1
0
mirror of synced 2025-01-22 19:42:05 +01:00

622 lines
29 KiB
Python

from typing import Dict, List, Tuple, Optional, Union
from PIL import Image # type: ignore
from .swf import SWF, Frame, Tag, AP2ShapeTag, AP2DefineSpriteTag, AP2PlaceObjectTag, AP2RemoveObjectTag, AP2DoActionTag, AP2DefineFontTag, AP2DefineEditTextTag
from .types import Color, Matrix, Point
from .geo import Shape
from .util import VerboseOutput
class Clip:
# A movie clip that we are rendering, frame by frame. These are manifest by the root
# SWF as well as AP2DefineSpriteTags which are essentially embedded movie clips. The
# tag_id is the AP2DefineSpriteTag that created us, or None if this is the clip for
# the root of the movie.
def __init__(self, tag_id: Optional[int], frames: List[Frame], tags: List[Tag]) -> None:
self.tag_id = tag_id
self.frames = frames
self.tags = tags
self.frameno = 0
self.__last_frameno = -1
self.__finished = False
def clone(self) -> "Clip":
return Clip(
self.tag_id,
self.frames,
self.tags,
)
@property
def frame(self) -> Frame:
# The current frame object.
if self.frameno >= len(self.frames):
raise Exception("Logic error!")
return self.frames[self.frameno]
def advance(self) -> None:
# Advance the clip by one frame after we finished processing that frame.
if self.running:
self.frameno += 1
def clear(self) -> None:
# Clear the dirty flag on this clip until we advance to the next frame.
self.__last_frameno = self.frameno
def remove(self) -> None:
# Schedule this clip to be removed.
self.__finished = True
@property
def finished(self) -> bool:
# Whether we've hit the end of the clip and should get rid of this object or not.
return (self.__finished or (self.frameno == len(self.frames)))
@property
def running(self) -> bool:
return not self.finished
@property
def dirty(self) -> bool:
# Whether we are in need of processing this frame or not.
return self.running and (self.frameno != self.__last_frameno)
def __repr__(self) -> str:
return f"Clip(tag_id={self.tag_id}, frames={len(self.frames)}, frameno={self.frameno}, running={self.running}, dirty={self.dirty})"
class PlacedObject:
# An object that occupies the screen at some depth. Placed by an AP2PlaceObjectTag
# that is inside the root SWF or an AP2DefineSpriteTag (essentially an embedded
# movie clip).
def __init__(self, parent_clip: Clip, tag: AP2PlaceObjectTag, drawable: Union[Clip, Shape]) -> None:
self.parent_clip = parent_clip
# TODO: Get rid of tag reference, instead grab the variables we need.
self.tag = tag
self.drawable = drawable
@property
def depth(self) -> int:
return self.tag.depth
@property
def object_id(self) -> int:
return self.tag.object_id
def __repr__(self) -> str:
return f"PlacedObject(parent_clip={self.parent_clip}, object_id={self.object_id}, depth={self.depth})"
class AFPRenderer(VerboseOutput):
def __init__(self, shapes: Dict[str, Shape] = {}, textures: Dict[str, Image.Image] = {}, swfs: Dict[str, SWF] = {}) -> None:
super().__init__()
self.shapes: Dict[str, Shape] = shapes
self.textures: Dict[str, Image.Image] = textures
self.swfs: Dict[str, SWF] = swfs
# Internal render parameters
self.__visible_tag: Optional[int] = None
self.__registered_shapes: Dict[int, Shape] = {}
self.__registered_sprites: Dict[int, Clip] = {}
self.__placed_objects: List[PlacedObject] = []
self.__clips: List[Clip] = []
def add_shape(self, name: str, data: Shape) -> None:
# Register a named shape with the renderer.
if not data.parsed:
data.parse()
self.shapes[name] = data
def add_texture(self, name: str, data: Image.Image) -> None:
# Register a named texture (already loaded PIL image) with the renderer.
self.textures[name] = data.convert("RGBA")
def add_swf(self, name: str, data: SWF) -> None:
# Register a named SWF with the renderer.
if not data.parsed:
data.parse()
self.swfs[name] = data
def render_path(self, path: str, background_color: Optional[Color] = None, verbose: bool = False) -> Tuple[int, List[Image.Image]]:
# Given a path to a SWF root animation or an exported animation inside a SWF,
# attempt to render it to a list of frames, one per image.
components = path.split(".")
