1056 lines
43 KiB
Python
1056 lines
43 KiB
Python
#! /usr/bin/env python3
|
|
import argparse
|
|
import os
|
|
import os.path
|
|
import struct
|
|
import sys
|
|
import textwrap
|
|
from PIL import Image # type: ignore
|
|
from typing import Any, List, Optional
|
|
|
|
from bemani.format.dxt import DXTBuffer
|
|
from bemani.protocol.binary import BinaryEncoding
|
|
from bemani.protocol.lz77 import Lz77
|
|
from bemani.protocol.node import Node
|
|
|
|
|
|
class PMAN:
|
|
def __init__(
|
|
self,
|
|
entries: List[str] = [],
|
|
flags1: int = 0,
|
|
flags2: int = 0,
|
|
flags3: int = 0,
|
|
) -> None:
|
|
self.entries = entries
|
|
|
|
|
|
class Texture:
|
|
def __init__(
|
|
self,
|
|
name: str,
|
|
width: int,
|
|
height: int,
|
|
fmt: int,
|
|
header_flags1: int,
|
|
header_flags2: int,
|
|
header_flags3: int,
|
|
unk_flags1: int,
|
|
unk_flags2: int,
|
|
unk_flags3: int,
|
|
unk_flags4: int,
|
|
rawdata: bytes,
|
|
imgdata: Any,
|
|
) -> None:
|
|
self.name = name
|
|
self.width = width
|
|
self.height = height
|
|
self.fmt = fmt
|
|
self.header_flags1 = header_flags1
|
|
self.header_flags2 = header_flags2
|
|
self.header_flags3 = header_flags3
|
|
self.unk_flags1 = unk_flags1
|
|
self.unk_flags2 = unk_flags2
|
|
self.unk_flags3 = unk_flags3
|
|
self.unk_flags4 = unk_flags4
|
|
self.raw = rawdata
|
|
self.img = imgdata
|
|
|
|
|
|
class TextureRegion:
|
|
def __init__(self, textureno: int, left: int, top: int, right: int, bottom: int) -> None:
|
|
self.textureno = textureno
|
|
self.left = left
|
|
self.top = top
|
|
self.right = right
|
|
self.bottom = bottom
|
|
|
|
|
|
class Animation:
|
|
def __init__(
|
|
self,
|
|
name: str,
|
|
data: bytes,
|
|
header: bytes = b"",
|
|
) -> None:
|
|
self.name = name
|
|
self.data = data
|
|
self.header = header
|
|
|
|
|
|
class Shape:
|
|
def __init__(
|
|
self,
|
|
name: str,
|
|
data: bytes,
|
|
) -> None:
|
|
self.name = name
|
|
self.data = data
|
|
|
|
|
|
class Unknown1:
|
|
def __init__(
|
|
self,
|
|
name: str,
|
|
data: bytes,
|
|
) -> None:
|
|
self.name = name
|
|
self.data = data
|
|
if len(data) != 12:
|
|
raise Exception("Unexpected length for Unknown1 structure!")
|
|
|
|
|
|
class Unknown2:
|
|
def __init__(
|
|
self,
|
|
data: bytes,
|
|
) -> None:
|
|
self.data = data
|
|
if len(data) != 4:
|
|
raise Exception("Unexpected length for Unknown2 structure!")
|
|
|
|
|
|
class AFPFile:
|
|
def __init__(self, contents: bytes, verbose: bool = False) -> None:
|
|
# Initialize coverage. This is used to help find missed/hidden file
|
|
# sections that we aren't parsing correctly.
|
|
self.coverage: List[bool] = [False] * len(contents)
|
|
|
|
# Original file data that we parse into structures.
|
|
self.data = contents
|
|
|
|
# All of the crap!
|
|
self.endian: str = "<"
|
|
self.features: int = 0
|
|
self.text_obfuscated: bool = False
|
|
self.legacy_lz: bool = False
|
|
self.modern_lz: bool = False
|
|
|
|
# If we encounter parts of the file that we don't know how to read
|
|
# or save, we drop into read-only mode and throw if somebody tries
|
|
# to update the file.
|
|
self.read_only: bool = False
|
|
|
|
# List of all textures in this file. This is unordered, textures should
|
|
# be looked up by name.
|
|
self.textures: List[Texture] = []
|
|
|
|
# Texture mapping, which allows other structures to refer to texture
|
|
# by number instead of name.
|
|
self.texturemap: PMAN = PMAN()
|
|
|
|
# List of all regions found inside textures, mapped to their textures
|
|
# using texturenos that can be looked up using the texturemap above.
|
|
# This structure is ordered, and the regionno from the regionmap
|
|
# below can be used to look into this structure.
|
|
self.texture_to_region: List[TextureRegion] = []
|
|
|
|
# Region mapping, which allows other structures to refer to regions
|
|
# by number instead of name.
|
|
self.regionmap: PMAN = PMAN()
|
|
|
|
# Animations(?) and their names found in this file. This is unordered,
|
|
# animations should be looked up by name.
|
|
self.animations: List[Animation] = []
|
|
|
|
# Animation(?) mapping, which allows other structures to refer to
|
|
# animations by number instead of name.
|
|
self.animmap: PMAN = PMAN()
|
|
|
|
# Font information (mapping for various coepoints to their region in
|
|
# a particular font texture.
|
|
self.fontdata: Optional[Node] = None
|
|
|
|
# Shapes(?) with their raw data.
|
|
self.shapes: List[Shape] = []
|
|
|
|
# Shape(?) mapping, not understood or used.
|
|
self.shapemap: PMAN = PMAN()
|
|
|
|
# Unknown data structures that we have to roundtrip. They correlate to
|
|
# the PMAN structures below.
|
|
self.unknown1: List[Unknown1] = []
|
|
self.unknown2: List[Unknown2] = []
|
|
|
|
# Unknown PMAN structures that we have to roundtrip. They correlate to
|
|
# the unknown data structures above.
|
|
self.unk_pman1: PMAN = PMAN()
|
|
self.unk_pman2: PMAN = PMAN()
|
|
|
|
# Parse out the file structure.
|
|
self.__parse(verbose)
|
|
|
|
def add_coverage(self, offset: int, length: int, unique: bool = True) -> None:
|
|
for i in range(offset, offset + length):
|
|
if self.coverage[i] and unique:
|
|
raise Exception(f"Already covered {hex(offset)}!")
