1632 lines
70 KiB
Python
1632 lines
70 KiB
Python
import io
|
|
import os
|
|
import struct
|
|
from PIL import Image # type: ignore
|
|
from typing import Any, Dict, List, Optional, Tuple
|
|
|
|
from bemani.format.dxt import DXTBuffer
|
|
from bemani.protocol.binary import BinaryEncoding
|
|
from bemani.protocol.lz77 import Lz77
|
|
from bemani.protocol.node import Node
|
|
|
|
from .swf import SWF
|
|
from .geo import Shape
|
|
from .util import TrackedCoverage, VerboseOutput, scramble_text, descramble_text, pad, align, _hex
|
|
|
|
|
|
class PMAN:
|
|
def __init__(
|
|
self,
|
|
entries: List[str] = [],
|
|
ordering: List[int] = [],
|
|
flags1: int = 0,
|
|
flags2: int = 0,
|
|
flags3: int = 0,
|
|
) -> None:
|
|
self.entries = entries
|
|
self.ordering = ordering
|
|
self.flags1 = flags1
|
|
self.flags2 = flags2
|
|
self.flags3 = flags3
|
|
|
|
def as_dict(self, *args: Any, **kwargs: Any) -> Dict[str, Any]:
|
|
return {
|
|
'flags': [self.flags1, self.flags2, self.flags3],
|
|
'entries': self.entries,
|
|
'ordering': self.ordering,
|
|
}
|
|
|
|
|
|
class Texture:
|
|
def __init__(
|
|
self,
|
|
name: str,
|
|
width: int,
|
|
height: int,
|
|
fmt: int,
|
|
header_flags1: int,
|
|
header_flags2: int,
|
|
header_flags3: int,
|
|
fmtflags: int,
|
|
rawdata: bytes,
|
|
compressed: Optional[bytes],
|
|
imgdata: Any,
|
|
) -> None:
|
|
self.name = name
|
|
self.width = width
|
|
self.height = height
|
|
self.fmt = fmt
|
|
self.header_flags1 = header_flags1
|
|
self.header_flags2 = header_flags2
|
|
self.header_flags3 = header_flags3
|
|
self.fmtflags = fmtflags
|
|
self.raw = rawdata
|
|
self.compressed = compressed
|
|
self.img = imgdata
|
|
|
|
def as_dict(self, *args: Any, **kwargs: Any) -> Dict[str, Any]:
|
|
return {
|
|
'name': self.name,
|
|
'width': self.width,
|
|
'height': self.height,
|
|
'fmt': self.fmt,
|
|
'header_flags': [self.header_flags1, self.header_flags2, self.header_flags3],
|
|
'fmt_flags': self.fmtflags,
|
|
'raw': "".join(_hex(x) for x in self.raw),
|
|
'compressed': "".join(_hex(x) for x in self.compressed) if self.compressed is not None else None,
|
|
}
|
|
|
|
|
|
class TextureRegion:
|
|
def __init__(self, textureno: int, left: int, top: int, right: int, bottom: int) -> None:
|
|
self.textureno = textureno
|
|
self.left = left
|
|
self.top = top
|
|
self.right = right
|
|
self.bottom = bottom
|
|
|
|
def as_dict(self, *args: Any, **kwargs: Any) -> Dict[str, Any]:
|
|
return {
|
|
'texture': self.textureno,
|
|
'left': self.left,
|
|
'top': self.top,
|
|
'right': self.right,
|
|
'bottom': self.bottom,
|
|
}
|
|
|
|
def __repr__(self) -> str:
|
|
return (
|
|
f"texture: {self.textureno}, " +
|
|
f"left: {self.left / 2}, " +
|
|
f"top: {self.top / 2}, " +
|
|
f"right: {self.right / 2}, " +
|
|
f"bottom: {self.bottom / 2}, " +
|
|
f"width: {(self.right - self.left) / 2}, " +
|
|
f"height: {(self.bottom - self.top) / 2}"
|
|
)
|
|
|
|
|
|
class Unknown1:
|
|
def __init__(
|
|
self,
|
|
name: str,
|
|
data: bytes,
|
|
) -> None:
|
|
self.name = name
|
|
self.data = data
|
|
if len(data) != 12:
|
|
raise Exception("Unexpected length for Unknown1 structure!")
|
|
|
|
def as_dict(self, *args: Any, **kwargs: Any) -> Dict[str, Any]:
|
|
return {
|
|
'name': self.name,
|
|
'data': "".join(_hex(x) for x in self.data),
|
|
}
|
|
|
|
|
|
class Unknown2:
|
|
def __init__(
|
|
self,
|
|
data: bytes,
|
|
) -> None:
|
|
self.data = data
|
|
if len(data) != 4:
|
|
raise Exception("Unexpected length for Unknown2 structure!")
|
|
|
|
def as_dict(self, *args: Any, **kwargs: Any) -> Dict[str, Any]:
|
|
return {
|
|
'data': "".join(_hex(x) for x in self.data),
|
|
}
|
|
|
|
|
|
class TXP2File(TrackedCoverage, VerboseOutput):
|
|
def __init__(self, contents: bytes, verbose: bool = False) -> None:
|
|
# Make sure our coverage engine is initialized.
|
|
super().__init__()
|
|
|
|
# Original file data that we parse into structures.
|
|
self.data = contents
|
|
|
|
# Font data encoding handler. We keep this around as it manages
|
|
# remembering the actual BinXML encoding.
|
|
self.benc = BinaryEncoding()
|
|
|
|
# All of the crap!
|
|
self.endian: str = "<"
|
|
self.features: int = 0
|
|
self.file_flags: bytes = b""
|
|
self.text_obfuscated: bool = False
|
|
self.legacy_lz: bool = False
|
|
self.modern_lz: bool = False
|
|
|
|
# If we encounter parts of the file that we don't know how to read
|
|
# or save, we drop into read-only mode and throw if somebody tries
|
|
# to update the file.
|
|
self.read_only: bool = False
|
|
|
|
# List of all textures in this file. This is unordered, textures should
|
|
# be looked up by name.
|
|
self.textures: List[Texture] = []
|
|
|
|
# Texture mapping, which allows other structures to refer to texture
|
|
# by number instead of name.
|
|
self.texturemap: PMAN = PMAN()
|
|
|
|
# List of all regions found inside textures, mapped to their textures
|
|
# using texturenos that can be looked up using the texturemap above.
|
|
# This structure is ordered, and the regionno from the regionmap
|
|
# below can be used to look into this structure.
|
|
self.texture_to_region: List[TextureRegion] = []
|
|
|
|
# Region mapping, which allows other structures to refer to regions
|
|
# by number instead of name.
|
|
self.regionmap: PMAN = PMAN()
|
|
|
|
# Level data (swf-derivative) and their names found in this file. This is
|
|
# unordered, swfdata should be looked up by name.
|
|
self.swfdata: List[SWF] = []
|
|
|
|
# Level data (swf-derivative) mapping, which allows other structures to
|
|
# refer to swfdata by number instead of name.
|
|
self.swfmap: PMAN = PMAN()
|
|
|
|
# Font information (mapping for various coepoints to their region in
|
|
# a particular font texture.
|
|
self.fontdata: Optional[Node] = None
|
|
|
|
# Shapes(?) with their raw data.
|
|
self.shapes: List[Shape] = []
|
|
|
|
# Shape(?) mapping, not understood or used.
|
|
self.shapemap: PMAN = PMAN()
|
|
|
|
# Unknown data structures that we have to roundtrip. They correlate to
|
|
# the PMAN structures below.
|
|
self.unknown1: List[Unknown1] = []
|
|
self.unknown2: List[Unknown2] = []
|
|
|
|
# Unknown PMAN structures that we have to roundtrip. They correlate to
|
|
# the unknown data structures above.
|
|
self.unk_pman1: PMAN = PMAN()
|
|
self.unk_pman2: PMAN = PMAN()
