1
0
mirror of synced 2024-11-15 02:17:36 +01:00
bemaniutils/bemani/utils/afputils.py
2020-12-21 23:41:58 +00:00

2015 lines
84 KiB
Python

#! /usr/bin/env python3
import argparse
import io
import json
import os
import os.path
import struct
import sys
import textwrap
from PIL import Image, ImageDraw # type: ignore
from typing import Any, Dict, List, Optional, Tuple
from bemani.format.dxt import DXTBuffer
from bemani.protocol.binary import BinaryEncoding
from bemani.protocol.lz77 import Lz77
from bemani.protocol.node import Node
def _hex(data: int) -> str:
hexval = hex(data)[2:]
if len(hexval) == 1:
return "0" + hexval
return hexval
class PMAN:
def __init__(
self,
entries: List[str] = [],
ordering: List[int] = [],
flags1: int = 0,
flags2: int = 0,
flags3: int = 0,
) -> None:
self.entries = entries
self.ordering = ordering
self.flags1 = flags1
self.flags2 = flags2
self.flags3 = flags3
def as_dict(self) -> Dict[str, Any]:
return {
'flags': [self.flags1, self.flags2, self.flags3],
'entries': self.entries,
'ordering': self.ordering,
}
class Texture:
def __init__(
self,
name: str,
width: int,
height: int,
fmt: int,
header_flags1: int,
header_flags2: int,
header_flags3: int,
fmtflags: int,
rawdata: bytes,
compressed: Optional[bytes],
imgdata: Any,
) -> None:
self.name = name
self.width = width
self.height = height
self.fmt = fmt
self.header_flags1 = header_flags1
self.header_flags2 = header_flags2
self.header_flags3 = header_flags3
self.fmtflags = fmtflags
self.raw = rawdata
self.compressed = compressed
self.img = imgdata
def as_dict(self) -> Dict[str, Any]:
return {
'name': self.name,
'width': self.width,
'height': self.height,
'fmt': self.fmt,
'header_flags': [self.header_flags1, self.header_flags2, self.header_flags3],
'fmt_flags': self.fmtflags,
'raw': "".join(_hex(x) for x in self.raw),
'compressed': "".join(_hex(x) for x in self.compressed) if self.compressed is not None else None,
}
class TextureRegion:
def __init__(self, textureno: int, left: int, top: int, right: int, bottom: int) -> None:
self.textureno = textureno
self.left = left
self.top = top
self.right = right
self.bottom = bottom
def as_dict(self) -> Dict[str, Any]:
return {
'texture': self.textureno,
'left': self.left,
'top': self.top,
'right': self.right,
'bottom': self.bottom,
}
class Animation:
def __init__(
self,
name: str,
data: bytes,
header: bytes = b"",
) -> None:
self.name = name
self.data = data
self.header = header
def as_dict(self) -> Dict[str, Any]:
return {
'name': self.name,
'data': "".join(_hex(x) for x in self.data),
'header': "".join(_hex(x) for x in self.header),
}
class Shape:
def __init__(
self,
name: str,
data: bytes,
) -> None:
self.name = name
self.data = data
def as_dict(self) -> Dict[str, Any]:
return {
'name': self.name,
'data': "".join(_hex(x) for x in self.data),
}
class Unknown1:
def __init__(
self,
name: str,
data: bytes,
) -> None:
self.name = name
self.data = data
if len(data) != 12:
raise Exception("Unexpected length for Unknown1 structure!")
def as_dict(self) -> Dict[str, Any]:
return {
'name': self.name,
'data': "".join(_hex(x) for x in self.data),
}
class Unknown2:
def __init__(
self,
data: bytes,
) -> None:
self.data = data
if len(data) != 4:
raise Exception("Unexpected length for Unknown2 structure!")
def as_dict(self) -> Dict[str, Any]:
return {
'data': "".join(_hex(x) for x in self.data),
}
class AFPFile:
def __init__(self, contents: bytes, verbose: bool = False) -> None:
# Initialize coverage. This is used to help find missed/hidden file
# sections that we aren't parsing correctly.
self.coverage: List[bool] = [False] * len(contents)
# Original file data that we parse into structures.
self.data = contents
# Font data encoding handler. We keep this around as it manages
# remembering the actual BinXML encoding.
self.benc = BinaryEncoding()
# All of the crap!
self.endian: str = "<"
self.features: int = 0
self.file_flags: bytes = b""
self.text_obfuscated: bool = False
self.legacy_lz: bool = False
self.modern_lz: bool = False
# If we encounter parts of the file that we don't know how to read
# or save, we drop into read-only mode and throw if somebody tries
# to update the file.
self.read_only: bool = False
# List of all textures in this file. This is unordered, textures should
# be looked up by name.
self.textures: List[Texture] = []
# Texture mapping, which allows other structures to refer to texture
# by number instead of name.
self.texturemap: PMAN = PMAN()
