Implement color blending, add fast path back to rendering shapes.
This commit is contained in:
parent
e1c6ad429c
commit
ebc86019ae
@ -162,7 +162,6 @@ class AFPRenderer(VerboseOutput):
|
||||
# clip so that we can process its own animation frames in order to reference
|
||||
# its objects when rendering.
|
||||
for clip in self.__clips:
|
||||
print(clip)
|
||||
if clip.tag_id == tag.source_tag_id:
|
||||
if clip.running:
|
||||
# We should never reference already-running animations!
|
||||
@ -259,11 +258,6 @@ class AFPRenderer(VerboseOutput):
|
||||
self.vprint(" Nothing to render!")
|
||||
return img
|
||||
|
||||
# Double check supported options.
|
||||
if tag.mult_color or tag.add_color:
|
||||
# TODO: Handle additive and multiplicative color.
|
||||
print(f"WARNING: Unhandled color blend request Mult: {tag.mult_color} Add: {tag.add_color}!")
|
||||
|
||||
# Look up the affine transformation matrix and rotation/origin.
|
||||
transform = parent_transform.multiply(tag.transform or Matrix.identity())
|
||||
origin = parent_origin.add(tag.rotation_offset or Point.identity())
|
||||
@ -289,6 +283,11 @@ class AFPRenderer(VerboseOutput):
|
||||
# This is a shape draw reference.
|
||||
shape = self.__registered_shapes[tag.source_tag_id]
|
||||
|
||||
# Calculate add color if it is present.
|
||||
add_color = (tag.add_color or Color(0.0, 0.0, 0.0, 0.0)).as_tuple()
|
||||
mult_color = tag.mult_color or Color(1.0, 1.0, 1.0, 1.0)
|
||||
|
||||
# Now, render out shapes.
|
||||
for params in shape.draw_params:
|
||||
if not (params.flags & 0x1):
|
||||
# Not instantiable, don't render.
|
||||
@ -306,45 +305,83 @@ class AFPRenderer(VerboseOutput):
|
||||
texture = self.textures[params.region]
|
||||
|
||||
if texture is not None:
|
||||
# Now, render out the texture.
|
||||
imgmap = list(img.getdata())
|
||||
texmap = list(texture.getdata())
|
||||
# See if we can cheat and use the faster blitting method.
|
||||
if (
|
||||
add_color == (0, 0, 0, 0) and
|
||||
mult_color.r == 1.0 and
|
||||
mult_color.g == 1.0 and
|
||||
mult_color.b == 1.0 and
|
||||
mult_color.a == 1.0 and
|
||||
transform.b == 0.0 and
|
||||
transform.c == 0.0 and
|
||||
transform.a == 1.0 and
|
||||
transform.d == 1.0
|
||||
):
|
||||
# We can!
|
||||
cutin = transform.multiply_point(Point.identity().subtract(origin))
|
||||
cutoff = Point.identity()
|
||||
if cutin.x < 0:
|
||||
cutoff.x = -cutin.x
|
||||
cutin.x = 0
|
||||
if cutin.y < 0:
|
||||
cutoff.y = -cutin.y
|
||||
cutin.y = 0
|
||||
|
||||
# Calculate the maximum range of update this texture can possibly reside in.
|
||||
pix1 = transform.multiply_point(Point.identity().subtract(origin))
|
||||
pix2 = transform.multiply_point(Point.identity().subtract(origin).add(Point(texture.width, 0)))
|
||||
pix3 = transform.multiply_point(Point.identity().subtract(origin).add(Point(0, texture.height)))
|
||||
pix4 = transform.multiply_point(Point.identity().subtract(origin).add(Point(texture.width, texture.height)))
|
||||
img.alpha_composite(texture, cutin.as_tuple(), cutoff.as_tuple())
|
||||
else:
|
||||
# Now, render out the texture.
|
||||
imgmap = list(img.getdata())
|
||||
texmap = list(texture.getdata())
|
||||
|
||||
# Map this to the rectangle we need to sweep in the rendering image.
|
||||
minx = max(int(min(pix1.x, pix2.x, pix3.x, pix4.x)), 0)
|
||||
maxx = min(int(max(pix1.x, pix2.x, pix3.x, pix4.x)) + 1, img.width)
|
||||
miny = max(int(min(pix1.y, pix2.y, pix3.y, pix4.y)), 0)
|
||||
maxy = min(int(max(pix1.y, pix2.y, pix3.y, pix4.y)) + 1, img.height)