if len(components) > 2:
raise Exception('Expected a path in the form of "moviename" or "moviename.exportedtag"!')
for name, swf in self.swfs.items():
if swf.exported_name == components[0]:
# This is the SWF we care about.
with self.debugging(verbose):
swf.color = background_color or swf.color
return self.__render(swf, components[1] if len(components) > 1 else None)
raise Exception(f'{path} not found in registered SWFs!')
def list_paths(self, verbose: bool = False) -> List[str]:
# Given the loaded animations, return a list of possible paths to render.
paths: List[str] = []
for name, swf in self.swfs.items():
paths.append(swf.exported_name)
for export_tag in swf.exported_tags:
paths.append(f"{swf.exported_name}.{export_tag}")
return paths
def __place(self, tag: Tag, parent_clip: Clip, prefix: str = "") -> List[Clip]:
# "Place" a tag on the screen. Most of the time, this means performing the action of the tag,
# such as defining a shape (registering it with our shape list) or adding/removing an object.
if isinstance(tag, AP2ShapeTag):
self.vprint(f"{prefix} Loading {tag.reference} into shape slot {tag.id}")
if tag.reference not in self.shapes:
raise Exception(f"Cannot find shape reference {tag.reference}!")
if tag.id in self.__registered_shapes:
raise Exception(f"Cannot register {tag.reference} as shape slot {tag.id} is already taken!")
self.__registered_shapes[tag.id] = self.shapes[tag.reference]
# No additional movie clips were spawned.
return []
elif isinstance(tag, AP2DefineSpriteTag):
self.vprint(f"{prefix} Loading Sprite into sprite slot {tag.id}")
if tag.id in self.__registered_sprites:
raise Exception(f"Cannot register sprite as sprite slot {tag.id} is already taken!")
# Register a new clip that we might reference to execute.
self.__registered_sprites[tag.id] = Clip(tag.id, tag.frames, tag.tags)
# We didn't add the clip to our processing target yet.
return []
elif isinstance(tag, AP2PlaceObjectTag):
if tag.update:
self.vprint(f"{prefix} Updating Object ID {tag.object_id} on Depth {tag.depth}")
updated = False
for obj in self.__placed_objects:
if obj.object_id == tag.object_id and obj.depth == tag.depth:
# As far as I can tell, pretty much only color and matrix stuff can be updated.
obj.tag.mult_color = tag.mult_color or obj.tag.mult_color
obj.tag.add_color = tag.add_color or obj.tag.add_color
obj.tag.transform = tag.transform or obj.tag.transform
obj.tag.rotation_offset = tag.rotation_offset or obj.tag.rotation_offset
updated = True
if not updated:
print(f"WARNING: Couldn't find tag {tag.object_id} on depth {tag.depth} to update!")
# We finished!
return []
else:
if tag.source_tag_id is None:
raise Exception("Cannot place a tag with no source ID and no update flags!")
# TODO: Handle ON_LOAD triggers for this object. Many of these are just calls into
# the game to set the current frame that we're on, but sometimes its important.
if tag.source_tag_id in self.__registered_sprites:
# This is a sprite placement reference. We need to start this
# clip so that we can process its own animation frames in order to reference
# its objects when rendering.
self.vprint(f"{prefix} Placing Sprite {tag.source_tag_id} with Object ID {tag.object_id} onto Depth {tag.depth}")
new_clip = self.__registered_sprites[tag.source_tag_id].clone()
self.__placed_objects.append(PlacedObject(parent_clip, tag, new_clip))
return [new_clip]
if tag.source_tag_id in self.__registered_shapes:
self.vprint(f"{prefix} Placing Shape {tag.source_tag_id} with Object ID {tag.object_id} onto Depth {tag.depth}")
self.__placed_objects.append(PlacedObject(parent_clip, tag, self.__registered_shapes[tag.source_tag_id]))
return []
raise Exception(f"Cannot find a shape or sprite with Tag ID {tag.source_tag_id}!")