# List of all regions found inside textures, mapped to their textures
# using texturenos that can be looked up using the texturemap above.
# This structure is ordered, and the regionno from the regionmap
# below can be used to look into this structure.
self.texture_to_region: List[TextureRegion] = []
# Region mapping, which allows other structures to refer to regions
# by number instead of name.
self.regionmap: PMAN = PMAN()
# Animations(?) and their names found in this file. This is unordered,
# animations should be looked up by name.
self.animations: List[Animation] = []
# Animation(?) mapping, which allows other structures to refer to
# animations by number instead of name.
self.animmap: PMAN = PMAN()
# Font information (mapping for various coepoints to their region in
# a particular font texture.
self.fontdata: Optional[Node] = None
# Shapes(?) with their raw data.
self.shapes: List[Shape] = []
# Shape(?) mapping, not understood or used.
self.shapemap: PMAN = PMAN()
# Unknown data structures that we have to roundtrip. They correlate to
# the PMAN structures below.
self.unknown1: List[Unknown1] = []
self.unknown2: List[Unknown2] = []
# Unknown PMAN structures that we have to roundtrip. They correlate to
# the unknown data structures above.
self.unk_pman1: PMAN = PMAN()
self.unk_pman2: PMAN = PMAN()
# Parse out the file structure.
self.__parse(verbose)
def add_coverage(self, offset: int, length: int, unique: bool = True) -> None:
for i in range(offset, offset + length):
if self.coverage[i] and unique:
raise Exception(f"Already covered {hex(offset)}!")
self.coverage[i] = True
def as_dict(self) -> Dict[str, Any]:
return {
'endian': self.endian,
'features': self.features,
'file_flags': "".join(_hex(x) for x in self.file_flags),
'obfuscated': self.text_obfuscated,
'legacy_lz': self.legacy_lz,
'modern_lz': self.modern_lz,
'textures': [tex.as_dict() for tex in self.textures],
'texturemap': self.texturemap.as_dict(),
'textureregion': [reg.as_dict() for reg in self.texture_to_region],
'regionmap': self.regionmap.as_dict(),
'animations': [anim.as_dict() for anim in self.animations],
'animationmap': self.animmap.as_dict(),
'fontdata': str(self.fontdata) if self.fontdata is not None else None,
'shapes': [shape.as_dict() for shape in self.shapes],
'shapemap': self.shapemap.as_dict(),
'unknown1': [unk.as_dict() for unk in self.unknown1],
'unknown1map': self.unk_pman1.as_dict(),
'unknown2': [unk.as_dict() for unk in self.unknown2],
'unknown2map': self.unk_pman2.as_dict(),
}
def print_coverage(self) -> None:
# First offset that is not coverd in a run.
start = None
for offset, covered in enumerate(self.coverage):
if covered:
if start is not None:
print(f"Uncovered: {hex(start)} - {hex(offset)} ({offset-start} bytes)")
start = None
else:
if start is None:
start = offset
if start is not None:
# Print final range
offset = len(self.coverage)
print(f"Uncovered: {hex(start)} - {hex(offset)} ({offset-start} bytes)")
@staticmethod
def cap32(val: int) -> int:
return val & 0xFFFFFFFF
@staticmethod
def poly(val: int) -> int:
if (val >> 31) & 1 != 0:
return 0x4C11DB7
else:
return 0
@staticmethod
def crc32(bytestream: bytes) -> int:
# Janky 6-bit CRC for ascii names in PMAN structures.
result = 0
for byte in bytestream:
for i in range(6):
result = AFPFile.poly(result) ^ AFPFile.cap32((result << 1) | ((byte >> i) & 1))
return result
@staticmethod
def descramble_text(text: bytes, obfuscated: bool) -> str:
if len(text):
if obfuscated and (text[0] - 0x20) > 0x7F:
# Gotta do a weird demangling where we swap the
# top bit.
return bytes(((x + 0x80) & 0xFF) for x in text).decode('ascii')
else:
return text.decode('ascii')
else:
return ""
@staticmethod
def scramble_text(text: str, obfuscated: bool) -> bytes:
if obfuscated:
return bytes(((x + 0x80) & 0xFF) for x in text.encode('ascii')) + b'\0'
else:
return text.encode('ascii') + b'\0'
def get_until_null(self, offset: int) -> bytes:
out = b""
while self.data[offset] != 0:
out += self.data[offset:(offset + 1)]
offset += 1
return out
def descramble_pman(self, offset: int, verbose: bool) -> PMAN:
# Suppress debug text unless asked
if verbose:
vprint = print
add_coverage = self.add_coverage
else:
def vprint(*args: Any, **kwargs: Any) -> None: # type: ignore
pass
def add_coverage(*args: Any, **kwargs: Any) -> None: # type: ignore
pass
# Unclear what the first three unknowns are, but the fourth
# looks like it could possibly be two int16s indicating unknown?
magic, expect_zero, flags1, flags2, numentries, flags3, data_offset = struct.unpack(
f"{self.endian}4sIIIIII",
self.data[offset:(offset + 28)],
)
add_coverage(offset, 28)
# I have never seen the first unknown be anything other than zero,
# so lets lock that down.
if expect_zero != 0:
raise Exception("Got a non-zero value for expected zero location in PMAN!")
if self.endian == "<" and magic != b"PMAN":
raise Exception("Invalid magic value in PMAN structure!")
if self.endian == ">" and magic != b"NAMP":
raise Exception("Invalid magic value in PMAN structure!")
names: List[Optional[str]] = [None] * numentries
ordering: List[Optional[int]] = [None] * numentries
if numentries > 0:
# Jump to the offset, parse it out
for i in range(numentries):
file_offset = data_offset + (i * 12)
name_crc, entry_no, nameoffset = struct.unpack(
f"{self.endian}III",
self.data[file_offset:(file_offset + 12)],
)
add_coverage(file_offset, 12)
if nameoffset == 0:
raise Exception("Expected name offset in PMAN data!")