|
|
self.coverage[i] = True
|
|
|
|
def print_coverage(self) -> None:
|
|
# First offset that is not coverd in a run.
|
|
start = None
|
|
|
|
for offset, covered in enumerate(self.coverage):
|
|
if covered:
|
|
if start is not None:
|
|
print(f"Uncovered: {hex(start)} - {hex(offset)} ({offset-start} bytes)")
|
|
start = None
|
|
else:
|
|
if start is None:
|
|
start = offset
|
|
if start is not None:
|
|
# Print final range
|
|
offset = len(self.coverage)
|
|
print(f"Uncovered: {hex(start)} - {hex(offset)} ({offset-start} bytes)")
|
|
|
|
@staticmethod
|
|
def cap32(val: int) -> int:
|
|
return val & 0xFFFFFFFF
|
|
|
|
@staticmethod
|
|
def poly(val: int) -> int:
|
|
if (val >> 31) & 1 != 0:
|
|
return 0x4C11DB7
|
|
else:
|
|
return 0
|
|
|
|
@staticmethod
|
|
def crc32(bytestream: bytes) -> int:
|
|
# Janky 6-bit CRC for ascii names in PMAN structures.
|
|
result = 0
|
|
for byte in bytestream:
|
|
for i in range(6):
|
|
result = AFPFile.poly(result) ^ AFPFile.cap32((result << 1) | ((byte >> i) & 1))
|
|
return result
|
|
|
|
@staticmethod
|
|
def descramble_text(text: bytes, obfuscated: bool) -> str:
|
|
if len(text):
|
|
if obfuscated and (text[0] - 0x20) > 0x7F:
|
|
# Gotta do a weird demangling where we swap the
|
|
# top bit.
|
|
return bytes(((x + 0x80) & 0xFF) for x in text).decode('ascii')
|
|
else:
|
|
return text.decode('ascii')
|
|
else:
|
|
return ""
|
|
|
|
def get_until_null(self, offset: int) -> bytes:
|
|
out = b""
|
|
while self.data[offset] != 0:
|
|
out += self.data[offset:(offset + 1)]
|
|
offset += 1
|
|
return out
|
|
|
|
def descramble_pman(self, offset: int) -> PMAN:
|
|
# Unclear what the first three unknowns are, but the fourth
|
|
# looks like it could possibly be two int16s indicating unknown?
|
|
magic, expect_zero, flags1, flags2, numentries, flags3, data_offset = struct.unpack(
|
|
f"{self.endian}4sIIIIII",
|
|
self.data[offset:(offset + 28)],
|
|
)
|
|
self.add_coverage(offset, 28)
|
|
|
|
# I have never seen the first unknown be anything other than zero,
|
|
# so lets lock that down.
|
|
if expect_zero != 0:
|
|
raise Exception("Got a non-zero value for expected zero location in PMAN!")
|
|
|
|
if self.endian == "<" and magic != b"PMAN":
|
|
raise Exception("Invalid magic value in PMAN structure!")
|
|
if self.endian == ">" and magic != b"NAMP":
|
|
raise Exception("Invalid magic value in PMAN structure!")
|
|
|
|
names: List[Optional[str]] = [None] * numentries
|
|
if numentries > 0:
|
|
# Jump to the offset, parse it out
|
|
for i in range(numentries):
|
|
file_offset = data_offset + (i * 12)
|
|
name_crc, entry_no, nameoffset = struct.unpack(
|
|
f"{self.endian}III",
|
|
self.data[file_offset:(file_offset + 12)],
|
|
)
|
|
self.add_coverage(file_offset, 12)
|
|
|
|
if nameoffset == 0:
|
|
raise Exception("Expected name offset in PMAN data!")
|
|
|
|
bytedata = self.get_until_null(nameoffset)
|
|
self.add_coverage(nameoffset, len(bytedata) + 1, unique=False)
|
|
name = AFPFile.descramble_text(bytedata, self.text_obfuscated)
|
|
names[entry_no] = name
|
|
|
|
if name_crc != AFPFile.crc32(name.encode('ascii')):
|
|
raise Exception(f"Name CRC failed for {name}")
|
|
|
|
for i, name in enumerate(names):
|
|
if name is None:
|
|
raise Exception(f"Didn't get mapping for entry {i + 1}")
|
|
|
|
return PMAN(
|
|
entries=names,
|
|
flags1=flags1,
|
|
flags2=flags2,
|
|
flags3=flags3,
|
|
)
|
|
|
|
def __parse(
|
|
self,
|
|
verbose: bool = False,
|
|
) -> None:
|
|
# Suppress debug text unless asked
|
|
if verbose:
|
|
vprint = print
|
|
else:
|
|
def vprint(*args: Any, **kwargs: Any) -> None: # type: ignore
|
|
pass
|
|
|
|
# First, check the signature
|
|
self.add_coverage(0, 4)
|
|
if self.data[0:4] == b"2PXT":
|
|
self.endian = "<"
|
|
elif self.data[0:4] == b"TXP2":
|
|
self.endian = ">"
|
|
else:
|
|
raise Exception("Invalid graphic file format!")