elif isinstance(tag, AP2RemoveObjectTag):
self.vprint(f"{prefix} Removing Object ID {tag.object_id} from Depth {tag.depth}")
if tag.object_id != 0:
# Remove the identified object by object ID and depth.
# Remember removed objects so we can stop any clips.
removed_objects = [
obj for obj in self.__placed_objects
if obj.object_id == tag.object_id and obj.depth == tag.depth
]
# Get rid of the objects that we're removing from the master list.
self.__placed_objects = [
obj for obj in self.__placed_objects
if not(obj.object_id == tag.object_id and obj.depth == tag.depth)
]
else:
# Remove the last placed object at this depth. The placed objects list isn't
# ordered so much as apppending to the list means the last placed object at a
# depth comes last.
removed_objects = []
for i in range(len(self.__placed_objects)):
real_index = len(self.__placed_objects) - (i + 1)
if self.__placed_objects[real_index].depth == tag.depth:
removed_objects = self.__placed_objects[real_index:(real_index + 1)]
self.__placed_objects = self.__placed_objects[:real_index] + self.__placed_objects[(real_index + 1):]
break
if not removed_objects:
print(f"WARNING: Couldn't find object to remove by ID {tag.object_id} and depth {tag.depth}!")
# Now, if we removed a sprite, go through and drop all of its children.
while removed_objects:
# Keep track of new clips that we need to drop.
new_removed_objects = []
for obj in removed_objects:
if obj.tag.source_tag_id in self.__registered_sprites:
# This is a sprite placement reference, stop the clip.
for clip in self.__clips:
if clip is obj.drawable:
clip.remove()
# Log what we're killing, schedule child clips for removal as well.
for o in self.__placed_objects:
if o.parent_clip is obj.drawable:
self.vprint(f"{prefix} Removing Object ID {o.tag.object_id} from Depth {o.tag.depth} after removing sprite with ID {tag.object_id} and depth {tag.depth}")
new_removed_objects.append(o)
# Kill any objects placed by this clip.
self.__placed_objects = [
o for o in self.__placed_objects
if not(o.parent_clip is obj.drawable)
]
# Now, do it again.
removed_objects = new_removed_objects
return []
elif isinstance(tag, AP2DoActionTag):
print("WARNING: Unhandled DO_ACTION tag!")
return []
elif isinstance(tag, AP2DefineFontTag):
print("WARNING: Unhandled DEFINE_FONT tag!")
return []
elif isinstance(tag, AP2DefineEditTextTag):
print("WARNING: Unhandled DEFINE_EDIT_TEXT tag!")
return []
else:
raise Exception(f"Failed to process tag: {tag}")
def __render_object(self, img: Image.Image, renderable: PlacedObject, parent_transform: Matrix, parent_origin: Point) -> None:
if renderable.tag.source_tag_id is None:
self.vprint(" Nothing to render!")
return
# Look up the affine transformation matrix for this object.
transform = parent_transform.multiply(renderable.tag.transform or Matrix.identity())
# Calculate the inverse so we can map canvas space back to texture space.
try:
inverse = transform.inverse()
except ZeroDivisionError:
print(f"WARNING: Transform Matrix {transform} has zero scaling factor, making it non-invertible!")
return
# Render individual shapes if this is a sprite.
if renderable.tag.source_tag_id in self.__registered_sprites:
# This is a sprite placement reference.
objs = sorted(
[o for o in self.__placed_objects if o.parent_clip is renderable.drawable],
key=lambda obj: obj.depth,
)
for obj in objs:
self.vprint(f" Rendering placed object ID {obj.object_id} from sprite {obj.parent_clip.tag_id} onto Depth {obj.depth}")
self.__render_object(img, obj, transform, parent_origin.add(renderable.tag.rotation_offset or Point.identity()))
return
# This is a shape draw reference.
shape = self.__registered_shapes[renderable.tag.source_tag_id]