bytedata = self.get_until_null(nameoffset)
add_coverage(nameoffset, len(bytedata) + 1, unique=False)
name = AFPFile.descramble_text(bytedata, self.text_obfuscated)
names[entry_no] = name
ordering[entry_no] = i
vprint(f" {entry_no}: {name}, offset: {hex(nameoffset)}")
if name_crc != AFPFile.crc32(name.encode('ascii')):
raise Exception(f"Name CRC failed for {name}")
for i, name in enumerate(names):
if name is None:
raise Exception(f"Didn't get mapping for entry {i + 1}")
for i, o in enumerate(ordering):
if o is None:
raise Exception(f"Didn't get ordering for entry {i + 1}")
return PMAN(
entries=names,
ordering=ordering,
flags1=flags1,
flags2=flags2,
flags3=flags3,
)
def __parse(
self,
verbose: bool = False,
) -> None:
# Suppress debug text unless asked
if verbose:
vprint = print
add_coverage = self.add_coverage
else:
def vprint(*args: Any, **kwargs: Any) -> None: # type: ignore
pass
def add_coverage(*args: Any, **kwargs: Any) -> None: # type: ignore
pass
# First, check the signature
if self.data[0:4] == b"2PXT":
self.endian = "<"
elif self.data[0:4] == b"TXP2":
self.endian = ">"
else:
raise Exception("Invalid graphic file format!")
add_coverage(0, 4)
# Not sure what words 2 and 3 are, they seem to be some sort of
# version or date?
self.file_flags = self.data[4:12]
add_coverage(4, 8)
# Now, grab the file length, verify that we have the right amount
# of data.
length = struct.unpack(f"{self.endian}I", self.data[12:16])[0]
add_coverage(12, 4)
if length != len(self.data):
raise Exception(f"Invalid graphic file length, expecting {length} bytes!")
# I think that offset 16-20 are the file data offset, but I'm not sure?
header_length = struct.unpack(f"{self.endian}I", self.data[16:20])[0]
add_coverage(16, 4)
# Now, the meat of the file format. Bytes 20-24 are a bitfield for
# what parts of the header exist in the file. We need to understand
# each bit so we know how to skip past each section.
feature_mask = struct.unpack(f"{self.endian}I", self.data[20:24])[0]
add_coverage(20, 4)
header_offset = 24
# Lots of magic happens if this bit is set.
self.text_obfuscated = bool(feature_mask & 0x20)
self.legacy_lz = bool(feature_mask & 0x04)
self.modern_lz = bool(feature_mask & 0x40000)
self.features = feature_mask
if feature_mask & 0x01:
# List of textures that exist in the file, with pointers to their data.
length, offset = struct.unpack(f"{self.endian}II", self.data[header_offset:(header_offset + 8)])
add_coverage(header_offset, 8)
header_offset += 8
vprint(f"Bit 0x000001 - textures; count: {length}, offset: {hex(offset)}")
for x in range(length):
interesting_offset = offset + (x * 12)
if interesting_offset != 0:
name_offset, texture_length, texture_offset = struct.unpack(
f"{self.endian}III",
self.data[interesting_offset:(interesting_offset + 12)],
)
add_coverage(interesting_offset, 12)
if name_offset != 0:
# Let's decode this until the first null.
bytedata = self.get_until_null(name_offset)
add_coverage(name_offset, len(bytedata) + 1, unique=False)
name = AFPFile.descramble_text(bytedata, self.text_obfuscated)
if name_offset != 0 and texture_offset != 0:
if self.legacy_lz:
raise Exception("We don't support legacy lz mode!")
elif self.modern_lz:
# Get size, round up to nearest power of 4
inflated_size, deflated_size = struct.unpack(
">II",
self.data[texture_offset:(texture_offset + 8)],
)
add_coverage(texture_offset, 8)
if deflated_size != (texture_length - 8):
raise Exception("We got an incorrect length for lz texture!")
vprint(f" {name}, length: {texture_length}, offset: {hex(texture_offset)}, deflated_size: {deflated_size}, inflated_size: {inflated_size}")
inflated_size = (inflated_size + 3) & (~3)
# Get the data offset.
lz_data_offset = texture_offset + 8
lz_data = self.data[lz_data_offset:(lz_data_offset + deflated_size)]
add_coverage(lz_data_offset, deflated_size)
# This takes forever, so skip it if we're pretending.
lz77 = Lz77()
raw_data = lz77.decompress(lz_data)
else:
inflated_size, deflated_size = struct.unpack(
">II",
self.data[texture_offset:(texture_offset + 8)],
)
# I'm guessing how raw textures work because I haven't seen them.
# I assume they're like the above, so lets put in some asertions.
if deflated_size != (texture_length - 8):
raise Exception("We got an incorrect length for raw texture!")
vprint(f" {name}, length: {texture_length}, offset: {hex(texture_offset)}, deflated_size: {deflated_size}, inflated_size: {inflated_size}")
# Just grab the raw data.
lz_data = None
raw_data = self.data[(texture_offset + 8):(texture_offset + 8 + deflated_size)]
add_coverage(texture_offset, deflated_size + 8)
(
magic,
header_flags1,
header_flags2,
raw_length,
width,
height,
fmtflags,
expected_zero1,
expected_zero2,
) = struct.unpack(
f"{self.endian}4sIIIHHIII",
raw_data[0:32],
)
if raw_length != len(raw_data):
raise Exception("Invalid texture length!")
# I have only ever observed the following values across two different games.
# Don't want to keep the chunk around so let's assert our assumptions.
if (expected_zero1 | expected_zero2) != 0:
raise Exception("Found unexpected non-zero value in texture header!")
if raw_data[32:44] != b'\0' * 12:
raise Exception("Found unexpected non-zero value in texture header!")