|
|
|
|
# Parse out the file structure.
|
|
with self.covered(len(contents), verbose):
|
|
with self.debugging(verbose):
|
|
self.__parse(verbose)
|
|
|
|
def as_dict(self, *args: Any, **kwargs: Any) -> Dict[str, Any]:
|
|
return {
|
|
'endian': self.endian,
|
|
'features': self.features,
|
|
'file_flags': "".join(_hex(x) for x in self.file_flags),
|
|
'obfuscated': self.text_obfuscated,
|
|
'legacy_lz': self.legacy_lz,
|
|
'modern_lz': self.modern_lz,
|
|
'textures': [tex.as_dict(*args, **kwargs) for tex in self.textures],
|
|
'texturemap': self.texturemap.as_dict(*args, **kwargs),
|
|
'textureregion': [reg.as_dict(*args, **kwargs) for reg in self.texture_to_region],
|
|
'regionmap': self.regionmap.as_dict(*args, **kwargs),
|
|
'swfdata': [data.as_dict(*args, **kwargs) for data in self.swfdata],
|
|
'swfmap': self.swfmap.as_dict(*args, **kwargs),
|
|
'fontdata': str(self.fontdata) if self.fontdata is not None else None,
|
|
'shapes': [shape.as_dict(*args, **kwargs) for shape in self.shapes],
|
|
'shapemap': self.shapemap.as_dict(*args, **kwargs),
|
|
'unknown1': [unk.as_dict(*args, **kwargs) for unk in self.unknown1],
|
|
'unknown1map': self.unk_pman1.as_dict(*args, **kwargs),
|
|
'unknown2': [unk.as_dict(*args, **kwargs) for unk in self.unknown2],
|
|
'unknown2map': self.unk_pman2.as_dict(*args, **kwargs),
|
|
}
|
|
|
|
@staticmethod
|
|
def cap32(val: int) -> int:
|
|
return val & 0xFFFFFFFF
|
|
|
|
@staticmethod
|
|
def poly(val: int) -> int:
|
|
if (val >> 31) & 1 != 0:
|
|
return 0x4C11DB7
|
|
else:
|
|
return 0
|
|
|
|
@staticmethod
|
|
def crc32(bytestream: bytes) -> int:
|
|
# Janky 6-bit CRC for ascii names in PMAN structures.
|
|
result = 0
|
|
for byte in bytestream:
|
|
for i in range(6):
|
|
result = TXP2File.poly(result) ^ TXP2File.cap32((result << 1) | ((byte >> i) & 1))
|
|
return result
|
|
|
|
def get_until_null(self, offset: int) -> bytes:
|
|
out = b""
|
|
while self.data[offset] != 0:
|
|
out += self.data[offset:(offset + 1)]
|
|
offset += 1
|
|
return out
|
|
|
|
def descramble_pman(self, offset: int) -> PMAN:
|
|
# Unclear what the first three unknowns are, but the fourth
|
|
# looks like it could possibly be two int16s indicating unknown?
|
|
magic, expect_zero, flags1, flags2, numentries, flags3, data_offset = struct.unpack(
|
|
f"{self.endian}4sIIIIII",
|
|
self.data[offset:(offset + 28)],
|
|
)
|
|
self.add_coverage(offset, 28)
|
|
|
|
# I have never seen the first unknown be anything other than zero,
|
|
# so lets lock that down.
|
|
if expect_zero != 0:
|
|
raise Exception("Got a non-zero value for expected zero location in PMAN!")
|
|
|
|
if self.endian == "<" and magic != b"PMAN":
|
|
raise Exception("Invalid magic value in PMAN structure!")
|
|
if self.endian == ">" and magic != b"NAMP":
|
|
raise Exception("Invalid magic value in PMAN structure!")
|
|
|
|
names: List[Optional[str]] = [None] * numentries
|
|
ordering: List[Optional[int]] = [None] * numentries
|
|
if numentries > 0:
|
|
# Jump to the offset, parse it out
|
|
for i in range(numentries):
|
|
file_offset = data_offset + (i * 12)
|
|
name_crc, entry_no, nameoffset = struct.unpack(
|
|
f"{self.endian}III",
|
|
self.data[file_offset:(file_offset + 12)],
|
|
)
|
|
self.add_coverage(file_offset, 12)
|
|
|
|
if nameoffset == 0:
|
|
raise Exception("Expected name offset in PMAN data!")
|
|
|
|
bytedata = self.get_until_null(nameoffset)
|
|
self.add_coverage(nameoffset, len(bytedata) + 1, unique=False)
|
|
name = descramble_text(bytedata, self.text_obfuscated)
|
|
names[entry_no] = name
|
|
ordering[entry_no] = i
|
|
self.vprint(f" {entry_no}: {name}, offset: {hex(nameoffset)}")
|
|
|
|
if name_crc != TXP2File.crc32(name.encode('ascii')):
|
|
raise Exception(f"Name CRC failed for {name}")
|
|
|
|
for i, n in enumerate(names):
|
|
if n is None:
|
|
raise Exception(f"Didn't get mapping for entry {i + 1}")
|
|
|
|
for i, o in enumerate(ordering):
|
|
if o is None:
|
|
raise Exception(f"Didn't get ordering for entry {i + 1}")
|
|
|
|
return PMAN(
|
|
entries=[n for n in names if n is not None],
|
|
ordering=[o for o in ordering if o is not None],
|
|
flags1=flags1,
|
|
flags2=flags2,
|
|
flags3=flags3,
|
|
)
|
|
|
|
def __parse(self, verbose: bool) -> None:
|
|
# First, check the signature
|
|
if self.data[0:4] == b"2PXT":
|
|
self.endian = "<"
|
|
elif self.data[0:4] == b"TXP2":
|
|
self.endian = ">"
|
|
else:
|
|
raise Exception("Invalid graphic file format!")
|
|
self.add_coverage(0, 4)
|
|
|
|
# Not sure what words 2 and 3 are, they seem to be some sort of
|
|
# version or date?
|
|
self.file_flags = self.data[4:12]
|
|
self.add_coverage(4, 8)
|
|
|
|
# Now, grab the file length, verify that we have the right amount
|
|
# of data.
|
|
length = struct.unpack(f"{self.endian}I", self.data[12:16])[0]
|
|
self.add_coverage(12, 4)
|
|
if length != len(self.data):
|
|
raise Exception(f"Invalid graphic file length, expecting {length} bytes!")
|
|
|
|
# This is always the header length, or the offset of the data payload.
|
|
header_length = struct.unpack(f"{self.endian}I", self.data[16:20])[0]
|
|
self.add_coverage(16, 4)
|
|
|
|
# Now, the meat of the file format. Bytes 20-24 are a bitfield for
|
|
# what parts of the header exist in the file. We need to understand
|
|
# each bit so we know how to skip past each section.
|
|
feature_mask = struct.unpack(f"{self.endian}I", self.data[20:24])[0]
|
|
self.add_coverage(20, 4)
|
|
header_offset = 24
|
|
|
|
# Lots of magic happens if this bit is set.
|
|
self.text_obfuscated = bool(feature_mask & 0x20)
|
|
self.legacy_lz = bool(feature_mask & 0x04)
|
|
self.modern_lz = bool(feature_mask & 0x40000)
|
|
self.features = feature_mask
|
|
|
|
if feature_mask & 0x01:
|
|
# List of textures that exist in the file, with pointers to their data.
|
|
length, offset = struct.unpack(f"{self.endian}II", self.data[header_offset:(header_offset + 8)])
|
|
self.add_coverage(header_offset, 8)
|
|
header_offset += 8
|
|
|
|
self.vprint(f"Bit 0x000001 - textures; count: {length}, offset: {hex(offset)}")
|
|
|
|
for x in range(length):
|
|
interesting_offset = offset + (x * 12)
|
|
if interesting_offset != 0:
|
|
name_offset, texture_length, texture_offset = struct.unpack(
|
|
f"{self.endian}III",
|
|
self.data[interesting_offset:(interesting_offset + 12)],
|
|
)
|
|
self.add_coverage(interesting_offset, 12)
|
|
|
|
if name_offset != 0:
|
|
# Let's decode this until the first null.
|
|
bytedata = self.get_until_null(name_offset)
|
|
self.add_coverage(name_offset, len(bytedata) + 1, unique=False)
|
|
name = descramble_text(bytedata, self.text_obfuscated)
|
|
|
|
if name_offset != 0 and texture_offset != 0:
|
|
lz_data: Optional[bytes] = None
|
|
if self.legacy_lz:
|
|
raise Exception("We don't support legacy lz mode!")
|
|
elif self.modern_lz:
|
|
# Get size, round up to nearest power of 4
|
|
inflated_size, deflated_size = struct.unpack(
|
|
">II",
|
|
self.data[texture_offset:(texture_offset + 8)],
|
|
)
|
|
self.add_coverage(texture_offset, 8)
|
|
if deflated_size != (texture_length - 8):
|
|
raise Exception("We got an incorrect length for lz texture!")
|
|
self.vprint(f" {name}, length: {texture_length}, offset: {hex(texture_offset)}, deflated_size: {deflated_size}, inflated_size: {inflated_size}")
|
|
inflated_size = (inflated_size + 3) & (~3)
|
|
|
|
# Get the data offset.
|
|
lz_data_offset = texture_offset + 8
|
|
lz_data = self.data[lz_data_offset:(lz_data_offset + deflated_size)]
|
|
self.add_coverage(lz_data_offset, deflated_size)
|
|
|
|
# This takes forever, so skip it if we're pretending.
|
|
lz77 = Lz77()
|
|
raw_data = lz77.decompress(lz_data)
|
|
else:
|
|
inflated_size, deflated_size = struct.unpack(
|
|
">II",
|
|
self.data[texture_offset:(texture_offset + 8)],
|
|
)
|
|
|
|
# I'm guessing how raw textures work because I haven't seen them.
|
|
# I assume they're like the above, so lets put in some asertions.
|
|
if deflated_size != (texture_length - 8):
|
|
raise Exception("We got an incorrect length for raw texture!")