|
||||
# Calculate the maximum range of update this texture can possibly reside in.
|
||||
pix1 = transform.multiply_point(Point.identity().subtract(origin))
|
||||
pix2 = transform.multiply_point(Point.identity().subtract(origin).add(Point(texture.width, 0)))
|
||||
pix3 = transform.multiply_point(Point.identity().subtract(origin).add(Point(0, texture.height)))
|
||||
pix4 = transform.multiply_point(Point.identity().subtract(origin).add(Point(texture.width, texture.height)))
|
||||
|
||||
for imgy in range(miny, maxy):
|
||||
for imgx in range(minx, maxx):
|
||||
# Determine offset
|
||||
imgoff = imgx + (imgy * img.width)
|
||||
# Map this to the rectangle we need to sweep in the rendering image.
|
||||
minx = max(int(min(pix1.x, pix2.x, pix3.x, pix4.x)), 0)
|
||||
maxx = min(int(max(pix1.x, pix2.x, pix3.x, pix4.x)) + 1, img.width)
|
||||
miny = max(int(min(pix1.y, pix2.y, pix3.y, pix4.y)), 0)
|
||||
maxy = min(int(max(pix1.y, pix2.y, pix3.y, pix4.y)) + 1, img.height)
|
||||
|
||||
# Calculate what texture pixel data goes here.
|
||||
texloc = inverse.multiply_point(Point(float(imgx), float(imgy))).add(origin)
|
||||
texx, texy = texloc.as_tuple()
|
||||
for imgy in range(miny, maxy):
|
||||
for imgx in range(minx, maxx):
|
||||
# Determine offset
|
||||
imgoff = imgx + (imgy * img.width)
|
||||
|
||||
# If we're out of bounds, don't update.
|
||||
if texx < 0 or texy < 0 or texx >= texture.width or texy >= texture.height:
|
||||
continue
|
||||
# Calculate what texture pixel data goes here.
|
||||
texloc = inverse.multiply_point(Point(float(imgx), float(imgy))).add(origin)
|
||||
texx, texy = texloc.as_tuple()
|
||||
|
||||
# Blend it.
|
||||
texoff = texx + (texy * texture.width)
|
||||
imgmap[imgoff] = self.__blend(imgmap[imgoff], texmap[texoff])
|
||||
# If we're out of bounds, don't update.
|
||||
if texx < 0 or texy < 0 or texx >= texture.width or texy >= texture.height:
|
||||
continue
|
||||
|
||||
img = Image.new("RGBA", (img.width, img.height))
|
||||
img.putdata(imgmap)
|
||||
# Blend it.
|
||||
texoff = texx + (texy * texture.width)
|
||||
imgmap[imgoff] = self.__blend(imgmap[imgoff], texmap[texoff], mult_color, add_color)
|
||||
|
||||
img = Image.new("RGBA", (img.width, img.height))
|
||||
img.putdata(imgmap)
|
||||
|
||||
return img
|
||||
|
||||
def __blend(self, bg: Tuple[int, int, int, int], fg: Tuple[int, int, int, int]) -> Tuple[int, int, int, int]:
|
||||
def __blend(
|
||||
self,
|
||||
bg: Tuple[int, int, int, int],
|
||||
fg: Tuple[int, int, int, int],
|
||||
mult_color: Color,
|
||||
add_color: Tuple[int, int, int, int],
|
||||
) -> Tuple[int, int, int, int]:
|
||||
# Calculate multiplicative and additive colors.
|
||||
fg = (
|
||||
min(int(fg[0] * mult_color.r) + add_color[0], 255),
|
||||
min(int(fg[1] * mult_color.g) + add_color[1], 255),
|
||||
min(int(fg[2] * mult_color.b) + add_color[2], 255),
|
||||
min(int(fg[3] * mult_color.a) + add_color[3], 255),
|
||||
)
|
||||
|
||||
# Short circuit for speed.
|
||||
if fg[3] == 0:
|
||||
return bg
|
||||
@ -355,9 +392,9 @@ class AFPRenderer(VerboseOutput):
|
||||
fgpercent = (float(fg[3]) / 255.0)
|
||||
bgpercent = 1.0 - fgpercent
|
||||
return (
|
||||
max(int(float(bg[0]) * bgpercent + float(fg[0]) * fgpercent), 255),
|
||||
max(int(float(bg[1]) * bgpercent + float(fg[1]) * fgpercent), 255),
|
||||
max(int(float(bg[2]) * bgpercent + float(fg[2]) * fgpercent), 255),
|
||||
int(float(bg[0]) * bgpercent + float(fg[0]) * fgpercent),
|
||||
int(float(bg[1]) * bgpercent + float(fg[1]) * fgpercent),
|
||||
int(float(bg[2]) * bgpercent + float(fg[2]) * fgpercent),
|
||||
255,
|
||||
)
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user