# Calculate add color if it is present.
add_color = (renderable.tag.add_color or Color(0.0, 0.0, 0.0, 0.0)).as_tuple()
mult_color = renderable.tag.mult_color or Color(1.0, 1.0, 1.0, 1.0)
blend = renderable.tag.blend or 0
# Now, render out shapes.
for params in shape.draw_params:
if not (params.flags & 0x1):
# Not instantiable, don't render.
return
if params.flags & 0x8:
# TODO: Need to support blending and UV coordinate colors here.
print(f"WARNING: Unhandled shape blend color {params.blend}")
if params.flags & 0x4:
# TODO: Need to support blending and UV coordinate colors here.
print("WARNING: Unhandled UV coordinate color!")
texture = None
if params.flags & 0x2:
# We need to look up the texture for this.
if params.region not in self.textures:
raise Exception(f"Cannot find texture reference {params.region}!")
texture = self.textures[params.region]
if texture is not None:
# If the origin is not specified, assume it is the center of the texture.
# TODO: Setting the rotation offset to Point(texture.width / 2, texture.height / 2)
# when we don't have a rotation offset works for Bishi but breaks other games.
# Perhaps there's a tag flag for this?
origin = parent_origin.add(renderable.tag.rotation_offset or Point.identity())
# See if we can cheat and use the faster blitting method.
if (
add_color == (0, 0, 0, 0) and
mult_color.r == 1.0 and
mult_color.g == 1.0 and
mult_color.b == 1.0 and
mult_color.a == 1.0 and
transform.b == 0.0 and
transform.c == 0.0 and
transform.a == 1.0 and
transform.d == 1.0 and
blend == 0
):
# We can!
cutin = transform.multiply_point(Point.identity().subtract(origin))
cutoff = Point.identity()
if cutin.x < 0:
cutoff.x = -cutin.x
cutin.x = 0
if cutin.y < 0:
cutoff.y = -cutin.y
cutin.y = 0
img.alpha_composite(texture, cutin.as_tuple(), cutoff.as_tuple())
else:
# Now, render out the texture.
imgmap = list(img.getdata())
texmap = list(texture.getdata())
# Calculate the maximum range of update this texture can possibly reside in.
pix1 = transform.multiply_point(Point.identity().subtract(origin))
pix2 = transform.multiply_point(Point.identity().subtract(origin).add(Point(texture.width, 0)))
pix3 = transform.multiply_point(Point.identity().subtract(origin).add(Point(0, texture.height)))
pix4 = transform.multiply_point(Point.identity().subtract(origin).add(Point(texture.width, texture.height)))
# Map this to the rectangle we need to sweep in the rendering image.
minx = max(int(min(pix1.x, pix2.x, pix3.x, pix4.x)), 0)
maxx = min(int(max(pix1.x, pix2.x, pix3.x, pix4.x)) + 1, img.width)
miny = max(int(min(pix1.y, pix2.y, pix3.y, pix4.y)), 0)
maxy = min(int(max(pix1.y, pix2.y, pix3.y, pix4.y)) + 1, img.height)
for imgy in range(miny, maxy):
for imgx in range(minx, maxx):
# Determine offset
imgoff = imgx + (imgy * img.width)
# Calculate what texture pixel data goes here.
texloc = inverse.multiply_point(Point(float(imgx), float(imgy))).add(origin)
texx, texy = texloc.as_tuple()
# If we're out of bounds, don't update.
if texx < 0 or texy < 0 or texx >= texture.width or texy >= texture.height:
continue
# Blend it.
texoff = texx + (texy * texture.width)
if blend == 0:
imgmap[imgoff] = self.__blend_normal(imgmap[imgoff], texmap[texoff], mult_color, add_color)
elif blend == 8:
imgmap[imgoff] = self.__blend_additive(imgmap[imgoff], texmap[texoff], mult_color, add_color)
elif blend == 9:
imgmap[imgoff] = self.__blend_subtractive(imgmap[imgoff], texmap[texoff], mult_color, add_color)
else:
print(f"WARNING: Unsupported blend {blend}")
imgmap[imgoff] = self.__blend_normal(imgmap[imgoff], texmap[texoff], mult_color, add_color)
img.putdata(imgmap)
def __clamp(self, color: Union[float, int]) -> int:
return min(max(0, round(color)), 255)