# This is almost ALWAYS 3, but I've seen it be 1 as well, so I guess we have to
# round-trip it if we want to write files back out. I have no clue what it's for.
# I've seen it be 1 only on files used for fonts so far, but I am not sure there
# is any correlation there.
header_flags3 = struct.unpack(f"{self.endian}I", raw_data[44:48])[0]
if raw_data[48:64] != b'\0' * 16:
raise Exception("Found unexpected non-zero value in texture header!")
fmt = fmtflags & 0xFF
# Extract flags that the game cares about.
# flags1 = (fmtflags >> 24) & 0xFF
# flags2 = (fmtflags >> 16) & 0xFF
# These flags may have some significance, such as
# the unk3/unk4 possibly indicating texture doubling?
# unk1 = 3 if (flags1 & 0xF == 1) else 1
# unk2 = 3 if ((flags1 >> 4) & 0xF == 1) else 1
# unk3 = 1 if (flags2 & 0xF == 1) else 2
# unk4 = 1 if ((flags2 >> 4) & 0xF == 1) else 2
if self.endian == "<" and magic != b"TDXT":
raise Exception("Unexpected texture format!")
if self.endian == ">" and magic != b"TXDT":
raise Exception("Unexpected texture format!")
# Since the AFP file format can be found in both big and little endian, its
# possible that some of these loaders might need byteswapping on some platforms.
# This has been tested on files intended for X86 (little endian).
if fmt == 0x0B:
# 16-bit 565 color RGB format. Game references D3D9 texture format 23 (R5G6B5).
newdata = []
for i in range(width * height):
pixel = struct.unpack(
f"{self.endian}H",
raw_data[(64 + (i * 2)):(66 + (i * 2))],
)[0]
red = ((pixel >> 0) & 0x1F) << 3
green = ((pixel >> 5) & 0x3F) << 2
blue = ((pixel >> 11) & 0x1F) << 3
newdata.append(
struct.pack("<BBB", blue, green, red)
)
img = Image.frombytes(
'RGB', (width, height), b''.join(newdata), 'raw', 'RGB',
)
elif fmt == 0x0E:
# RGB image, no alpha. Game references D3D9 texture format 22 (R8G8B8).
img = Image.frombytes(
'RGB', (width, height), raw_data[64:], 'raw', 'RGB',
)
elif fmt == 0x10:
# Seems to be some sort of RGB with color swapping. Game references D3D9 texture
# format 21 (A8R8B8G8) but does manual byteswapping.
# TODO: Not sure this is correct, need to find sample files.
img = Image.frombytes(
'RGB', (width, height), raw_data[64:], 'raw', 'BGR',
)
elif fmt == 0x13:
# Some 16-bit texture format. Game references D3D9 texture format 25 (A1R5G5B5).
newdata = []
for i in range(width * height):
pixel = struct.unpack(
f"{self.endian}H",
raw_data[(64 + (i * 2)):(66 + (i * 2))],
)[0]
alpha = 255 if ((pixel >> 15) & 0x1) != 0 else 0
red = ((pixel >> 0) & 0x1F) << 3
green = ((pixel >> 5) & 0x1F) << 3
blue = ((pixel >> 10) & 0x1F) << 3
newdata.append(
struct.pack("<BBBB", blue, green, red, alpha)
)
img = Image.frombytes(
'RGBA', (width, height), b''.join(newdata), 'raw', 'RGBA',
)
elif fmt == 0x15:
# RGBA format. Game references D3D9 texture format 21 (A8R8G8B8).
# Looks like unlike 0x20 below, the game does some endianness swapping.
# TODO: Not sure this is correct, need to find sample files.
img = Image.frombytes(
'RGBA', (width, height), raw_data[64:], 'raw', 'ARGB',
)
elif fmt == 0x16:
# DXT1 format. Game references D3D9 DXT1 texture format.
# Konami seems to have screwed up with DDR PS3 where they
# swap every other byte in the format, even though its specified
# as little-endian by all DXT1 documentation.
dxt = DXTBuffer(width, height)
img = Image.frombuffer(
'RGBA',
(width, height),
dxt.DXT1Decompress(raw_data[64:], swap=self.endian != "<"),
'raw',
'RGBA',
0,
1,
)
elif fmt == 0x1A:
# DXT5 format. Game references D3D9 DXT5 texture format.
# Konami seems to have screwed up with DDR PS3 where they
# swap every other byte in the format, even though its specified
# as little-endian by all DXT5 documentation.
dxt = DXTBuffer(width, height)
img = Image.frombuffer(
'RGBA',
(width, height),
dxt.DXT5Decompress(raw_data[64:], swap=self.endian != "<"),
'raw',
'RGBA',
0,
1,
)
elif fmt == 0x1E:
# I have no idea what format this is. The game does some byte
# swapping but doesn't actually call any texture create calls.
# This might be leftover from another game.
pass
elif fmt == 0x1F:
# 16-bit 4-4-4-4 RGBA format. Game references D3D9 texture format 26 (A4R4G4B4).
newdata = []
for i in range(width * height):
pixel = struct.unpack(
f"{self.endian}H",
raw_data[(64 + (i * 2)):(66 + (i * 2))],
)[0]
blue = ((pixel >> 0) & 0xF) << 4
green = ((pixel >> 4) & 0xF) << 4
red = ((pixel >> 8) & 0xF) << 4
alpha = ((pixel >> 12) & 0xF) << 4
newdata.append(
struct.pack("<BBBB", red, green, blue, alpha)
)
img = Image.frombytes(
'RGBA', (width, height), b''.join(newdata), 'raw', 'RGBA',
)
elif fmt == 0x20:
# RGBA format. Game references D3D9 surface format 21 (A8R8G8B8).
img = Image.frombytes(
'RGBA', (width, height), raw_data[64:], 'raw', 'BGRA',
)
else:
vprint(f"Unsupported format {hex(fmt)} for texture {name}")
img = None
self.textures.append(
Texture(
name,
width,
height,
fmt,
header_flags1,
header_flags2,
header_flags3,
fmtflags & 0xFFFFFF00,
raw_data[64:],
lz_data,
img,
)
)
else:
vprint("Bit 0x000001 - textures; NOT PRESENT")
# Mapping between texture index and the name of the texture.
if feature_mask & 0x02:
# Seems to be a structure that duplicates texture names? I am pretty
# sure this is used to map texture names to file indexes used elsewhere.
offset = struct.unpack(f"{self.endian}I", self.data[header_offset:(header_offset + 4)])[0]
add_coverage(header_offset, 4)
header_offset += 4
vprint(f"Bit 0x000002 - texturemapping; offset: {hex(offset)}")
if offset != 0:
self.texturemap = self.descramble_pman(offset, verbose)
else:
vprint("Bit 0x000002 - texturemapping; NOT PRESENT")
if feature_mask & 0x04:
vprint("Bit 0x000004 - legacy lz mode on")
else:
vprint("Bit 0x000004 - legacy lz mode off")
# Mapping between region index and the texture it goes to as well as the
# region of texture that this particular graphic makes up.
if feature_mask & 0x08:
# Mapping between individual graphics and their respective textures.
# This is 10 bytes per entry. Seems to need both 0x2 (texture index)
# and 0x10 (region index).
length, offset = struct.unpack(f"{self.endian}II", self.data[header_offset:(header_offset + 8)])
add_coverage(header_offset, 8)
header_offset += 8
vprint(f"Bit 0x000008 - regions; count: {length}, offset: {hex(offset)}")
if offset != 0 and length > 0:
for i in range(length):
descriptor_offset = offset + (10 * i)
texture_no, left, top, right, bottom = struct.unpack(
f"{self.endian}HHHHH",
self.data[descriptor_offset:(descriptor_offset + 10)],
)
add_coverage(descriptor_offset, 10)
if texture_no < 0 or texture_no >= len(self.texturemap.entries):
raise Exception(f"Out of bounds texture {texture_no}")
vprint(f" length: 10, offset: {hex(offset + (10 * i))}")
# TODO: The offsets here seem to be off by a power of 2, there
# might be more flags in the above texture format that specify
# device scaling and such?
self.texture_to_region.append(TextureRegion(texture_no, left, top, right, bottom))
else:
vprint("Bit 0x000008 - regions; NOT PRESENT")
if feature_mask & 0x10:
# Names of the graphics regions, so we can look into the texture_to_region
# mapping above.
offset = struct.unpack(f"{self.endian}I", self.data[header_offset:(header_offset + 4)])[0]
add_coverage(header_offset, 4)
header_offset += 4
vprint(f"Bit 0x000010 - regionmapping; offset: {hex(offset)}")
if offset != 0:
self.regionmap = self.descramble_pman(offset, verbose)
else:
vprint("Bit 0x000010 - regionmapping; NOT PRESENT")
if feature_mask & 0x20:
vprint("Bit 0x000020 - text obfuscation on")
else:
vprint("Bit 0x000020 - text obfuscation off")
if feature_mask & 0x40:
# Two unknown bytes, first is a length or a count. Secound is
# an optional offset to grab another set of bytes from.
length, offset = struct.unpack(f"{self.endian}II", self.data[header_offset:(header_offset + 8)])
add_coverage(header_offset, 8)
header_offset += 8
vprint(f"Bit 0x000040 - unknown; count: {length}, offset: {hex(offset)}")
if offset != 0 and length > 0:
for i in range(length):
unk_offset = offset + (i * 16)
name_offset = struct.unpack(f"{self.endian}I", self.data[unk_offset:(unk_offset + 4)])[0]
add_coverage(unk_offset, 4)
# The game does some very bizarre bit-shifting. Its clear tha the first value
# points at a name structure, but its not in the correct endianness. This replicates
# the weird logic seen in game disassembly.
name_offset = (((name_offset >> 7) & 0x1FF) << 16) + ((name_offset >> 16) & 0xFFFF)
if name_offset != 0:
# Let's decode this until the first null.
bytedata = self.get_until_null(name_offset)
add_coverage(name_offset, len(bytedata) + 1, unique=False)
name = AFPFile.descramble_text(bytedata, self.text_obfuscated)
vprint(f" {name}")
self.unknown1.append(
Unknown1(
name=name,
data=self.data[(unk_offset + 4):(unk_offset + 16)],
)
)
add_coverage(unk_offset + 4, 12)
else:
vprint("Bit 0x000040 - unknown; NOT PRESENT")
if feature_mask & 0x80:
# One unknown byte, treated as an offset. This is clearly the mapping for the parsed
# structures from 0x40, but I don't know what those are.
offset = struct.unpack(f"{self.endian}I", self.data[header_offset:(header_offset + 4)])[0]
add_coverage(header_offset, 4)
header_offset += 4
vprint(f"Bit 0x000080 - unknownmapping; offset: {hex(offset)}")