|
|
self.vprint(f" {name}, length: {texture_length}, offset: {hex(texture_offset)}, deflated_size: {deflated_size}, inflated_size: {inflated_size}")
|
|
|
|
# Just grab the raw data.
|
|
raw_data = self.data[(texture_offset + 8):(texture_offset + 8 + deflated_size)]
|
|
self.add_coverage(texture_offset, deflated_size + 8)
|
|
|
|
(
|
|
magic,
|
|
header_flags1,
|
|
header_flags2,
|
|
raw_length,
|
|
width,
|
|
height,
|
|
fmtflags,
|
|
expected_zero1,
|
|
expected_zero2,
|
|
) = struct.unpack(
|
|
f"{self.endian}4sIIIHHIII",
|
|
raw_data[0:32],
|
|
)
|
|
if raw_length != len(raw_data):
|
|
raise Exception("Invalid texture length!")
|
|
# I have only ever observed the following values across two different games.
|
|
# Don't want to keep the chunk around so let's assert our assumptions.
|
|
if (expected_zero1 | expected_zero2) != 0:
|
|
raise Exception("Found unexpected non-zero value in texture header!")
|
|
if raw_data[32:44] != b'\0' * 12:
|
|
raise Exception("Found unexpected non-zero value in texture header!")
|
|
# This is almost ALWAYS 3, but I've seen it be 1 as well, so I guess we have to
|
|
# round-trip it if we want to write files back out. I have no clue what it's for.
|
|
# I've seen it be 1 only on files used for fonts so far, but I am not sure there
|
|
# is any correlation there.
|
|
header_flags3 = struct.unpack(f"{self.endian}I", raw_data[44:48])[0]
|
|
if raw_data[48:64] != b'\0' * 16:
|
|
raise Exception("Found unexpected non-zero value in texture header!")
|
|
fmt = fmtflags & 0xFF
|
|
|
|
# Extract flags that the game cares about.
|
|
# flags1 = (fmtflags >> 24) & 0xFF
|
|
# flags2 = (fmtflags >> 16) & 0xFF
|
|
|
|
# unk1 = 3 if (flags1 & 0xF == 1) else 1
|
|
# unk2 = 3 if ((flags1 >> 4) & 0xF == 1) else 1
|
|
# unk3 = 1 if (flags2 & 0xF == 1) else 2
|
|
# unk4 = 1 if ((flags2 >> 4) & 0xF == 1) else 2
|
|
|
|
if self.endian == "<" and magic != b"TDXT":
|
|
raise Exception("Unexpected texture format!")
|
|
if self.endian == ">" and magic != b"TXDT":
|
|
raise Exception("Unexpected texture format!")
|
|
|
|
# Since the AFP file format can be found in both big and little endian, its
|
|
# possible that some of these loaders might need byteswapping on some platforms.
|
|
# This has been tested on files intended for X86 (little endian).
|
|
|
|
if fmt == 0x0B:
|
|
# 16-bit 565 color RGB format. Game references D3D9 texture format 23 (R5G6B5).
|
|
newdata = []
|
|
for i in range(width * height):
|
|
pixel = struct.unpack(
|
|
f"{self.endian}H",
|
|
raw_data[(64 + (i * 2)):(66 + (i * 2))],
|
|
)[0]
|
|
|
|
# Extract the raw values
|
|
red = ((pixel >> 0) & 0x1F) << 3
|
|
green = ((pixel >> 5) & 0x3F) << 2
|
|
blue = ((pixel >> 11) & 0x1F) << 3
|
|
|
|
# Scale the colors so they fill the entire 8 bit range.
|
|
red = red | (red >> 5)
|
|
green = green | (green >> 6)
|
|
blue = blue | (blue >> 5)
|
|
|
|
newdata.append(
|
|
struct.pack("<BBB", blue, green, red)
|
|
)
|
|
img = Image.frombytes(
|
|
'RGB', (width, height), b''.join(newdata), 'raw', 'RGB',
|
|
)
|
|
elif fmt == 0x0E:
|
|
# RGB image, no alpha. Game references D3D9 texture format 22 (R8G8B8).
|
|
img = Image.frombytes(
|
|
'RGB', (width, height), raw_data[64:], 'raw', 'RGB',
|
|
)
|
|
elif fmt == 0x10:
|
|
# Seems to be some sort of RGB with color swapping. Game references D3D9 texture
|
|
# format 21 (A8R8B8G8) but does manual byteswapping.
|
|
# TODO: Not sure this is correct, need to find sample files.
|
|
img = Image.frombytes(
|
|
'RGB', (width, height), raw_data[64:], 'raw', 'BGR',
|
|
)
|
|
elif fmt == 0x13:
|
|
# Some 16-bit texture format. Game references D3D9 texture format 25 (A1R5G5B5).
|
|
newdata = []
|
|
for i in range(width * height):
|
|
pixel = struct.unpack(
|
|
f"{self.endian}H",
|
|
raw_data[(64 + (i * 2)):(66 + (i * 2))],
|
|
)[0]
|
|
|
|
# Extract the raw values
|
|
alpha = 255 if ((pixel >> 15) & 0x1) != 0 else 0
|
|
red = ((pixel >> 0) & 0x1F) << 3
|
|
green = ((pixel >> 5) & 0x1F) << 3
|
|
blue = ((pixel >> 10) & 0x1F) << 3
|
|
|
|
# Scale the colors so they fill the entire 8 bit range.
|
|
red = red | (red >> 5)
|
|
green = green | (green >> 5)
|
|
blue = blue | (blue >> 5)
|
|
|
|
newdata.append(
|
|
struct.pack("<BBBB", blue, green, red, alpha)
|
|
)
|
|
img = Image.frombytes(
|
|
'RGBA', (width, height), b''.join(newdata), 'raw', 'RGBA',
|
|
)
|
|
elif fmt == 0x15:
|
|
# RGBA format. Game references D3D9 texture format 21 (A8R8G8B8).
|
|
# Looks like unlike 0x20 below, the game does some endianness swapping.
|
|
# TODO: Not sure this is correct, need to find sample files.
|
|
img = Image.frombytes(
|
|
'RGBA', (width, height), raw_data[64:], 'raw', 'ARGB',
|
|
)
|
|
elif fmt == 0x16:
|
|
# DXT1 format. Game references D3D9 DXT1 texture format.
|
|
# Konami seems to have screwed up with DDR PS3 where they
|
|
# swap every other byte in the format, even though its specified
|
|
# as little-endian by all DXT1 documentation.
|
|
dxt = DXTBuffer(width, height)
|
|
img = Image.frombuffer(
|
|
'RGBA',
|
|
(width, height),
|
|
dxt.DXT1Decompress(raw_data[64:], swap=self.endian != "<"),
|
|
'raw',
|
|
'RGBA',
|
|
0,
|
|
1,
|
|
)
|
|
elif fmt == 0x1A:
|
|
# DXT5 format. Game references D3D9 DXT5 texture format.
|
|
# Konami seems to have screwed up with DDR PS3 where they
|
|
# swap every other byte in the format, even though its specified
|
|
# as little-endian by all DXT5 documentation.
|
|
dxt = DXTBuffer(width, height)
|
|
img = Image.frombuffer(
|
|
'RGBA',
|
|
(width, height),
|
|
dxt.DXT5Decompress(raw_data[64:], swap=self.endian != "<"),
|
|
'raw',
|
|
'RGBA',
|
|
0,
|
|
1,
|
|
)
|
|
elif fmt == 0x1E:
|
|
# I have no idea what format this is. The game does some byte
|
|
# swapping but doesn't actually call any texture create calls.
|
|
# This might be leftover from another game.
|
|
pass
|
|
elif fmt == 0x1F:
|
|
# 16-bit 4-4-4-4 RGBA format. Game references D3D9 texture format 26 (A4R4G4B4).
|
|
newdata = []
|
|
for i in range(width * height):
|
|
pixel = struct.unpack(
|
|
f"{self.endian}H",
|
|
raw_data[(64 + (i * 2)):(66 + (i * 2))],
|
|
)[0]
|
|
|
|
# Extract the raw values
|
|
blue = ((pixel >> 0) & 0xF) << 4
|
|
green = ((pixel >> 4) & 0xF) << 4
|
|
red = ((pixel >> 8) & 0xF) << 4
|
|
alpha = ((pixel >> 12) & 0xF) << 4
|
|
|
|
# Scale the colors so they fill the entire 8 bit range.
|
|
red = red | (red >> 4)
|
|
green = green | (green >> 4)
|
|
blue = blue | (blue >> 4)
|
|
alpha = alpha | (alpha >> 4)
|
|
|
|
newdata.append(
|
|
struct.pack("<BBBB", red, green, blue, alpha)
|
|
)
|
|
img = Image.frombytes(
|
|
'RGBA', (width, height), b''.join(newdata), 'raw', 'RGBA',
|
|
)
|
|
elif fmt == 0x20:
|
|
# RGBA format. Game references D3D9 surface format 21 (A8R8G8B8).
|
|
img = Image.frombytes(
|
|
'RGBA', (width, height), raw_data[64:], 'raw', 'BGRA',
|
|
)
|
|
else:
|
|
self.vprint(f"Unsupported format {hex(fmt)} for texture {name}")
|
|
img = None
|
|
|
|
self.textures.append(
|
|
Texture(
|
|
name,
|
|
width,
|
|
height,
|
|
fmt,
|
|
header_flags1,
|
|
header_flags2,
|
|
header_flags3,
|
|
fmtflags & 0xFFFFFF00,
|
|
raw_data[64:],
|
|
lz_data,
|
|
img,
|
|
)
|
|
)
|
|
else:
|
|
self.vprint("Bit 0x000001 - textures; NOT PRESENT")
|
|
|
|
# Mapping between texture index and the name of the texture.
|
|
if feature_mask & 0x02:
|
|
# Mapping of texture name to texture index. This is used by regions to look up textures.
|
|
offset = struct.unpack(f"{self.endian}I", self.data[header_offset:(header_offset + 4)])[0]
|
|
self.add_coverage(header_offset, 4)
|
|
header_offset += 4
|
|
|
|
self.vprint(f"Bit 0x000002 - texturemapping; offset: {hex(offset)}")
|
|
|
|
if offset != 0:
|
|
self.texturemap = self.descramble_pman(offset)
|
|
else:
|
|
self.vprint("Bit 0x000002 - texturemapping; NOT PRESENT")
|
|
|
|
if feature_mask & 0x04:
|
|
self.vprint("Bit 0x000004 - legacy lz mode on")
|
|
else:
|
|
self.vprint("Bit 0x000004 - legacy lz mode off")
|
|
|
|
# Mapping between region index and the texture it goes to as well as the
|
|
# region of texture that this particular graphic makes up.
|
|
if feature_mask & 0x08:
|
|
# Mapping between individual graphics and their respective textures.
|
|
# This is 10 bytes per entry. Seems to need both 0x2 (texture index)
|
|
# and 0x10 (region index).
|
|
length, offset = struct.unpack(f"{self.endian}II", self.data[header_offset:(header_offset + 8)])
|
|
self.add_coverage(header_offset, 8)
|
|
header_offset += 8
|
|
|
|
self.vprint(f"Bit 0x000008 - regions; count: {length}, offset: {hex(offset)}")
|
|
|
|
if offset != 0 and length > 0:
|
|
for i in range(length):
|
|
descriptor_offset = offset + (10 * i)
|
|
texture_no, left, top, right, bottom = struct.unpack(
|
|
f"{self.endian}HHHHH",
|
|
self.data[descriptor_offset:(descriptor_offset + 10)],
|
|
)
|
|
self.add_coverage(descriptor_offset, 10)
|
|
|
|
if texture_no < 0 or texture_no >= len(self.texturemap.entries):
|
|
raise Exception(f"Out of bounds texture {texture_no}")
|
|
|
|
# Texture regions are multiplied by a power of 2. Not sure why, but the games I
|
|
# looked at hardcode a divide by 2 when loading regions.
|
|
region = TextureRegion(texture_no, left, top, right, bottom)
|
|
self.texture_to_region.append(region)
|
|
|
|
self.vprint(f" {region}, offset: {hex(descriptor_offset)}")
|
|
else:
|
|
self.vprint("Bit 0x000008 - regions; NOT PRESENT")
|
|
|
|
if feature_mask & 0x10:
|
|
# Names of the graphics regions, so we can look into the texture_to_region
|
|
# mapping above. Used by shapes to find the right region offset given a name.
|
|
offset = struct.unpack(f"{self.endian}I", self.data[header_offset:(header_offset + 4)])[0]
|
|
self.add_coverage(header_offset, 4)
|
|
header_offset += 4
|
|
|
|
self.vprint(f"Bit 0x000010 - regionmapping; offset: {hex(offset)}")
|
|
|
|
if offset != 0:
|
|
self.regionmap = self.descramble_pman(offset)
|
|
else:
|
|
self.vprint("Bit 0x000010 - regionmapping; NOT PRESENT")
|
|
|
|
if feature_mask & 0x20:
|
|
self.vprint("Bit 0x000020 - text obfuscation on")
|
|
else:
|
|
self.vprint("Bit 0x000020 - text obfuscation off")
|
|
|
|
if feature_mask & 0x40:
|
|
# Two unknown bytes, first is a length or a count. Secound is
|
|
# an optional offset to grab another set of bytes from.
|
|
length, offset = struct.unpack(f"{self.endian}II", self.data[header_offset:(header_offset + 8)])
|
|
self.add_coverage(header_offset, 8)
|
|
header_offset += 8
|
|
|
|
self.vprint(f"Bit 0x000040 - unknown; count: {length}, offset: {hex(offset)}")
|
|
|
|
if offset != 0 and length > 0:
|
|
for i in range(length):
|
|
unk_offset = offset + (i * 16)
|
|
name_offset = struct.unpack(f"{self.endian}I", self.data[unk_offset:(unk_offset + 4)])[0]
|
|
self.add_coverage(unk_offset, 4)
|
|
|
|
# The game does some very bizarre bit-shifting. Its clear tha the first value
|
|
# points at a name structure, but its not in the correct endianness. This replicates
|
|
# the weird logic seen in game disassembly.
|
|
name_offset = (((name_offset >> 7) & 0x1FF) << 16) + ((name_offset >> 16) & 0xFFFF)
|
|
if name_offset != 0:
|
|
# Let's decode this until the first null.
|
|
bytedata = self.get_until_null(name_offset)
|
|
self.add_coverage(name_offset, len(bytedata) + 1, unique=False)
|
|
name = descramble_text(bytedata, self.text_obfuscated)
|
|
self.vprint(f" {name}")
|
|
|
|
self.unknown1.append(
|
|
Unknown1(
|
|
name=name,
|
|
data=self.data[(unk_offset + 4):(unk_offset + 16)],
|
|
)
|
|
)
|
|
self.add_coverage(unk_offset + 4, 12)
|
|
else:
|
|
self.vprint("Bit 0x000040 - unknown; NOT PRESENT")
|
|
|
|
if feature_mask & 0x80:
|
|
# One unknown byte, treated as an offset. This is clearly the mapping for the parsed
|
|
# structures from 0x40, but I don't know what those are.
|
|
offset = struct.unpack(f"{self.endian}I", self.data[header_offset:(header_offset + 4)])[0]
|
|
self.add_coverage(header_offset, 4)
|
|
header_offset += 4
|
|
|
|
self.vprint(f"Bit 0x000080 - unknownmapping; offset: {hex(offset)}")
|
|
|
|
# TODO: I have no idea what this is for.
|
|
if offset != 0:
|
|
self.unk_pman1 = self.descramble_pman(offset)
|
|
else:
|
|
self.vprint("Bit 0x000080 - unknownmapping; NOT PRESENT")
|
|
|
|
if feature_mask & 0x100:
|
|
# Two unknown bytes, first is a length or a count. Secound is
|
|
# an optional offset to grab another set of bytes from.
|
|
length, offset = struct.unpack(f"{self.endian}II", self.data[header_offset:(header_offset + 8)])
|
|
self.add_coverage(header_offset, 8)
|
|
header_offset += 8
|
|
|
|
self.vprint(f"Bit 0x000100 - unknown; count: {length}, offset: {hex(offset)}")
|
|
|
|
if offset != 0 and length > 0:
|
|
for i in range(length):
|
|
unk_offset = offset + (i * 4)
|
|
self.unknown2.append(
|
|
Unknown2(self.data[unk_offset:(unk_offset + 4)])
|
|
)
|
|
self.add_coverage(unk_offset, 4)
|
|
else:
|
|
self.vprint("Bit 0x000100 - unknown; NOT PRESENT")
|
|
|
|
if feature_mask & 0x200:
|
|
# One unknown byte, treated as an offset. Almost positive its a string mapping
|
|
# for the above 0x100 structure. That's how this file format appears to work.
|
|
offset = struct.unpack(f"{self.endian}I", self.data[header_offset:(header_offset + 4)])[0]
|
|
self.add_coverage(header_offset, 4)
|
|
header_offset += 4
|
|
|
|
self.vprint(f"Bit 0x000200 - unknownmapping; offset: {hex(offset)}")
|
|
|
|
# TODO: I have no idea what this is for.
|
|
if offset != 0:
|
|
self.unk_pman2 = self.descramble_pman(offset)
|
|
else:
|
|
self.vprint("Bit 0x000200 - unknownmapping; NOT PRESENT")
|
|
|
|
if feature_mask & 0x400:
|
|
# One unknown byte, treated as an offset. I have no idea what this is used for,
|
|
# it seems to be empty data in files that I've looked at, it doesn't go to any
|
|
# structure or mapping.
|
|
offset = struct.unpack(f"{self.endian}I", self.data[header_offset:(header_offset + 4)])[0]
|
|
self.add_coverage(header_offset, 4)
|
|
header_offset += 4
|
|
|
|
self.vprint(f"Bit 0x000400 - unknown; offset: {hex(offset)}")
|
|
else:
|
|
self.vprint("Bit 0x000400 - unknown; NOT PRESENT")
|
|
|
|
if feature_mask & 0x800:
|
|
# SWF raw data that is loaded and passed to AFP core. It is equivalent to the
|
|
# afp files in an IFS container.
|
|
length, offset = struct.unpack(f"{self.endian}II", self.data[header_offset:(header_offset + 8)])
|
|
self.add_coverage(header_offset, 8)
|
|
header_offset += 8
|
|
|
|
self.vprint(f"Bit 0x000800 - swfdata; count: {length}, offset: {hex(offset)}")
|
|
|
|
for x in range(length):
|
|
interesting_offset = offset + (x * 12)
|
|
if interesting_offset != 0:
|
|
name_offset, swf_length, swf_offset = struct.unpack(
|
|
f"{self.endian}III",
|
|
self.data[interesting_offset:(interesting_offset + 12)],
|
|
)
|
|
self.add_coverage(interesting_offset, 12)
|
|
if name_offset != 0:
|
|
# Let's decode this until the first null.
|
|
bytedata = self.get_until_null(name_offset)
|
|
self.add_coverage(name_offset, len(bytedata) + 1, unique=False)
|
|
name = descramble_text(bytedata, self.text_obfuscated)
|
|
self.vprint(f" {name}, length: {swf_length}, offset: {hex(swf_offset)}")
|
|
|
|
if swf_offset != 0:
|
|
self.swfdata.append(
|
|
SWF(
|
|
name,
|
|
self.data[swf_offset:(swf_offset + swf_length)]
|
|
)
|
|
)
|
|
self.add_coverage(swf_offset, swf_length)
|
|
else:
|
|
self.vprint("Bit 0x000800 - swfdata; NOT PRESENT")
|
|
|
|
if feature_mask & 0x1000:
|
|
# A mapping structure that allows looking up SWF data by name.
|
|
offset = struct.unpack(f"{self.endian}I", self.data[header_offset:(header_offset + 4)])[0]
|
|
self.add_coverage(header_offset, 4)
|
|
header_offset += 4
|
|
|
|
self.vprint(f"Bit 0x001000 - swfmapping; offset: {hex(offset)}")
|
|
|
|
if offset != 0:
|
|
self.swfmap = self.descramble_pman(offset)
|
|
else:
|
|
self.vprint("Bit 0x001000 - swfmapping; NOT PRESENT")
|
|
|
|
if feature_mask & 0x2000:
|
|
# These are shapes as used with the SWF data above. They contain mappings between a
|
|
# loaded texture shape and the region that contains data. They are equivalent to the
|
|
# geo files found in an IFS container.
|
|
length, offset = struct.unpack(f"{self.endian}II", self.data[header_offset:(header_offset + 8)])
|
|
self.add_coverage(header_offset, 8)
|
|
header_offset += 8
|
|
|
|
self.vprint(f"Bit 0x002000 - shapes; count: {length}, offset: {hex(offset)}")
|
|
|
|
for x in range(length):
|
|
shape_base_offset = offset + (x * 12)
|
|
if shape_base_offset != 0:
|
|
name_offset, shape_length, shape_offset = struct.unpack(
|
|
f"{self.endian}III",
|
|
self.data[shape_base_offset:(shape_base_offset + 12)],
|
|
)
|
|
self.add_coverage(shape_base_offset, 12)
|
|
|
|
if name_offset != 0:
|
|
# Let's decode this until the first null.
|
|
bytedata = self.get_until_null(name_offset)
|
|
self.add_coverage(name_offset, len(bytedata) + 1, unique=False)
|
|
name = descramble_text(bytedata, self.text_obfuscated)
|
|
else:
|
|
name = "<unnamed>"
|
|
|
|
if shape_offset != 0:
|
|
shape = Shape(
|
|
name,
|
|
self.data[shape_offset:(shape_offset + shape_length)],
|
|
)
|
|
shape.parse(text_obfuscated=self.text_obfuscated)
|
|
self.shapes.append(shape)
|
|
self.add_coverage(shape_offset, shape_length)
|
|
|
|
self.vprint(f" {name}, length: {shape_length}, offset: {hex(shape_offset)}")
|
|
for line in str(shape).split(os.linesep):
|
|
self.vprint(f" {line}")
|
|
|
|
else:
|
|
self.vprint("Bit 0x002000 - shapes; NOT PRESENT")
|
|
|
|
if feature_mask & 0x4000:
|
|
# Mapping so that shapes can be looked up by name to get their offset.
|
|
offset = struct.unpack(f"{self.endian}I", self.data[header_offset:(header_offset + 4)])[0]
|
|
self.add_coverage(header_offset, 4)
|
|
header_offset += 4
|
|
|
|
self.vprint(f"Bit 0x004000 - shapesmapping; offset: {hex(offset)}")
|
|
|
|
if offset != 0:
|
|
self.shapemap = self.descramble_pman(offset)
|
|
else:
|
|
self.vprint("Bit 0x004000 - shapesmapping; NOT PRESENT")
|
|
|
|
if feature_mask & 0x8000:
|
|
# One unknown byte, treated as an offset. I have no idea what this is because
|
|
# the games I've looked at don't include this bit.
|
|
offset = struct.unpack(f"{self.endian}I", self.data[header_offset:(header_offset + 4)])[0]
|
|
self.add_coverage(header_offset, 4)
|
|
header_offset += 4
|
|
|
|
self.vprint(f"Bit 0x008000 - unknown; offset: {hex(offset)}")
|
|
|
|
# Since I've never seen this, I'm going to assume that it showing up is
|
|
# bad and make things read only.
|
|
self.read_only = True
|
|
else:
|
|
self.vprint("Bit 0x008000 - unknown; NOT PRESENT")
|
|
|
|
if feature_mask & 0x10000:
|
|
# Included font package, BINXRPC encoded. This is basically a texture sheet with an XML
|
|
# pointing at the region in the texture sheet for every renderable character.
|
|
offset = struct.unpack(f"{self.endian}I", self.data[header_offset:(header_offset + 4)])[0]
|
|
self.add_coverage(header_offset, 4)
|
|
header_offset += 4
|
|
|
|
# I am not sure what the unknown byte is for. It always appears as
|
|
# all zeros in all files I've looked at.
|
|
expect_zero, length, binxrpc_offset = struct.unpack(f"{self.endian}III", self.data[offset:(offset + 12)])
|
|
self.add_coverage(offset, 12)
|
|
|
|
self.vprint(f"Bit 0x010000 - fontinfo; offset: {hex(offset)}, binxrpc offset: {hex(binxrpc_offset)}")
|
|
|
|
if expect_zero != 0:
|
|
# If we find non-zero versions of this, then that means updating the file is
|
|
# potentially unsafe as we could rewrite it incorrectly. So, let's assert!
|
|
raise Exception("Expected a zero in font package header!")
|
|
|
|
if binxrpc_offset != 0:
|
|
self.fontdata = self.benc.decode(self.data[binxrpc_offset:(binxrpc_offset + length)])
|
|
self.add_coverage(binxrpc_offset, length)
|
|
else:
|
|
self.fontdata = None
|
|
else:
|
|
self.vprint("Bit 0x010000 - fontinfo; NOT PRESENT")
|
|
|
|
if feature_mask & 0x20000:
|
|
# This is the byteswapping headers that allow us to byteswap the SWF data before passing it
|
|
# to AFP core. It is equivalent to the bsi files in an IFS container.
|
|
offset = struct.unpack(f"{self.endian}I", self.data[header_offset:(header_offset + 4)])[0]
|
|
self.add_coverage(header_offset, 4)
|
|
header_offset += 4
|
|
|
|
self.vprint(f"Bit 0x020000 - swfheaders; offset: {hex(offset)}")
|
|
|
|
if offset > 0 and len(self.swfdata) > 0:
|
|
for i in range(len(self.swfdata)):
|
|
structure_offset = offset + (i * 12)
|
|
|
|
# First word is always zero, as observed. I am not ENTIRELY sure that
|
|
# the second field is length, but it lines up with everything else
|
|
# I've observed and seems to make sense.
|
|
expect_zero, afp_header_length, afp_header = struct.unpack(
|
|
f"{self.endian}III",
|
|
self.data[structure_offset:(structure_offset + 12)]
|
|
)
|
|
self.vprint(f" length: {afp_header_length}, offset: {hex(afp_header)}")
|
|
self.add_coverage(structure_offset, 12)
|
|
|
|
if expect_zero != 0:
|
|
# If we find non-zero versions of this, then that means updating the file is
|
|
# potentially unsafe as we could rewrite it incorrectly. So, let's assert!
|
|
raise Exception("Expected a zero in SWF header!")