|
|
|
|
# Not sure what words 2 and 3 are, they seem to be some sort of
|
|
# version or date?
|
|
self.add_coverage(4, 8)
|
|
|
|
# Now, grab the file length, verify that we have the right amount
|
|
# of data.
|
|
length = struct.unpack(f"{self.endian}I", self.data[12:16])[0]
|
|
self.add_coverage(12, 4)
|
|
if length != len(self.data):
|
|
raise Exception(f"Invalid graphic file length, expecting {length} bytes!")
|
|
|
|
# I think that offset 16-20 are the file data offset, but I'm not sure?
|
|
header_length = struct.unpack(f"{self.endian}I", self.data[16:20])[0]
|
|
self.add_coverage(16, 4)
|
|
|
|
# Now, the meat of the file format. Bytes 20-24 are a bitfield for
|
|
# what parts of the header exist in the file. We need to understand
|
|
# each bit so we know how to skip past each section.
|
|
feature_mask = struct.unpack(f"{self.endian}I", self.data[20:24])[0]
|
|
self.add_coverage(20, 4)
|
|
header_offset = 24
|
|
|
|
# Lots of magic happens if this bit is set.
|
|
self.text_obfuscated = bool(feature_mask & 0x20)
|
|
self.legacy_lz = bool(feature_mask & 0x04)
|
|
self.modern_lz = bool(feature_mask & 0x40000)
|
|
self.features = feature_mask
|
|
|
|
if feature_mask & 0x01:
|
|
# List of textures that exist in the file, with pointers to their data.
|
|
length, offset = struct.unpack(f"{self.endian}II", self.data[header_offset:(header_offset + 8)])
|
|
self.add_coverage(header_offset, 8)
|
|
header_offset += 8
|
|
|
|
texturenames = []
|
|
for x in range(length):
|
|
interesting_offset = offset + (x * 12)
|
|
if interesting_offset != 0:
|
|
name_offset, texture_length, texture_offset = struct.unpack(
|
|
f"{self.endian}III",
|
|
self.data[interesting_offset:(interesting_offset + 12)],
|
|
)
|
|
self.add_coverage(interesting_offset, 12)
|
|
|
|
if name_offset != 0:
|
|
# Let's decode this until the first null.
|
|
bytedata = self.get_until_null(name_offset)
|
|
self.add_coverage(name_offset, len(bytedata) + 1, unique=False)
|
|
name = AFPFile.descramble_text(bytedata, self.text_obfuscated)
|
|
texturenames.append(name)
|
|
|
|
if texture_offset != 0:
|
|
if self.legacy_lz:
|
|
raise Exception("We don't support legacy lz mode!")
|
|
elif self.modern_lz:
|
|
# Get size, round up to nearest power of 4
|
|
inflated_size, deflated_size = struct.unpack(
|
|
">II",
|
|
self.data[texture_offset:(texture_offset + 8)],
|
|
)
|
|
self.add_coverage(texture_offset, 8)
|
|
if deflated_size != (texture_length - 8):
|
|
raise Exception("We got an incorrect length for lz texture!")
|
|
inflated_size = (inflated_size + 3) & (~3)
|
|
|
|
# Get the data offset.
|
|
lz_data_offset = texture_offset + 8
|
|
lz_data = self.data[lz_data_offset:(lz_data_offset + deflated_size)]
|
|
self.add_coverage(lz_data_offset, deflated_size)
|
|
|
|
# This takes forever, so skip it if we're pretending.
|
|
lz77 = Lz77()
|
|
raw_data = lz77.decompress(lz_data)
|
|
else:
|
|
inflated_size, deflated_size = struct.unpack(
|
|
">II",
|
|
self.data[texture_offset:(texture_offset + 8)],
|
|
)
|
|
|
|
# I'm guessing how raw textures work because I haven't seen them.
|
|
# I assume they're like the above, so lets put in some asertions.
|
|
if deflated_size != (texture_length - 8):
|
|
raise Exception("We got an incorrect length for raw texture!")
|
|
raw_data = self.data[(texture_offset + 8):(texture_offset + 8 + deflated_size)]
|
|
self.add_coverage(texture_offset, deflated_size + 8)
|
|
|
|
(
|
|
magic,
|
|
header_flags1,
|
|
header_flags2,
|
|
length,
|
|
width,
|
|
height,
|
|
fmtflags,
|
|
expected_zero1,
|
|
expected_zero2,
|
|
) = struct.unpack(
|
|
f"{self.endian}4sIIIHHIII",
|
|
raw_data[0:32],
|
|
)
|
|
if length != len(raw_data):
|
|
raise Exception("Invalid texture length!")
|
|
# I have only ever observed the following values across two different games.
|
|
# Don't want to keep the chunk around so let's assert our assumptions.
|
|
if (expected_zero1 | expected_zero2) != 0:
|
|
raise Exception("Found unexpected non-zero value in texture header!")
|
|
if raw_data[32:44] != b'\0' * 12:
|
|
raise Exception("Found unexpected non-zero value in texture header!")
|
|
# This is almost ALWAYS 3, but I've seen it be 1 as well, so I guess we have to
|
|
# round-trip it if we want to write files back out. I have no clue what it's for.
|
|
# I've seen it be 1 only on files used for fonts so far, but I am not sure there
|
|
# is any correlation there.
|
|
header_flags3 = struct.unpack(f"{self.endian}I", raw_data[44:48])[0]
|
|
if raw_data[48:64] != b'\0' * 16:
|
|
raise Exception("Found unexpected non-zero value in texture header!")