# TODO: I have no idea what this is for.
if offset != 0:
self.unk_pman1 = self.descramble_pman(offset, verbose)
else:
vprint("Bit 0x000080 - unknownmapping; NOT PRESENT")
if feature_mask & 0x100:
# Two unknown bytes, first is a length or a count. Secound is
# an optional offset to grab another set of bytes from.
length, offset = struct.unpack(f"{self.endian}II", self.data[header_offset:(header_offset + 8)])
add_coverage(header_offset, 8)
header_offset += 8
vprint(f"Bit 0x000100 - unknown; count: {length}, offset: {hex(offset)}")
if offset != 0 and length > 0:
for i in range(length):
unk_offset = offset + (i * 4)
self.unknown2.append(
Unknown2(self.data[unk_offset:(unk_offset + 4)])
)
add_coverage(unk_offset, 4)
else:
vprint("Bit 0x000100 - unknown; NOT PRESENT")
if feature_mask & 0x200:
# One unknown byte, treated as an offset. Almost positive its a string mapping
# for the above 0x100 structure. That's how this file format appears to work.
offset = struct.unpack(f"{self.endian}I", self.data[header_offset:(header_offset + 4)])[0]
add_coverage(header_offset, 4)
header_offset += 4
vprint(f"Bit 0x000200 - unknownmapping; offset: {hex(offset)}")
# TODO: I have no idea what this is for.
if offset != 0:
self.unk_pman2 = self.descramble_pman(offset, verbose)
else:
vprint("Bit 0x000200 - unknownmapping; NOT PRESENT")
if feature_mask & 0x400:
# One unknown byte, treated as an offset. I have no idea what this is used for,
# it seems to be empty data in files that I've looked at, it doesn't go to any
# structure or mapping.
offset = struct.unpack(f"{self.endian}I", self.data[header_offset:(header_offset + 4)])[0]
add_coverage(header_offset, 4)
header_offset += 4
vprint(f"Bit 0x000400 - unknown; offset: {hex(offset)}")
else:
vprint("Bit 0x000400 - unknown; NOT PRESENT")
if feature_mask & 0x800:
# This is the names of the animations as far as I can tell.
length, offset = struct.unpack(f"{self.endian}II", self.data[header_offset:(header_offset + 8)])
add_coverage(header_offset, 8)
header_offset += 8
vprint(f"Bit 0x000800 - animations; count: {length}, offset: {hex(offset)}")
for x in range(length):
interesting_offset = offset + (x * 12)
if interesting_offset != 0:
name_offset, anim_length, anim_offset = struct.unpack(
f"{self.endian}III",
self.data[interesting_offset:(interesting_offset + 12)],
)
add_coverage(interesting_offset, 12)
if name_offset != 0:
# Let's decode this until the first null.
bytedata = self.get_until_null(name_offset)
add_coverage(name_offset, len(bytedata) + 1, unique=False)
name = AFPFile.descramble_text(bytedata, self.text_obfuscated)
vprint(f" {name}, length: {anim_length}, offset: {hex(anim_offset)}")
if anim_offset != 0:
self.animations.append(
Animation(
name,
self.data[anim_offset:(anim_offset + anim_length)]
)
)
add_coverage(anim_offset, anim_length)
else:
vprint("Bit 0x000800 - animations; NOT PRESENT")
if feature_mask & 0x1000:
# Seems to be a secondary structure mirroring the above.
offset = struct.unpack(f"{self.endian}I", self.data[header_offset:(header_offset + 4)])[0]
add_coverage(header_offset, 4)
header_offset += 4
vprint(f"Bit 0x001000 - animationmapping; offset: {hex(offset)}")
if offset != 0:
self.animmap = self.descramble_pman(offset, verbose)
else:
vprint("Bit 0x001000 - animationmapping; NOT PRESENT")
if feature_mask & 0x2000:
# I am making a very preliminary guess that these are shapes used along
# with animations specified below. The names in these sections tend to
# have the word "shape" in them.
length, offset = struct.unpack(f"{self.endian}II", self.data[header_offset:(header_offset + 8)])
add_coverage(header_offset, 8)
header_offset += 8
vprint(f"Bit 0x002000 - shapes; count: {length}, offset: {hex(offset)}")
# TODO: We do a LOT of extra stuff with this one, if count > 0...
for x in range(length):
shape_base_offset = offset + (x * 12)
if shape_base_offset != 0:
name_offset, shape_length, shape_offset = struct.unpack(
f"{self.endian}III",
self.data[shape_base_offset:(shape_base_offset + 12)],
)
add_coverage(shape_base_offset, 12)
# TODO: At the shape offset is a "D2EG" structure of some sort.
# I have no idea what these do. I would have to look into it
# more if its important.
if name_offset != 0:
# Let's decode this until the first null.
bytedata = self.get_until_null(name_offset)
add_coverage(name_offset, len(bytedata) + 1, unique=False)
name = AFPFile.descramble_text(bytedata, self.text_obfuscated)
vprint(f" {name}, length: {shape_length}, offset: {hex(shape_offset)}")
if shape_offset != 0:
add_coverage(shape_offset, shape_length)
self.shapes.append(
Shape(
name,
self.data[shape_offset:(shape_offset + shape_length)],
)
)
else:
vprint("Bit 0x002000 - shapes; NOT PRESENT")
if feature_mask & 0x4000:
# Seems to be a secondary section mirroring the names from above.
offset = struct.unpack(f"{self.endian}I", self.data[header_offset:(header_offset + 4)])[0]
add_coverage(header_offset, 4)
header_offset += 4
vprint(f"Bit 0x004000 - shapesmapping; offset: {hex(offset)}")
if offset != 0:
self.shapemap = self.descramble_pman(offset, verbose)
else:
vprint("Bit 0x004000 - shapesmapping; NOT PRESENT")
if feature_mask & 0x8000:
# One unknown byte, treated as an offset. I have no idea what this is because
# the games I've looked at don't include this bit.
offset = struct.unpack(f"{self.endian}I", self.data[header_offset:(header_offset + 4)])[0]
add_coverage(header_offset, 4)
header_offset += 4
vprint(f"Bit 0x008000 - unknown; offset: {hex(offset)}")
# Since I've never seen this, I'm going to assume that it showing up is
# bad and make things read only.
self.read_only = True
else:
vprint("Bit 0x008000 - unknown; NOT PRESENT")
if feature_mask & 0x10000:
# Included font package, BINXRPC encoded.
offset = struct.unpack(f"{self.endian}I", self.data[header_offset:(header_offset + 4)])[0]
add_coverage(header_offset, 4)
header_offset += 4
# I am not sure what the unknown byte is for. It always appears as
# all zeros in all files I've looked at.
expect_zero, length, binxrpc_offset = struct.unpack(f"{self.endian}III", self.data[offset:(offset + 12)])
add_coverage(offset, 12)
vprint(f"Bit 0x010000 - fontinfo; offset: {hex(offset)}, binxrpc offset: {hex(binxrpc_offset)}")
if expect_zero != 0:
# If we find non-zero versions of this, then that means updating the file is
# potentially unsafe as we could rewrite it incorrectly. So, let's assert!
raise Exception("Expected a zero in font package header!")
if binxrpc_offset != 0:
self.fontdata = self.benc.decode(self.data[binxrpc_offset:(binxrpc_offset + length)])
add_coverage(binxrpc_offset, length)
else:
self.fontdata = None
else:
vprint("Bit 0x010000 - fontinfo; NOT PRESENT")
if feature_mask & 0x20000:
# I am beginning to suspect that this is animation/level data. I have
# no idea what "afp" is. Games refer to these as "afp streams".
offset = struct.unpack(f"{self.endian}I", self.data[header_offset:(header_offset + 4)])[0]
add_coverage(header_offset, 4)
header_offset += 4
vprint(f"Bit 0x020000 - animationheaders; offset: {hex(offset)}")
if offset > 0 and len(self.animations) > 0:
for i in range(len(self.animations)):
structure_offset = offset + (i * 12)
# First word is always zero, as observed. I am not ENTIRELY sure that
# the second field is length, but it lines up with everything else
# I've observed and seems to make sense.
expect_zero, afp_header_length, afp_header = struct.unpack(
f"{self.endian}III",
self.data[structure_offset:(structure_offset + 12)]
)
vprint(f" length: {afp_header_length}, offset: {hex(afp_header)}")
add_coverage(structure_offset, 12)
if expect_zero != 0:
# If we find non-zero versions of this, then that means updating the file is
# potentially unsafe as we could rewrite it incorrectly. So, let's assert!
raise Exception("Expected a zero in font package header!")
self.animations[i].header = self.data[afp_header:(afp_header + afp_header_length)]
add_coverage(afp_header, afp_header_length)
else:
vprint("Bit 0x020000 - animationheaders; NOT PRESENT")
if feature_mask & 0x40000:
vprint("Bit 0x040000 - modern lz mode on")
else:
vprint("Bit 0x040000 - modern lz mode off")
if feature_mask & 0xFFF80000:
# We don't know these bits at all!
raise Exception("Invalid bits set in feature mask!")
if header_offset != header_length:
raise Exception("Failed to parse bitfield of header correctly!")
if verbose:
self.print_coverage()
@staticmethod
def align(val: int) -> int:
return (val + 3) & 0xFFFFFFFFC
@staticmethod
def pad(data: bytes, length: int) -> bytes:
if len(data) == length:
return data
elif len(data) > length:
raise Exception("Logic error, padding request in data already written!")
return data + (b"\0" * (length - len(data)))
def write_strings(self, data: bytes, strings: Dict[str, int]) -> bytes:
tuples: List[Tuple[str, int]] = [(name, strings[name]) for name in strings]
tuples = sorted(tuples, key=lambda tup: tup[1])
for (string, offset) in tuples:
data = AFPFile.pad(data, offset)
data += AFPFile.scramble_text(string, self.text_obfuscated)
return data
def write_pman(self, data: bytes, offset: int, pman: PMAN, string_offsets: Dict[str, int]) -> bytes:
# First, lay down the PMAN header
if self.endian == "<":
magic = b"PMAN"
elif self.endian == ">":
magic = b"NAMP"
else:
raise Exception("Logic error, unexpected endianness!")
# Calculate where various data goes
data = AFPFile.pad(data, offset)
payload_offset = offset + 28
string_offset = payload_offset + (len(pman.entries) * 12)
pending_strings: Dict[str, int] = {}
data += struct.pack(
f"{self.endian}4sIIIIII",
magic,
0,
pman.flags1,
pman.flags2,
len(pman.entries),
pman.flags3,
payload_offset,
)
# Now, lay down the individual entries
datas: List[bytes] = [b""] * len(pman.entries)
for entry_no, name in enumerate(pman.entries):
name_crc = AFPFile.crc32(name.encode('ascii'))
if name not in string_offsets:
# We haven't written this string out yet, so put it on our pending list.
pending_strings[name] = string_offset
string_offsets[name] = string_offset
# Room for the null byte!
string_offset += len(name) + 1
# Write out the chunk itself.
datas[pman.ordering[entry_no]] = struct.pack(
f"{self.endian}III",
name_crc,
entry_no,
string_offsets[name],
)
# Write it out in the correct order. Some files are hardcoded in various
# games so we MUST preserve the order of PMAN entries.
data += b"".join(datas)
# Now, put down the strings that were new in this pman structure.
return self.write_strings(data, pending_strings)
def unparse(self) -> bytes:
if self.read_only:
raise Exception("This file is read-only because we can't parse some of it!")