|
|
|
|
self.swfdata[i].descramble_info = self.data[afp_header:(afp_header + afp_header_length)]
|
|
self.add_coverage(afp_header, afp_header_length)
|
|
else:
|
|
self.vprint("Bit 0x020000 - swfheaders; NOT PRESENT")
|
|
|
|
if feature_mask & 0x40000:
|
|
self.vprint("Bit 0x040000 - modern lz mode on")
|
|
else:
|
|
self.vprint("Bit 0x040000 - modern lz mode off")
|
|
|
|
if feature_mask & 0xFFF80000:
|
|
# We don't know these bits at all!
|
|
raise Exception("Invalid bits set in feature mask!")
|
|
|
|
if header_offset != header_length:
|
|
raise Exception("Failed to parse bitfield of header correctly!")
|
|
if verbose:
|
|
self.print_coverage()
|
|
|
|
# Now, parse out the SWF data in each of the SWF structures we found.
|
|
for swf in self.swfdata:
|
|
swf.parse(verbose)
|
|
|
|
def write_strings(self, data: bytes, strings: Dict[str, int]) -> bytes:
|
|
tuples: List[Tuple[str, int]] = [(name, strings[name]) for name in strings]
|
|
tuples = sorted(tuples, key=lambda tup: tup[1])
|
|
|
|
for (string, offset) in tuples:
|
|
data = pad(data, offset)
|
|
data += scramble_text(string, self.text_obfuscated)
|
|
|
|
return data
|
|
|
|
def write_pman(self, data: bytes, offset: int, pman: PMAN, string_offsets: Dict[str, int]) -> bytes:
|
|
# First, lay down the PMAN header
|
|
if self.endian == "<":
|
|
magic = b"PMAN"
|
|
elif self.endian == ">":
|
|
magic = b"NAMP"
|
|
else:
|
|
raise Exception("Logic error, unexpected endianness!")
|
|
|
|
# Calculate where various data goes
|
|
data = pad(data, offset)
|
|
payload_offset = offset + 28
|
|
string_offset = payload_offset + (len(pman.entries) * 12)
|
|
pending_strings: Dict[str, int] = {}
|
|
|
|
data += struct.pack(
|
|
f"{self.endian}4sIIIIII",
|
|
magic,
|
|
0,
|
|
pman.flags1,
|
|
pman.flags2,
|
|
len(pman.entries),
|
|
pman.flags3,
|
|
payload_offset,
|
|
)
|
|
|
|
# Now, lay down the individual entries
|
|
datas: List[bytes] = [b""] * len(pman.entries)
|
|
for entry_no, name in enumerate(pman.entries):
|
|
name_crc = TXP2File.crc32(name.encode('ascii'))
|
|
|
|
if name not in string_offsets:
|
|
# We haven't written this string out yet, so put it on our pending list.
|
|
pending_strings[name] = string_offset
|
|
string_offsets[name] = string_offset
|
|
|
|
# Room for the null byte!
|
|
string_offset += len(name) + 1
|
|
|
|
# Write out the chunk itself.
|
|
datas[pman.ordering[entry_no]] = struct.pack(
|
|
f"{self.endian}III",
|
|
name_crc,
|
|
entry_no,
|
|
string_offsets[name],
|
|
)
|
|
|
|
# Write it out in the correct order. Some files are hardcoded in various
|
|
# games so we MUST preserve the order of PMAN entries.
|
|
data += b"".join(datas)
|
|
|
|
# Now, put down the strings that were new in this pman structure.
|
|
return self.write_strings(data, pending_strings)
|
|
|
|
def unparse(self) -> bytes:
|
|
if self.read_only:
|
|
raise Exception("This file is read-only because we can't parse some of it!")
|
|
|
|
# Mapping from various strings found in the file to their offsets.
|
|
string_offsets: Dict[str, int] = {}
|
|
pending_strings: Dict[str, int] = {}
|
|
|
|
# The true file header, containing magic, some file flags, file length and
|
|
# header length.
|
|
header: bytes = b''
|
|
|
|
# The bitfield structure that dictates what's found in the file and where.
|
|
bitfields: bytes = b''
|
|
|
|
# The data itself.
|
|
body: bytes = b''
|
|
|
|
# First, plop down the file magic as well as the unknown file flags we
|
|
# roundtripped.
|
|
if self.endian == "<":
|
|
header += b"2PXT"
|
|
elif self.endian == ">":
|
|
header += b"TXP2"
|
|
else:
|
|
raise Exception("Invalid graphic file format!")
|
|
|
|
# Not sure what words 2 and 3 are, they seem to be some sort of
|
|
# version or date?
|
|
header += self.data[4:12]
|
|
|
|
# We can't plop the length down yet, since we don't know it. So, let's first
|
|
# figure out what our bitfield length is.
|
|
header_length = 0
|
|
if self.features & 0x1:
|
|
header_length += 8
|
|
if self.features & 0x2:
|
|
header_length += 4
|
|
# Bit 0x4 is for lz options.
|
|
if self.features & 0x8:
|
|
header_length += 8
|
|
if self.features & 0x10:
|
|
header_length += 4
|
|
# Bit 0x20 is for text obfuscation options.
|
|
if self.features & 0x40:
|
|
header_length += 8
|
|
if self.features & 0x80:
|
|
header_length += 4
|
|
if self.features & 0x100:
|
|
header_length += 8
|
|
if self.features & 0x200:
|
|
header_length += 4
|
|
if self.features & 0x400:
|
|
header_length += 4
|
|
if self.features & 0x800:
|
|
header_length += 8
|
|
if self.features & 0x1000:
|
|
header_length += 4
|
|
if self.features & 0x2000:
|
|
header_length += 8
|
|
if self.features & 0x4000:
|
|
header_length += 4
|
|
if self.features & 0x8000:
|
|
header_length += 4
|
|
if self.features & 0x10000:
|
|
header_length += 4
|
|
if self.features & 0x20000:
|
|
header_length += 4
|
|
# Bit 0x40000 is for lz options.
|
|
|
|
# We keep this indirection because we want to do our best to preserve
|
|
# the file order we observe in actual files. So, that means writing data
|
|
# out of order of when it shows in the header, and as such we must remember
|
|
# what chunks go where. We key by feature bitmask so its safe to have empties.
|
|
bitchunks = [b""] * 32
|
|
|
|
# Pad out the body for easier calculations below
|
|
body = pad(body, 24 + header_length)
|
|
|
|
# Start laying down various file pieces.
|
|
texture_to_update_offset: Dict[str, Tuple[int, bytes]] = {}
|
|
if self.features & 0x01:
|
|
# List of textures that exist in the file, with pointers to their data.
|
|
offset = align(len(body))
|
|
body = pad(body, offset)
|
|
|
|
# First, lay down pointers and length, regardless of number of entries.
|
|
bitchunks[0] = struct.pack(f"{self.endian}II", len(self.textures), offset)
|
|
|
|
# Now, calculate how long each texture is and formulate the data itself.
|
|
name_to_length: Dict[str, int] = {}
|
|
|
|
# Now, possibly compress and lay down textures.
|
|
for texture in self.textures:
|
|
# Construct the TXDT texture format from our parsed results.
|
|
if self.endian == "<":
|
|
magic = b"TDXT"
|
|
elif self.endian == ">":
|
|
magic != b"TXDT"
|
|
else:
|
|
raise Exception("Unexpected texture format!")
|
|
|
|
fmtflags = (texture.fmtflags & 0xFFFFFF00) | (texture.fmt & 0xFF)
|
|
|
|
raw_texture = struct.pack(
|
|
f"{self.endian}4sIIIHHIII",
|
|
magic,
|
|
texture.header_flags1,
|
|
texture.header_flags2,
|
|
64 + len(texture.raw),
|
|
texture.width,
|
|
texture.height,
|
|
fmtflags,
|
|
0,
|
|
0,
|
|
) + (b'\0' * 12) + struct.pack(
|
|
f"{self.endian}I", texture.header_flags3,
|
|
) + (b'\0' * 16) + texture.raw
|
|
|
|
if self.legacy_lz:
|
|
raise Exception("We don't support legacy lz mode!")