def __blend_normal(
self,
# RGBA color tuple representing what's already at the dest.
dest: Tuple[int, int, int, int],
# RGBA color tuple representing the source we want to blend to the dest.
src: Tuple[int, int, int, int],
# A pre-scaled color where all values are 0.0-1.0, used to calculate the final color.
mult_color: Color,
# A RGBA color tuple where all values are 0-255, used to calculate the final color.
add_color: Tuple[int, int, int, int],
) -> Tuple[int, int, int, int]:
# Calculate multiplicative and additive colors against the source.
src = (
self.__clamp((src[0] * mult_color.r) + add_color[0]),
self.__clamp((src[1] * mult_color.g) + add_color[1]),
self.__clamp((src[2] * mult_color.b) + add_color[2]),
self.__clamp((src[3] * mult_color.a) + add_color[3]),
)
# Short circuit for speed.
if src[3] == 0:
return dest
if src[3] == 255:
return src
# Calculate alpha blending.
srcpercent = (float(src[3]) / 255.0)
destpercent = (float(dest[3]) / 255.0)
destremainder = 1.0 - srcpercent
return (
self.__clamp((float(dest[0]) * destpercent * destremainder) + (float(src[0]) * srcpercent)),
self.__clamp((float(dest[1]) * destpercent * destremainder) + (float(src[1]) * srcpercent)),
self.__clamp((float(dest[2]) * destpercent * destremainder) + (float(src[2]) * srcpercent)),
self.__clamp(255 * (srcpercent + destpercent * destremainder)),
)
def __blend_additive(
self,
# RGBA color tuple representing what's already at the dest.
dest: Tuple[int, int, int, int],
# RGBA color tuple representing the source we want to blend to the dest.
src: Tuple[int, int, int, int],
# A pre-scaled color where all values are 0.0-1.0, used to calculate the final color.
mult_color: Color,
# A RGBA color tuple where all values are 0-255, used to calculate the final color.
add_color: Tuple[int, int, int, int],
) -> Tuple[int, int, int, int]:
# Calculate multiplicative and additive colors against the source.
src = (
self.__clamp((src[0] * mult_color.r) + add_color[0]),
self.__clamp((src[1] * mult_color.g) + add_color[1]),
self.__clamp((src[2] * mult_color.b) + add_color[2]),
self.__clamp((src[3] * mult_color.a) + add_color[3]),
)
# Short circuit for speed.
if src[3] == 0:
return dest
# Calculate alpha blending.
srcpercent = (float(src[3]) / 255.0)
return (
self.__clamp(dest[0] + (float(src[0]) * srcpercent)),
self.__clamp(dest[1] + (float(src[1]) * srcpercent)),
self.__clamp(dest[2] + (float(src[2]) * srcpercent)),
self.__clamp(dest[3] + (255 * srcpercent)),
)
def __blend_subtractive(
self,
# RGBA color tuple representing what's already at the dest.
dest: Tuple[int, int, int, int],
# RGBA color tuple representing the source we want to blend to the dest.
src: Tuple[int, int, int, int],
# A pre-scaled color where all values are 0.0-1.0, used to calculate the final color.
mult_color: Color,
# A RGBA color tuple where all values are 0-255, used to calculate the final color.
add_color: Tuple[int, int, int, int],
) -> Tuple[int, int, int, int]:
# Calculate multiplicative and additive colors against the source.
src = (
self.__clamp((src[0] * mult_color.r) + add_color[0]),
self.__clamp((src[1] * mult_color.g) + add_color[1]),
self.__clamp((src[2] * mult_color.b) + add_color[2]),
self.__clamp((src[3] * mult_color.a) + add_color[3]),
)
# Short circuit for speed.
if src[3] == 0:
return dest
# Calculate alpha blending.
srcpercent = (float(src[3]) / 255.0)
return (
self.__clamp(dest[0] - (float(src[0]) * srcpercent)),
self.__clamp(dest[1] - (float(src[1]) * srcpercent)),
self.__clamp(dest[2] - (float(src[2]) * srcpercent)),
self.__clamp(dest[3] - (255 * srcpercent)),
)
def __render(self, swf: SWF, export_tag: Optional[str]) -> Tuple[int, List[Image.Image]]:
# If we are rendering an exported tag, we want to perform the actions of the
# rest of the SWF but not update any layers as a result.
self.__visible_tag = None
if export_tag is not None:
# Make sure this tag is actually present in the SWF.
if export_tag not in swf.exported_tags:
raise Exception(f'{export_tag} is not exported by {swf.exported_name}!')
self.__visible_tag = swf.exported_tags[export_tag]
# TODO: We have to resolve imports.
# Now, let's go through each frame, performing actions as necessary.
spf = 1.0 / swf.fps
frames: List[Image.Image] = []
frameno: int = 0
# Reset any registered clips.
self.__clips = [Clip(None, swf.frames, swf.tags)] if len(swf.frames) > 0 else []
# Reset any registered shapes.
self.__registered_shapes = {}
self.__registered_sprites = {}
try:
while any(c.running for c in self.__clips):
# Create a new image to render into.
time = spf * float(frameno)
color = swf.color or Color(0.0, 0.0, 0.0, 0.0)
self.vprint(f"Rendering Frame {frameno} ({time}s)")
# Go through all registered clips, place all needed tags.
changed = False
while any(c.dirty for c in self.__clips):
newclips: List[Clip] = []
for clip in self.__clips:
# See if the clip needs handling (might have been placed and needs to run).
if clip.dirty and clip.frame.current_tag < clip.frame.num_tags:
self.vprint(f" Sprite Tag ID: {clip.tag_id}, Current Frame: {clip.frame.start_tag_offset + clip.frame.current_tag}, Num Frames: {clip.frame.num_tags}")
newclips.extend(self.__place(clip.tags[clip.frame.start_tag_offset + clip.frame.current_tag], parent_clip=clip))
clip.frame.current_tag += 1
changed = True
if clip.dirty and clip.frame.current_tag == clip.frame.num_tags:
# We handled this clip.
clip.clear()
# Add any new clips that we should process next frame.
self.__clips.extend(newclips)
if changed or frameno == 0:
# Now, render out the placed objects. We sort by depth so that we can
# get the layering correct, but its important to preserve the original
# insertion order for delete requests.
curimage = Image.new("RGBA", (swf.location.width, swf.location.height), color=color.as_tuple())
for obj in sorted(self.__placed_objects, key=lambda obj: obj.depth):
if self.__visible_tag != obj.parent_clip.tag_id:
continue
self.vprint(f" Rendering placed object ID {obj.object_id} from sprite {obj.parent_clip.tag_id} onto Depth {obj.depth}")
self.__render_object(curimage, obj, Matrix.identity(), Point.identity())
else:
# Nothing changed, make a copy of the previous render.
self.vprint(" Using previous frame render")
curimage = frames[-1].copy()
# Advance all the clips and frame now that we processed and rendered them.
for clip in self.__clips:
if clip.dirty:
raise Exception("Logic error!")
clip.advance()
frames.append(curimage)
frameno += 1
# Garbage collect any clips that we're finished with.
removed_referenced_tag = False
for c in self.__clips:
if c.finished:
if self.__visible_tag == c.tag_id:
removed_referenced_tag = True
self.vprint(f" Removing clip based on Tag ID {clip.tag_id} because it is finished playing.")
self.__clips = [c for c in self.__clips if not c.finished]
# Exit early if we removed all tags we would be rendering.
if removed_referenced_tag and self.__clips:
if not any(c.tag_id == self.__visible_tag for c in self.__clips):
self.vprint("Finishing early because the tag we are rendering has deconstructed.")
break
except KeyboardInterrupt:
# Allow ctrl-c to end early and render a partial animation.
print(f"WARNING: Interrupted early, will render only {len(frames)} of animation!")
return int(spf * 1000.0), frames