|
|
fmt = fmtflags & 0xFF
|
|
|
|
# Extract flags that the game cares about.
|
|
flags1 = (fmtflags >> 24) & 0xFF
|
|
flags2 = (fmtflags >> 16) & 0xFF
|
|
|
|
# These flags may have some significance, such as
|
|
# the unk3/unk4 possibly indicating texture doubling?
|
|
unk1 = 3 if (flags1 & 0xF == 1) else 1
|
|
unk2 = 3 if ((flags1 >> 4) & 0xF == 1) else 1
|
|
unk3 = 1 if (flags2 & 0xF == 1) else 2
|
|
unk4 = 1 if ((flags2 >> 4) & 0xF == 1) else 2
|
|
|
|
if self.endian == "<" and magic != b"TDXT":
|
|
raise Exception("Unexpected texture format!")
|
|
if self.endian == ">" and magic != b"TXDT":
|
|
raise Exception("Unexpected texture format!")
|
|
|
|
if fmt == 0x0B:
|
|
# 16-bit 565 color RGB format.
|
|
newdata = []
|
|
for i in range(width * height):
|
|
pixel = struct.unpack(
|
|
f"{self.endian}H",
|
|
raw_data[(64 + (i * 2)):(66 + (i * 2))],
|
|
)[0]
|
|
red = ((pixel >> 0) & 0x1F) << 3
|
|
green = ((pixel >> 5) & 0x3F) << 2
|
|
blue = ((pixel >> 11) & 0x1F) << 3
|
|
newdata.append(
|
|
struct.pack("<BBB", blue, green, red)
|
|
)
|
|
img = Image.frombytes(
|
|
'RGB', (width, height), b''.join(newdata), 'raw', 'RGB',
|
|
)
|
|
elif fmt == 0x0E:
|
|
# RGB image, no alpha.
|
|
img = Image.frombytes(
|
|
'RGB', (width, height), raw_data[64:], 'raw', 'RGB',
|
|
)
|
|
# 0x10 = Seems to be some sort of RGB with color swapping.
|
|
elif fmt == 0x15:
|
|
# RGBA format.
|
|
# TODO: The colors are wrong on this, need to investigate
|
|
# further.
|
|
img = Image.frombytes(
|
|
'RGBA', (width, height), raw_data[64:], 'raw', 'BGRA',
|
|
)
|
|
elif fmt == 0x16:
|
|
# DXT1 format.
|
|
dxt = DXTBuffer(width, height)
|
|
img = Image.frombuffer(
|
|
'RGBA',
|
|
(width, height),
|
|
dxt.DXT1Decompress(raw_data[64:], endian=self.endian),
|
|
'raw',
|
|
'RGBA',
|
|
0,
|
|
1,
|
|
)
|
|
elif fmt == 0x1A:
|
|
# DXT5 format.
|
|
dxt = DXTBuffer(width, height)
|
|
img = Image.frombuffer(
|
|
'RGBA',
|
|
(width, height),
|
|
dxt.DXT5Decompress(raw_data[64:], endian=self.endian),
|
|
'raw',
|
|
'RGBA',
|
|
0,
|
|
1,
|
|
)
|
|
# 0x1E = I have no idea what format this is.
|
|
elif fmt == 0x1F:
|
|
# 16-bit 4-4-4-4 RGBA format.
|
|
newdata = []
|
|
for i in range(width * height):
|
|
pixel = struct.unpack(
|
|
f"{self.endian}H",
|
|
raw_data[(64 + (i * 2)):(66 + (i * 2))],
|
|
)[0]
|
|
blue = ((pixel >> 0) & 0xF) << 4
|
|
green = ((pixel >> 4) & 0xF) << 4
|
|
red = ((pixel >> 8) & 0xF) << 4
|
|
alpha = ((pixel >> 12) & 0xF) << 4
|
|
newdata.append(
|
|
struct.pack("<BBBB", red, green, blue, alpha)
|
|
)
|
|
img = Image.frombytes(
|
|
'RGBA', (width, height), b''.join(newdata), 'raw', 'RGBA',
|
|
)
|
|
elif fmt == 0x20:
|
|
# RGBA format.
|
|
img = Image.frombytes(
|
|
'RGBA', (width, height), raw_data[64:], 'raw', 'BGRA',
|
|
)
|
|
else:
|
|
vprint(f"Unsupported format {hex(fmt)} for texture {name}")
|
|
img = None
|
|
|
|
self.textures.append(
|
|
Texture(
|
|
name,
|
|
width,
|
|
height,
|
|
fmt,
|
|
header_flags1,
|
|
header_flags2,
|
|
header_flags3,
|
|
unk1,
|
|
unk2,
|
|
unk3,
|
|
unk4,
|
|
raw_data,
|
|
img,
|
|
)
|
|
)
|
|
|
|
vprint(f"Bit 0x000001 - textures; count: {length}, offset: {hex(offset)}")
|
|
for name in texturenames:
|
|
vprint(f" {name}")
|
|
else:
|
|
vprint("Bit 0x000001 - textures; NOT PRESENT")
|
|
|
|
# Mapping between texture index and the name of the texture.
|
|
if feature_mask & 0x02:
|
|
# Seems to be a structure that duplicates texture names? I am pretty
|
|
# sure this is used to map texture names to file indexes used elsewhere.
|
|
offset = struct.unpack(f"{self.endian}I", self.data[header_offset:(header_offset + 4)])[0]
|
|
self.add_coverage(header_offset, 4)
|
|
header_offset += 4
|
|
|
|
vprint(f"Bit 0x000002 - texturemapping; offset: {hex(offset)}")
|
|
|
|
if offset != 0:
|
|
self.texturemap = self.descramble_pman(offset)
|
|
for i, name in enumerate(self.texturemap.entries):
|
|
vprint(f" {i}: {name}")
|
|
else:
|
|
vprint("Bit 0x000002 - texturemapping; NOT PRESENT")
|
|
|
|
if feature_mask & 0x04:
|
|
vprint("Bit 0x000004 - legacy lz mode on")
|
|
else:
|
|
vprint("Bit 0x000004 - legacy lz mode off")
|
|
|
|
# Mapping between region index and the texture it goes to as well as the
|
|
# region of texture that this particular graphic makes up.
|
|
if feature_mask & 0x08:
|
|
# Mapping between individual graphics and their respective textures.
|
|
# This is 10 bytes per entry. Seems to need both 0x2 (texture index)
|
|
# and 0x10 (region index).
|
|
length, offset = struct.unpack(f"{self.endian}II", self.data[header_offset:(header_offset + 8)])
|
|
self.add_coverage(header_offset, 8)
|
|
header_offset += 8
|
|
|
|
if offset != 0 and length > 0:
|
|
self.texture_to_region = [TextureRegion(0, 0, 0, 0, 0)] * length
|
|
|
|
for i in range(length):
|
|
descriptor_offset = offset + (10 * i)
|
|
texture_no, left, top, right, bottom = struct.unpack(
|
|
f"{self.endian}HHHHH",
|
|
self.data[descriptor_offset:(descriptor_offset + 10)],
|
|
)
|
|
self.add_coverage(descriptor_offset, 10)
|
|
|
|
if texture_no < 0 or texture_no >= len(self.texturemap.entries):
|
|
raise Exception(f"Out of bounds texture {texture_no}")
|
|
|
|
# TODO: The offsets here seem to be off by a power of 2, there
|
|
# might be more flags in the above texture format that specify
|
|
# device scaling and such?
|
|
self.texture_to_region[i] = TextureRegion(texture_no, left, top, right, bottom)
|
|
|
|
vprint(f"Bit 0x000008 - regions; count: {length}, offset: {hex(offset)}")
|
|
else:
|
|
vprint("Bit 0x000008 - regions; NOT PRESENT")
|
|
|
|
if feature_mask & 0x10:
|
|
# Names of the graphics regions, so we can look into the texture_to_region
|
|
# mapping above.
|
|
offset = struct.unpack(f"{self.endian}I", self.data[header_offset:(header_offset + 4)])[0]
|
|
self.add_coverage(header_offset, 4)
|
|
header_offset += 4
|
|
|
|
vprint(f"Bit 0x000010 - regionmapping; offset: {hex(offset)}")
|
|
|
|
if offset != 0:
|
|
self.regionmap = self.descramble_pman(offset)
|
|
for i, name in enumerate(self.regionmap.entries):
|
|
vprint(f" {i}: {name}")
|
|
else:
|
|
vprint("Bit 0x000010 - regionmapping; NOT PRESENT")
|
|
|
|
if feature_mask & 0x20:
|
|
vprint(f"Bit 0x000020 - text obfuscation on")
|
|
else:
|
|
vprint(f"Bit 0x000020 - text obfuscation off")
|
|
|
|
if feature_mask & 0x40:
|
|
# Two unknown bytes, first is a length or a count. Secound is
|
|
# an optional offset to grab another set of bytes from.
|
|
length, offset = struct.unpack(f"{self.endian}II", self.data[header_offset:(header_offset + 8)])
|
|
self.add_coverage(header_offset, 8)
|
|
header_offset += 8
|
|
|
|
unknames = []
|
|
if offset != 0 and length > 0:
|
|
for i in range(length):
|
|
unk_offset = offset + (i * 16)
|
|
name_offset = struct.unpack(f"{self.endian}I", self.data[unk_offset:(unk_offset + 4)])[0]
|
|
self.add_coverage(unk_offset, 4)
|
|
|
|
# The game does some very bizarre bit-shifting. Its clear tha the first value
|
|
# points at a name structure, but its not in the correct endianness. This replicates
|
|
# the weird logic seen in game disassembly.
|
|
name_offset = (((name_offset >> 7) & 0x1FF) << 16) + ((name_offset >> 16) & 0xFFFF)
|
|
if name_offset != 0:
|
|
# Let's decode this until the first null.
|
|
bytedata = self.get_until_null(name_offset)
|
|
self.add_coverage(name_offset, len(bytedata) + 1, unique=False)
|
|
name = AFPFile.descramble_text(bytedata, self.text_obfuscated)
|
|
unknames.append(name)
|
|
|
|
self.unknown1.append(
|
|
Unknown1(
|
|
name=name,
|
|
data=self.data[(unk_offset + 4):(unk_offset + 16)],
|
|
)
|
|
)
|
|
self.add_coverage(unk_offset + 4, 12)
|
|
|
|
vprint(f"Bit 0x000040 - unknown; count: {length}, offset: {hex(offset)}")
|
|
for name in unknames:
|
|
vprint(f" {name}")
|
|
else:
|
|
vprint("Bit 0x000040 - unknown; NOT PRESENT")
|
|
|
|
if feature_mask & 0x80:
|
|
# One unknown byte, treated as an offset. This is clearly the mapping for the parsed
|
|
# structures from 0x40, but I don't know what those are.
|
|
offset = struct.unpack(f"{self.endian}I", self.data[header_offset:(header_offset + 4)])[0]
|
|
self.add_coverage(header_offset, 4)
|
|
header_offset += 4
|
|
|
|
vprint(f"Bit 0x000080 - unknownmapping; offset: {hex(offset)}")
|
|
|
|
# TODO: I have no idea what this is for.
|
|
if offset != 0:
|
|
self.unk_pman1 = self.descramble_pman(offset)
|
|
for i, name in enumerate(self.unk_pman1.entries):
|
|
vprint(f" {i}: {name}")
|
|
else:
|
|
vprint("Bit 0x000080 - unknownmapping; NOT PRESENT")
|
|
|
|
if feature_mask & 0x100:
|
|
# Two unknown bytes, first is a length or a count. Secound is
|
|
# an optional offset to grab another set of bytes from.
|
|
length, offset = struct.unpack(f"{self.endian}II", self.data[header_offset:(header_offset + 8)])
|
|
self.add_coverage(header_offset, 8)
|
|
header_offset += 8
|
|
|
|
if offset != 0 and length > 0:
|
|
for i in range(length):
|
|
unk_offset = offset + (i * 4)
|
|
self.unknown2.append(
|
|
Unknown2(self.data[unk_offset:(unk_offset + 4)])
|
|
)
|
|
self.add_coverage(unk_offset, 4)
|
|
|
|
vprint(f"Bit 0x000100 - unknown; count: {length}, offset: {hex(offset)}")
|
|
else:
|
|
vprint("Bit 0x000100 - unknown; NOT PRESENT")
|
|
|
|
if feature_mask & 0x200:
|
|
# One unknown byte, treated as an offset. Almost positive its a string mapping
|
|
# for the above 0x100 structure. That's how this file format appears to work.
|
|
offset = struct.unpack(f"{self.endian}I", self.data[header_offset:(header_offset + 4)])[0]
|
|
self.add_coverage(header_offset, 4)
|
|
header_offset += 4
|
|
|
|
vprint(f"Bit 0x000200 - unknownmapping; offset: {hex(offset)}")
|
|
|
|
# TODO: I have no idea what this is for.
|
|
if offset != 0:
|
|
self.unk_pman2 = self.descramble_pman(offset)
|
|
for i, name in enumerate(self.unk_pman2.entries):
|
|
vprint(f" {i}: {name}")
|
|
else:
|
|
vprint("Bit 0x000200 - unknownmapping; NOT PRESENT")
|
|
|
|
if feature_mask & 0x400:
|
|
# One unknown byte, treated as an offset. I have no idea what this is used for,
|
|
# it seems to be empty data in files that I've looked at, it doesn't go to any
|
|
# structure or mapping.
|
|
offset = struct.unpack(f"{self.endian}I", self.data[header_offset:(header_offset + 4)])[0]
|
|
self.add_coverage(header_offset, 4)
|
|
header_offset += 4
|
|
|
|
vprint(f"Bit 0x000400 - unknown; offset: {hex(offset)}")
|
|
else:
|
|
vprint("Bit 0x000400 - unknown; NOT PRESENT")
|
|
|
|
if feature_mask & 0x800:
|
|
# This is the names of the animations as far as I can tell.
|
|
length, offset = struct.unpack(f"{self.endian}II", self.data[header_offset:(header_offset + 8)])
|
|
self.add_coverage(header_offset, 8)
|
|
header_offset += 8
|
|
|
|
vprint(f"Bit 0x000800 - animations; count: {length}, offset: {hex(offset)}")
|
|
|
|
animnames = []
|
|
for x in range(length):
|
|
interesting_offset = offset + (x * 12)
|
|
if interesting_offset != 0:
|
|
name_offset, anim_length, anim_offset = struct.unpack(
|
|
f"{self.endian}III",
|
|
self.data[interesting_offset:(interesting_offset + 12)],
|
|
)
|
|
self.add_coverage(interesting_offset, 12)
|
|
if name_offset != 0:
|
|
# Let's decode this until the first null.
|
|
bytedata = self.get_until_null(name_offset)
|
|
self.add_coverage(name_offset, len(bytedata) + 1, unique=False)
|
|
name = AFPFile.descramble_text(bytedata, self.text_obfuscated)
|
|
animnames.append(name)
|
|
|
|
if anim_offset != 0:
|
|
self.animations.append(
|
|
Animation(
|
|
name,
|
|
self.data[anim_offset:(anim_offset + anim_length)]
|
|
)
|
|
)
|
|
self.add_coverage(anim_offset, anim_length)
|
|
|
|
for name in animnames:
|
|
vprint(f" {name}")
|
|
else:
|
|
vprint("Bit 0x000800 - animations; NOT PRESENT")
|
|
|
|
if feature_mask & 0x1000:
|
|
# Seems to be a secondary structure mirroring the above.
|
|
offset = struct.unpack(f"{self.endian}I", self.data[header_offset:(header_offset + 4)])[0]
|
|
self.add_coverage(header_offset, 4)
|
|
header_offset += 4
|
|
|
|
vprint(f"Bit 0x001000 - animationmapping; offset: {hex(offset)}")
|
|
|
|
if offset != 0:
|
|
self.animmap = self.descramble_pman(offset)
|
|
for i, name in enumerate(self.animmap.entries):
|
|
vprint(f" {i}: {name}")
|
|
else:
|
|
vprint("Bit 0x001000 - animationmapping; NOT PRESENT")
|
|
|
|
if feature_mask & 0x2000:
|
|
# I am making a very preliminary guess that these are shapes used along
|
|
# with animations specified below. The names in these sections tend to
|
|
# have the word "shape" in them.
|
|
length, offset = struct.unpack(f"{self.endian}II", self.data[header_offset:(header_offset + 8)])
|
|
self.add_coverage(header_offset, 8)
|
|
header_offset += 8
|
|
|
|
vprint(f"Bit 0x002000 - shapes; count: {length}, offset: {hex(offset)}")
|
|
|
|
# TODO: We do a LOT of extra stuff with this one, if count > 0...
|
|
|
|
shapenames = []
|
|
for x in range(length):
|
|
shape_base_offset = offset + (x * 12)
|
|
if shape_base_offset != 0:
|
|
name_offset, shape_length, shape_offset = struct.unpack(
|
|
f"{self.endian}III",
|
|
self.data[shape_base_offset:(shape_base_offset + 12)],
|
|
)
|
|
self.add_coverage(shape_base_offset, 12)
|
|
|
|
# TODO: At the shape offset is a "D2EG" structure of some sort.
|
|
# I have no idea what these do. I would have to look into it
|
|
# more if its important.
|
|
|
|
if name_offset != 0:
|
|
# Let's decode this until the first null.
|
|
bytedata = self.get_until_null(name_offset)
|
|
self.add_coverage(name_offset, len(bytedata) + 1, unique=False)
|
|
name = AFPFile.descramble_text(bytedata, self.text_obfuscated)
|
|
shapenames.append(name)
|
|
|
|
if shape_offset != 0:
|
|
self.add_coverage(shape_offset, shape_length)
|
|
self.shapes.append(
|
|
Shape(
|
|
name,
|
|
self.data[shape_offset:(shape_offset + shape_length)],
|
|
)
|
|
)
|
|
|
|
for name in shapenames:
|
|
vprint(f" {name}")
|
|
else:
|
|
vprint("Bit 0x002000 - shapes; NOT PRESENT")
|
|
|
|
if feature_mask & 0x4000:
|
|
# Seems to be a secondary section mirroring the names from above.
|
|
offset = struct.unpack(f"{self.endian}I", self.data[header_offset:(header_offset + 4)])[0]
|
|
self.add_coverage(header_offset, 4)
|
|
header_offset += 4
|
|
|
|
vprint(f"Bit 0x004000 - shapesmapping; offset: {hex(offset)}")
|
|
|
|
if offset != 0:
|
|
self.shapemap = self.descramble_pman(offset)
|
|
for i, name in enumerate(self.shapemap.entries):
|
|
vprint(f" {i}: {name}")
|
|
else:
|
|
vprint("Bit 0x004000 - shapesmapping; NOT PRESENT")
|
|
|
|
if feature_mask & 0x8000:
|
|
# One unknown byte, treated as an offset. I have no idea what this is because
|
|
# the games I've looked at don't include this bit.
|
|
offset = struct.unpack(f"{self.endian}I", self.data[header_offset:(header_offset + 4)])[0]
|
|
self.add_coverage(header_offset, 4)
|
|
header_offset += 4
|
|
|
|
# Since I've never seen this, I'm going to assume that it showing up is
|
|
# bad and make things read only.
|
|
self.read_only = True
|
|
|
|
vprint(f"Bit 0x008000 - unknown; offset: {hex(offset)}")
|
|
else:
|
|
vprint("Bit 0x008000 - unknown; NOT PRESENT")
|
|
|
|
if feature_mask & 0x10000:
|
|
# Included font package, BINXRPC encoded.
|
|
offset = struct.unpack(f"{self.endian}I", self.data[header_offset:(header_offset + 4)])[0]
|
|
self.add_coverage(header_offset, 4)
|
|
header_offset += 4
|
|
|
|
# I am not sure what the unknown byte is for. It always appears as
|
|
# all zeros in all files I've looked at.
|
|
expect_zero, length, binxrpc_offset = struct.unpack(f"{self.endian}III", self.data[offset:(offset + 12)])
|
|
self.add_coverage(offset, 12)
|
|
|
|
if expect_zero != 0:
|
|
# If we find non-zero versions of this, then that means updating the file is
|
|
# potentially unsafe as we could rewrite it incorrectly. So, let's assert!
|
|
raise Exception("Expected a zero in font package header!")
|
|
|
|
if binxrpc_offset != 0:
|
|
benc = BinaryEncoding()
|
|
self.fontdata = benc.decode(self.data[binxrpc_offset:(binxrpc_offset + length)])
|
|
self.add_coverage(binxrpc_offset, length)
|
|
else:
|
|
self.fontdata = None
|
|
|
|
vprint(f"Bit 0x010000 - fontinfo; offset: {hex(offset)}, binxrpc offset: {hex(binxrpc_offset)}")
|
|
else:
|
|
vprint("Bit 0x010000 - fontinfo; NOT PRESENT")
|
|
|
|
if feature_mask & 0x20000:
|
|
# I am beginning to suspect that this is animation/level data. I have
|
|
# no idea what "afp" is. Games refer to these as "afp streams".
|
|
offset = struct.unpack(f"{self.endian}I", self.data[header_offset:(header_offset + 4)])[0]
|
|
self.add_coverage(header_offset, 4)
|
|
header_offset += 4
|
|
|
|
vprint(f"Bit 0x020000 - animationheaders; offset: {hex(offset)}")
|
|
|
|
if offset > 0 and len(self.animations) > 0:
|
|
for i in range(len(self.animations)):
|
|
structure_offset = offset + (i * 12)
|
|
|
|
# First word is always zero, as observed. I am not ENTIRELY sure that
|
|
# the second field is length, but it lines up with everything else
|
|
# I've observed and seems to make sense.
|
|
expect_zero, afp_header_length, afp_header = struct.unpack(
|
|
f"{self.endian}III",
|
|
self.data[structure_offset:(structure_offset + 12)]
|
|
)
|
|
self.add_coverage(structure_offset, 12)
|
|
|
|
if expect_zero != 0:
|
|
# If we find non-zero versions of this, then that means updating the file is
|
|
# potentially unsafe as we could rewrite it incorrectly. So, let's assert!
|
|
raise Exception("Expected a zero in font package header!")