|
|
elif self.modern_lz:
|
|
if texture.compressed:
|
|
# We didn't change this texture, use the original compression.
|
|
compressed_texture = texture.compressed
|
|
else:
|
|
# We need to compress the raw texture.
|
|
lz77 = Lz77()
|
|
compressed_texture = lz77.compress(raw_texture)
|
|
|
|
# Construct the mini-header and the texture itself.
|
|
name_to_length[texture.name] = len(compressed_texture) + 8
|
|
texture_to_update_offset[texture.name] = (
|
|
0xDEADBEEF,
|
|
struct.pack(
|
|
">II",
|
|
len(raw_texture),
|
|
len(compressed_texture),
|
|
) + compressed_texture,
|
|
)
|
|
else:
|
|
# We just need to place the raw texture down.
|
|
name_to_length[texture.name] = len(raw_texture) + 8
|
|
texture_to_update_offset[texture.name] = (
|
|
0xDEADBEEF,
|
|
struct.pack(
|
|
">II",
|
|
len(raw_texture),
|
|
len(raw_texture),
|
|
) + raw_texture,
|
|
)
|
|
|
|
# Now, make sure the texture block is padded to 4 bytes, so we can figure out
|
|
# where strings go.
|
|
string_offset = align(len(body) + (len(self.textures) * 12))
|
|
|
|
# Now, write out texture pointers and strings.
|
|
for texture in self.textures:
|
|
if texture.name not in string_offsets:
|
|
# We haven't written this string out yet, so put it on our pending list.
|
|
pending_strings[texture.name] = string_offset
|
|
string_offsets[texture.name] = string_offset
|
|
|
|
# Room for the null byte!
|
|
string_offset += len(texture.name) + 1
|
|
|
|
# Write out the chunk itself, remember where we need to fix up later.
|
|
texture_to_update_offset[texture.name] = (
|
|
len(body) + 8,
|
|
texture_to_update_offset[texture.name][1],
|
|
)
|
|
body += struct.pack(
|
|
f"{self.endian}III",
|
|
string_offsets[texture.name],
|
|
name_to_length[texture.name], # Structure length
|
|
0xDEADBEEF, # Structure offset (we will fix this later)
|
|
)
|
|
|
|
# Now, put down the texture chunk itself and then strings that were new in this chunk.
|
|
body = self.write_strings(body, pending_strings)
|
|
pending_strings = {}
|
|
|
|
if self.features & 0x08:
|
|
# Mapping between individual graphics and their respective textures.
|
|
offset = align(len(body))
|
|
body = pad(body, offset)
|
|
|
|
# First, lay down pointers and length, regardless of number of entries.
|
|
bitchunks[3] = struct.pack(f"{self.endian}II", len(self.texture_to_region), offset)
|
|
|
|
for bounds in self.texture_to_region:
|
|
body += struct.pack(
|
|
f"{self.endian}HHHHH",
|
|
bounds.textureno,
|
|
bounds.left,
|
|
bounds.top,
|
|
bounds.right,
|
|
bounds.bottom,
|
|
)
|
|
|
|
if self.features & 0x40:
|
|
# Unknown file chunk.
|
|
offset = align(len(body))
|
|
body = pad(body, offset)
|
|
|
|
# First, lay down pointers and length, regardless of number of entries.
|
|
bitchunks[6] = struct.pack(f"{self.endian}II", len(self.unknown1), offset)
|
|
|
|
# Now, calculate where we can put strings.
|
|
string_offset = align(len(body) + (len(self.unknown1) * 16))
|
|
|
|
# Now, write out chunks and strings.
|
|
for entry1 in self.unknown1:
|
|
if entry1.name not in string_offsets:
|
|
# We haven't written this string out yet, so put it on our pending list.
|
|
pending_strings[entry1.name] = string_offset
|
|
string_offsets[entry1.name] = string_offset
|
|
|
|
# Room for the null byte!
|
|
string_offset += len(entry1.name) + 1
|
|
|
|
# Write out the chunk itself.
|
|
body += struct.pack(f"{self.endian}I", string_offsets[entry1.name]) + entry1.data
|
|
|
|
# Now, put down the strings that were new in this chunk.
|
|
body = self.write_strings(body, pending_strings)
|
|
pending_strings = {}
|
|
|
|
if self.features & 0x100:
|
|
# Two unknown bytes, first is a length or a count. Secound is
|
|
# an optional offset to grab another set of bytes from.
|
|
offset = align(len(body))
|
|
body = pad(body, offset)
|
|
|
|
# First, lay down pointers and length, regardless of number of entries.
|
|
bitchunks[8] = struct.pack(f"{self.endian}II", len(self.unknown2), offset)
|
|
|
|
# Now, write out chunks and strings.
|
|
for entry2 in self.unknown2:
|
|
# Write out the chunk itself.
|
|
body += entry2.data
|
|
|
|
if self.features & 0x800:
|
|
# This is the names and locations of the SWF data as far as I can tell.
|
|
offset = align(len(body))
|
|
body = pad(body, offset)
|
|
|
|
bitchunks[11] = struct.pack(f"{self.endian}II", len(self.swfdata), offset)
|
|
|
|
# Now, calculate where we can put SWF data and their names.
|
|
swfdata_offset = align(len(body) + (len(self.swfdata) * 12))
|
|
string_offset = align(swfdata_offset + sum(align(len(a.data)) for a in self.swfdata))
|
|
swfdata = b""
|
|
|
|
# Now, lay them out.
|
|
for data in self.swfdata:
|
|
if data.name not in string_offsets:
|
|
# We haven't written this string out yet, so put it on our pending list.
|
|
pending_strings[data.name] = string_offset
|
|
string_offsets[data.name] = string_offset
|
|
|
|
# Room for the null byte!
|
|
string_offset += len(data.name) + 1
|
|
|
|
# Write out the chunk itself.
|
|
body += struct.pack(
|
|
f"{self.endian}III",
|
|
string_offsets[data.name],
|
|
len(data.data),
|
|
swfdata_offset + len(swfdata),
|
|
)
|
|
swfdata += pad(data.data, align(len(data.data)))
|
|
|
|
# Now, lay out the data itself and finally string names.
|
|
body = self.write_strings(body + swfdata, pending_strings)
|
|
pending_strings = {}
|
|
|
|
if self.features & 0x2000:
|
|
# This is the names and data for shapes as far as I can tell.
|
|
offset = align(len(body))
|
|
body = pad(body, offset)
|
|
|
|
bitchunks[13] = struct.pack(f"{self.endian}II", len(self.shapes), offset)
|
|
|
|
# Now, calculate where we can put shapes and their names.
|
|
shape_offset = align(len(body) + (len(self.shapes) * 12))
|
|
string_offset = align(shape_offset + sum(align(len(s.data)) for s in self.shapes))
|
|
shapedata = b""
|
|
|
|
# Now, lay them out.
|
|
for shape in self.shapes:
|
|
if shape.name not in string_offsets:
|
|
# We haven't written this string out yet, so put it on our pending list.
|
|
pending_strings[shape.name] = string_offset
|
|
string_offsets[shape.name] = string_offset
|
|
|
|
# Room for the null byte!
|
|
string_offset += len(shape.name) + 1
|
|
|
|
# Write out the chunk itself.
|
|
body += struct.pack(
|
|
f"{self.endian}III",
|
|
string_offsets[shape.name],
|
|
len(shape.data),
|
|
shape_offset + len(shapedata),
|
|
)
|
|
shapedata += pad(shape.data, align(len(shape.data)))
|
|
|
|
# Now, lay out the data itself and finally string names.
|
|
body = self.write_strings(body + shapedata, pending_strings)
|
|
pending_strings = {}
|
|
|
|
if self.features & 0x02:
|
|
# Mapping between texture index and the name of the texture.
|
|
offset = align(len(body))
|
|
body = pad(body, offset)
|
|
|
|
# Lay down PMAN pointer and PMAN structure itself.
|
|
bitchunks[1] = struct.pack(f"{self.endian}I", offset)
|
|
body = self.write_pman(body, offset, self.texturemap, string_offsets)
|
|
|
|
if self.features & 0x10:
|
|
# Names of the graphics regions, so we can look into the texture_to_region
|
|
# mapping above.
|
|
offset = align(len(body))
|
|
body = pad(body, offset)
|
|
|
|
# Lay down PMAN pointer and PMAN structure itself.
|
|
bitchunks[4] = struct.pack(f"{self.endian}I", offset)
|
|
body = self.write_pman(body, offset, self.regionmap, string_offsets)
|
|
|
|
if self.features & 0x80:
|
|
# One unknown byte, treated as an offset. This is clearly the mapping for the parsed
|
|
# structures from 0x40, but I don't know what those are.
|
|
offset = align(len(body))
|
|
body = pad(body, offset)
|
|
|
|
# Lay down PMAN pointer and PMAN structure itself.
|
|
bitchunks[7] = struct.pack(f"{self.endian}I", offset)
|
|
body = self.write_pman(body, offset, self.unk_pman1, string_offsets)
|
|
|
|
if self.features & 0x200:
|
|
# I am pretty sure this is a mapping for the structures parsed at 0x100.
|
|
offset = align(len(body))
|
|
body = pad(body, offset)
|
|
|
|
# Lay down PMAN pointer and PMAN structure itself.
|
|
bitchunks[9] = struct.pack(f"{self.endian}I", offset)
|
|
body = self.write_pman(body, offset, self.unk_pman2, string_offsets)
|
|
|
|
if self.features & 0x1000:
|
|
# Mapping of SWF data to their ID.
|
|
offset = align(len(body))
|
|
body = pad(body, offset)
|
|
|
|
# Lay down PMAN pointer and PMAN structure itself.
|
|
bitchunks[12] = struct.pack(f"{self.endian}I", offset)
|
|
body = self.write_pman(body, offset, self.swfmap, string_offsets)
|
|
|
|
if self.features & 0x4000:
|
|
# Mapping of shapes to their ID.
|
|
offset = align(len(body))
|
|
body = pad(body, offset)
|
|
|
|
# Lay down PMAN pointer and PMAN structure itself.
|
|
bitchunks[14] = struct.pack(f"{self.endian}I", offset)
|
|
body = self.write_pman(body, offset, self.shapemap, string_offsets)
|
|
|
|
if self.features & 0x10000:
|
|
# Font information.
|
|
offset = align(len(body))
|
|
body = pad(body, offset)
|
|
|
|
bitchunks[16] = struct.pack(f"{self.endian}I", offset)
|
|
|
|
# Now, encode the font information.
|
|
if self.fontdata is None:
|
|
raise Exception("Container has fontdata, but fontdata is None!")
