult_color.a) + (255 * add_color.a)),
|
||||
)
|
||||
|
||||
if blendfunc == 3:
|
||||
return blend_multiply(dest_color, src_color)
|
||||
# TODO: blend mode 4, which is "screen" blending according to SWF references. I've only seen this
|
||||
# in Jubeat and it implements it using OpenGL equation Src * (1 - Dst) + Dst * 1.
|
||||
# TODO: blend mode 5, which is "lighten" blending according to SWF references. Jubeat does not
|
||||
# premultiply by alpha, but the GL/DX equation is max(Src * As, Dst * 1).
|
||||
# TODO: blend mode 6, which is "darken" blending according to SWF references. Jubeat does not
|
||||
# premultiply by alpha, but the GL/DX equation is min(Src * As, Dst * 1).
|
||||
# TODO: blend mode 10, which is "invert" according to SWF references. The only game I could find
|
||||
# that implemented this had equation Src * (1 - Dst) + Dst * (1 - As).
|
||||
# TODO: blend mode 13, which is "overlay" according to SWF references. The equation seems to be
|
||||
# Src * Dst + Dst * Src but Jubeat thinks it should be Src * Dst + Dst * (1 - As).
|
||||
elif blendfunc == 8:
|
||||
return blend_addition(dest_color, src_color)
|
||||
elif blendfunc == 9 or blendfunc == 70:
|
||||
return blend_subtraction(dest_color, src_color)
|
||||
# TODO: blend mode 75, which is not in the SWF spec and appears to have the equation
|
||||
# Src * (1 - Dst) + Dst * (1 - Src).
|
||||
elif blendfunc == 256:
|
||||
# Dummy blend function for calculating masks.
|
||||
return blend_mask_combine(dest_color, src_color)
|
||||
elif blendfunc == 257:
|
||||
# Dummy blend function for calculating masks.
|
||||
return blend_mask_create(dest_color, src_color)
|
||||
else:
|
||||
return blend_normal(dest_color, src_color)
|
@ -1,7 +1,7 @@
|
||||
from PIL import Image # type: ignore
|
||||
from typing import Optional, Tuple
|
||||
|
||||
from .types.generic import Color, Matrix, Point
|
||||
from ..types import Color, Matrix, Point
|
||||
|
||||
def affine_composite(
|
||||
img: Image.Image,
|
@ -2,7 +2,7 @@ import multiprocessing
|
||||
from PIL import Image # type: ignore
|
||||
from typing import Optional, Tuple
|
||||
|
||||
from .types.generic import Color, Matrix, Point
|
||||
from ..types.generic import Color, Matrix, Point
|
||||
|
||||
cdef extern struct floatcolor_t:
|
||||
float r;
|
@ -17,7 +17,25 @@ from .swf import (
|
||||
AP2ImageTag,
|
||||
)
|
||||
from .decompile import ByteCode
|
||||
from .types import Color, Matrix, Point, Rectangle, AP2Trigger, AP2Action, PushAction, StoreRegisterAction, StringConstant, Register, NULL, UNDEFINED, GLOBAL, ROOT, PARENT, THIS, CLIP
|
||||
from .types import (
|
||||
Color,
|
||||
Matrix,
|
||||
Point,
|
||||
Rectangle,
|
||||
AP2Trigger,
|
||||
AP2Action,
|
||||
PushAction,
|
||||
StoreRegisterAction,
|
||||
StringConstant,
|
||||
Register,
|
||||
NULL,
|
||||
UNDEFINED,
|
||||
GLOBAL,
|
||||
ROOT,
|
||||
PARENT,
|
||||
THIS,
|
||||
CLIP,
|
||||
)
|
||||
from .geo import Shape, DrawParams
|
||||
from .util import VerboseOutput
|
||||
|
||||
|
@ -4,8 +4,11 @@ import sys
|
||||
from typing import Any, Dict, List, Optional, Tuple
|
||||
|
||||
from .decompile import ByteCode
|
||||
from .types import Matrix, Color, Point, Rectangle
|
||||
from .types import (
|
||||
Matrix,
|
||||
Color,
|
||||
Point,
|
||||
Rectangle,
|
||||
AP2Action,
|
||||
AP2Tag,
|
||||
AP2Trigger,
|
||||
|
@ -8,7 +8,7 @@ from typing import Generator, List, MutableMapping, Optional, Set, Tuple
|
||||
try:
|
||||
clib = None
|
||||
clib_path = os.path.dirname(os.path.abspath(__file__))
|
||||
files = [f for f in os.listdir(clib_path) if f.startswith("lz77alt") and f.endswith(".so")]
|
||||
files = [f for f in os.listdir(clib_path) if f.startswith("lz77cpp") and f.endswith(".so")]
|
||||
if len(files) > 0:
|
||||
clib = ctypes.cdll.LoadLibrary(os.path.join(clib_path, files[0]))
|
||||
clib.decompress.argtypes = (ctypes.c_char_p, ctypes.c_int, ctypes.c_char_p, ctypes.c_int)
|
||||
|
14
setup.py
14
setup.py
@ -88,9 +88,9 @@ setup(
|
||||
]
|
||||
),
|
||||
Extension(
|
||||
"bemani.protocol.lz77alt",
|
||||
"bemani.protocol.lz77cpp",
|
||||
[
|
||||
"bemani/protocol/lz77.cxx",
|
||||
"bemani/protocol/lz77cpp.cxx",
|
||||
],
|
||||
language="c++",
|
||||
extra_compile_args=["-std=c++14"],
|
||||
@ -121,16 +121,16 @@ setup(
|
||||
]
|
||||
),
|
||||
Extension(
|
||||
"bemani.format.afp.blend",
|
||||
"bemani.format.afp.blend.blend",
|
||||
[
|
||||
"bemani/format/afp/blend.py",
|
||||
"bemani/format/afp/blend/blend.py",
|
||||
]
|
||||
),
|
||||
Extension(
|
||||
"bemani.format.afp.blendalt",
|
||||
"bemani.format.afp.blend.blendcpp",
|
||||
[
|
||||
"bemani/format/afp/blendalt.pyx",
|
||||
"bemani/format/afp/blendaltimpl.cxx",
|
||||
"bemani/format/afp/blend/blendcpp.pyx",
|
||||
"bemani/format/afp/blend/blendcppimpl.cxx",
|
||||
],
|
||||
language="c++",
|
||||
extra_compile_args=["-std=c++14"],
|
||||
|
Loading…
Reference in New Issue
Block a user