|
|
|
|
self.animations[i].header = self.data[afp_header:(afp_header + afp_header_length)]
|
|
self.add_coverage(afp_header, afp_header_length)
|
|
else:
|
|
vprint("Bit 0x020000 - animationheaders; NOT PRESENT")
|
|
|
|
if feature_mask & 0x40000:
|
|
vprint("Bit 0x040000 - modern lz mode on")
|
|
else:
|
|
vprint("Bit 0x040000 - modern lz mode off")
|
|
|
|
if feature_mask & 0xFFF80000:
|
|
# We don't know these bits at all!
|
|
raise Exception("Invalid bits set in feature mask!")
|
|
|
|
if header_offset != header_length:
|
|
raise Exception("Failed to parse bitfield of header correctly!")
|
|
|
|
if verbose:
|
|
self.print_coverage()
|
|
|
|
|
|
def main() -> int:
|
|
parser = argparse.ArgumentParser(description="Konami AFP graphic file unpacker.")
|
|
parser.add_argument(
|
|
"file",
|
|
metavar="FILE",
|
|
help="The file to extract",
|
|
)
|
|
parser.add_argument(
|
|
"dir",
|
|
metavar="DIR",
|
|
help="Directory to extract to",
|
|
)
|
|
parser.add_argument(
|
|
"-p",
|
|
"--pretend",
|
|
action="store_true",
|
|
help="Pretend to extract instead of extracting.",
|
|
)
|
|
parser.add_argument(
|
|
"-v",
|
|
"--verbose",
|
|
action="store_true",
|
|
help="Display verbuse debugging output.",
|
|
)
|
|
parser.add_argument(
|
|
"-r",
|
|
"--write-raw",
|
|
action="store_true",
|
|
help="Always write raw texture files.",
|
|
)
|
|
parser.add_argument(
|
|
"--write-mappings",
|
|
action="store_true",
|
|
help="Write mapping files to disk.",
|
|
)
|
|
args = parser.parse_args()
|
|
|
|
with open(args.file, "rb") as bfp:
|
|
afpfile = AFPFile(bfp.read(), verbose=args.verbose)
|
|
|
|
# Actually place the files down.
|
|
os.makedirs(args.dir, exist_ok=True)
|
|
|
|
for texture in afpfile.textures:
|
|
filename = os.path.join(args.dir, texture.name)
|
|
|
|
if texture.img:
|
|
if args.pretend:
|
|
print(f"Would write {filename}.png texture...")
|
|
else:
|
|
print(f"Writing {filename}.png texture...")
|
|
with open(f"{filename}.png", "wb") as bfp:
|
|
texture.img.save(bfp, format='PNG')
|
|
|
|
if not texture.img or args.write_raw:
|
|
if args.pretend:
|
|
print(f"Would write {filename}.raw texture...")
|
|
else:
|
|
print(f"Writing {filename}.raw texture...")
|
|
with open(f"{filename}.raw", "wb") as bfp:
|
|
bfp.write(texture.raw)
|
|
|
|
if args.write_mappings:
|
|
if args.pretend:
|
|
print(f"Would write {filename}.xml texture info...")
|
|
else:
|
|
print(f"Writing {filename}.xml texture info...")
|
|
with open(f"{filename}.xml", "w") as sfp:
|
|
sfp.write(textwrap.dedent(f"""
|
|
<info>
|
|
<width>{texture.width}</width>
|
|
<height>{texture.height}</height>
|
|
<type>{hex(texture.fmt)}</type>
|
|
<raw>{filename}.raw</raw>
|
|
</info>
|
|
""").strip())
|
|
|
|
if args.write_mappings:
|
|
for i, name in enumerate(afpfile.regionmap.entries):
|
|
if i < 0 or i >= len(afpfile.texture_to_region):
|
|
raise Exception(f"Out of bounds region {i}")
|
|
region = afpfile.texture_to_region[i]
|
|
texturename = afpfile.texturemap.entries[region.textureno]
|
|
filename = os.path.join(args.dir, name)
|
|
|
|
if args.pretend:
|
|
print(f"Would write {filename}.xml region information...")
|
|
else:
|
|
print(f"Writing {filename}.xml region information...")
|
|
with open(f"{filename}.xml", "w") as sfp:
|
|
sfp.write(textwrap.dedent(f"""
|
|
<info>
|
|
<left>{region.left}</left>
|
|
<top>{region.top}</top>
|
|
<right>{region.right}</right>
|
|
<bottom>{region.bottom}</bottom>
|
|
<texture>{texturename}</texture>
|
|
</info>
|
|
""").strip())
|
|
|
|
if afpfile.fontdata is not None:
|
|
filename = os.path.join(args.dir, "fontinfo.xml")
|
|
|
|
if args.pretend:
|
|
print(f"Writing {filename} font information...")
|
|
else:
|
|
print(f"Writing {filename} font information...")
|
|
with open(filename, "w") as sfp:
|
|
sfp.write(str(afpfile.fontdata))
|
|
|
|
return 0
|
|
|
|
|
|
if __name__ == "__main__":
|
|
sys.exit(main())
|