|
|
fontbytes = self.benc.encode(self.fontdata)
|
|
body += struct.pack(
|
|
f"{self.endian}III",
|
|
0,
|
|
len(fontbytes),
|
|
offset + 12,
|
|
)
|
|
body += fontbytes
|
|
|
|
if self.features & 0x400:
|
|
# I haven't seen any files with any meaningful information for this, but
|
|
# it gets included anyway since games seem to parse it.
|
|
offset = align(len(body))
|
|
body = pad(body, offset)
|
|
|
|
# Point to current data location (seems to be what original files do too).
|
|
bitchunks[10] = struct.pack(f"{self.endian}I", offset)
|
|
|
|
if self.features & 0x8000:
|
|
# Unknown, never seen bit. We shouldn't be here, we set ourselves
|
|
# to read-only.
|
|
raise Exception("This should not be possible!")
|
|
|
|
if self.features & 0x20000:
|
|
# SWF header information.
|
|
offset = align(len(body))
|
|
body = pad(body, offset)
|
|
|
|
bitchunks[17] = struct.pack(f"{self.endian}I", offset)
|
|
|
|
# Now, calculate where we can put SWF headers.
|
|
swfdata_offset = align(len(body) + (len(self.swfdata) * 12))
|
|
swfheader = b""
|
|
|
|
# Now, lay them out.
|
|
for data in self.swfdata:
|
|
# Write out the chunk itself.
|
|
body += struct.pack(
|
|
f"{self.endian}III",
|
|
0,
|
|
len(data.descramble_info),
|
|
swfdata_offset + len(swfheader),
|
|
)
|
|
swfheader += pad(data.descramble_info, align(len(data.descramble_info)))
|
|
|
|
# Now, lay out the header itself
|
|
body += swfheader
|
|
|
|
if self.features & 0x01:
|
|
# Now, go back and add texture data to the end of the file, fixing up the
|
|
# pointer to said data we wrote down earlier.
|
|
for texture in self.textures:
|
|
# Grab the offset we need to fix, our current offset and place
|
|
# the texture data itself down.
|
|
fix_offset, texture_data = texture_to_update_offset[texture.name]
|
|
offset = align(len(body))
|
|
body = pad(body, offset) + texture_data
|
|
|
|
# Now, update the patch location to make sure we point at the texture data.
|
|
body = body[:fix_offset] + struct.pack(f"{self.endian}I", offset) + body[(fix_offset + 4):]
|
|
|
|
# Bit 0x40000 is for lz options.
|
|
|
|
# Now, no matter what happened above, make sure file is aligned to 4 bytes.
|
|
offset = align(len(body))
|
|
body = pad(body, offset)
|
|
|
|
# Record the bitfield options into the bitfield structure, and we can
|
|
# get started writing the file out.
|
|
bitfields = struct.pack(f"{self.endian}I", self.features) + b"".join(bitchunks)
|
|
|
|
# Finally, now that we know the full file length, we can finish
|
|
# writing the header.
|
|
header += struct.pack(f"{self.endian}II", len(body), header_length + 24)
|
|
if len(header) != 20:
|
|
raise Exception("Logic error, incorrect header length!")
|
|
|
|
# Skip over padding to the body that we inserted specifically to track offsets
|
|
# against the headers.
|
|
return header + bitfields + body[(header_length + 24):]
|
|
|
|
def update_texture(self, name: str, png_data: bytes) -> None:
|
|
for texture in self.textures:
|
|
if texture.name == name:
|
|
# First, let's get the dimensions of this new picture and
|
|
# ensure that it is identical to the existing one.
|
|
img = Image.open(io.BytesIO(png_data))
|
|
if img.width != texture.width or img.height != texture.height:
|
|
raise Exception("Cannot update texture with different size!")
|
|
|
|
# Now, get the raw image data.
|
|
img = img.convert('RGBA')
|
|
texture.img = img
|
|
|
|
# Now, refresh the raw texture data for when we write it out.
|
|
self._refresh_texture(texture)
|
|
|
|
return
|
|
else:
|
|
raise Exception(f"There is no texture named {name}!")
|
|
|
|
def update_sprite(self, texture: str, sprite: str, png_data: bytes) -> None:
|
|
# First, identify the bounds where the texture lives.
|
|
for no, name in enumerate(self.texturemap.entries):
|
|
if name == texture:
|
|
textureno = no
|
|
break
|
|
else:
|
|
raise Exception(f"There is no texture named {texture}!")
|
|
|
|
for no, name in enumerate(self.regionmap.entries):
|
|
if name == sprite:
|
|
region = self.texture_to_region[no]
|
|
if region.textureno == textureno:
|
|
# We found the region associated with the sprite we want to update.
|
|
break
|
|
else:
|
|
raise Exception(f"There is no sprite named {sprite} on texture {texture}!")
|
|
|
|
# Now, figure out if the PNG data we got is valid.
|
|
sprite_img = Image.open(io.BytesIO(png_data))
|
|
if sprite_img.width != ((region.right // 2) - (region.left // 2)) or sprite_img.height != ((region.bottom // 2) - (region.top // 2)):
|
|
raise Exception("Cannot update sprite with different size!")
|
|
|
|
# Now, copy the data over and update the raw texture.
|
|
for tex in self.textures:
|
|
if tex.name == texture:
|
|
tex.img.paste(sprite_img, (region.left // 2, region.top // 2))
|
|
|
|
# Now, refresh the texture so when we save the file its updated.
|
|
self._refresh_texture(tex)
|
|
|
|
def _refresh_texture(self, texture: Texture) -> None:
|
|
if texture.fmt == 0x0B:
|
|
# 16-bit 565 color RGB format.
|
|
texture.raw = b"".join(
|
|
struct.pack(
|
|
f"{self.endian}H",
|
|
(
|
|
(((pixel[0] >> 3) & 0x1F) << 11) |
|
|
(((pixel[1] >> 2) & 0x3F) << 5) |
|
|
((pixel[2] >> 3) & 0x1F)
|
|
)
|
|
) for pixel in texture.img.getdata()
|
|
)
|
|
elif texture.fmt == 0x13:
|
|
# 16-bit A1R5G55 texture format.
|
|
texture.raw = b"".join(
|
|
struct.pack(
|
|
f"{self.endian}H",
|
|
(
|
|
(0x8000 if pixel[3] >= 128 else 0x0000) |
|
|
(((pixel[0] >> 3) & 0x1F) << 10) |
|
|
(((pixel[1] >> 3) & 0x1F) << 5) |
|
|
((pixel[2] >> 3) & 0x1F)
|
|
)
|
|
) for pixel in texture.img.getdata()
|
|
)
|
|
elif texture.fmt == 0x1F:
|
|
# 16-bit 4-4-4-4 RGBA format.
|
|
texture.raw = b"".join(
|
|
struct.pack(
|
|
f"{self.endian}H",
|
|
(
|
|
((pixel[2] >> 4) & 0xF) |
|
|
(((pixel[1] >> 4) & 0xF) << 4) |
|
|
(((pixel[0] >> 4) & 0xF) << 8) |
|
|
(((pixel[3] >> 4) & 0xF) << 12)
|
|
)
|
|
) for pixel in texture.img.getdata()
|
|
)
|
|
elif texture.fmt == 0x20:
|
|
# 32-bit RGBA format
|
|
texture.raw = b"".join(
|
|
struct.pack(
|
|
f"{self.endian}BBBB",
|
|
pixel[2],
|
|
pixel[1],
|
|
pixel[0],
|
|
pixel[3],
|
|
) for pixel in texture.img.getdata()
|
|
)
|
|
else:
|
|
raise Exception(f"Unsupported format {hex(texture.fmt)} for texture {texture.name}")
|
|
|
|
# Make sure we don't use the old compressed data.
|
|
texture.compressed = None
|