# Mapping from various strings found in the file to their offsets.
string_offsets: Dict[str, int] = {}
pending_strings: Dict[str, int] = {}
# The true file header, containing magic, some file flags, file length and
# header length.
header: bytes = b''
# The bitfield structure that dictates what's found in the file and where.
bitfields: bytes = b''
# The data itself.
body: bytes = b''
# First, plop down the file magic as well as the unknown file flags we
# roundtripped.
if self.endian == "<":
header += b"2PXT"
elif self.endian == ">":
header += b"TXP2"
else:
raise Exception("Invalid graphic file format!")
# Not sure what words 2 and 3 are, they seem to be some sort of
# version or date?
header += self.data[4:12]
# We can't plop the length down yet, since we don't know it. So, let's first
# figure out what our bitfield length is.
header_length = 0
if self.features & 0x1:
header_length += 8
if self.features & 0x2:
header_length += 4
# Bit 0x4 is for lz options.
if self.features & 0x8:
header_length += 8
if self.features & 0x10:
header_length += 4
# Bit 0x20 is for text obfuscation options.
if self.features & 0x40:
header_length += 8
if self.features & 0x80:
header_length += 4
if self.features & 0x100:
header_length += 8
if self.features & 0x200:
header_length += 4
if self.features & 0x400:
header_length += 4
if self.features & 0x800:
header_length += 8
if self.features & 0x1000:
header_length += 4
if self.features & 0x2000:
header_length += 8
if self.features & 0x4000:
header_length += 4
if self.features & 0x8000:
header_length += 4
if self.features & 0x10000:
header_length += 4
if self.features & 0x20000:
header_length += 4
# Bit 0x40000 is for lz options.
# We keep this indirection because we want to do our best to preserve
# the file order we observe in actual files. So, that means writing data
# out of order of when it shows in the header, and as such we must remember
# what chunks go where. We key by feature bitmask so its safe to have empties.
bitchunks = [b""] * 32
# Pad out the body for easier calculations below
body = AFPFile.pad(body, 24 + header_length)
# Start laying down various file pieces.
texture_to_update_offset: Dict[str, Tuple[int, bytes]] = {}
if self.features & 0x01:
# List of textures that exist in the file, with pointers to their data.
offset = AFPFile.align(len(body))
body = AFPFile.pad(body, offset)
# First, lay down pointers and length, regardless of number of entries.
bitchunks[0] = struct.pack(f"{self.endian}II", len(self.textures), offset)
# Now, calculate how long each texture is and formulate the data itself.
name_to_length: Dict[str, int] = {}
# Now, possibly compress and lay down textures.
for texture in self.textures:
# Construct the TXDT texture format from our parsed results.
if self.endian == "<":
magic = b"TDXT"
elif self.endian == ">":
magic != b"TXDT"
else:
raise Exception("Unexpected texture format!")
fmtflags = (texture.fmtflags & 0xFFFFFF00) | (texture.fmt & 0xFF)
raw_texture = struct.pack(
f"{self.endian}4sIIIHHIII",
magic,
texture.header_flags1,
texture.header_flags2,
64 + len(texture.raw),
texture.width,
texture.height,
fmtflags,
0,
0,
) + (b'\0' * 12) + struct.pack(
f"{self.endian}I", texture.header_flags3,
) + (b'\0' * 16) + texture.raw
if self.legacy_lz:
raise Exception("We don't support legacy lz mode!")
elif self.modern_lz:
if texture.compressed:
# We didn't change this texture, use the original compression.
compressed_texture = texture.compressed
else:
# We need to compress the raw texture.
lz77 = Lz77()
compressed_texture = lz77.compress(raw_texture)
# Construct the mini-header and the texture itself.
name_to_length[texture.name] = len(compressed_texture) + 8
texture_to_update_offset[texture.name] = (
0xDEADBEEF,
struct.pack(
">II",
len(raw_texture),
len(compressed_texture),
) + compressed_texture,
)
else:
# We just need to place the raw texture down.
name_to_length[texture.name] = len(raw_texture) + 8
texture_to_update_offset[texture.name] = (
0xDEADBEEF,
struct.pack(
">II",
len(raw_texture),
len(raw_texture),
) + raw_texture,
)
# Now, make sure the texture block is padded to 4 bytes, so we can figure out
# where strings go.
string_offset = AFPFile.align(len(body) + (len(self.textures) * 12))
# Now, write out texture pointers and strings.
for texture in self.textures:
if texture.name not in string_offsets:
# We haven't written this string out yet, so put it on our pending list.
pending_strings[texture.name] = string_offset
string_offsets[texture.name] = string_offset
# Room for the null byte!
string_offset += len(texture.name) + 1
# Write out the chunk itself, remember where we need to fix up later.
texture_to_update_offset[texture.name] = (
len(body) + 8,
texture_to_update_offset[texture.name][1],
)
body += struct.pack(
f"{self.endian}III",
string_offsets[texture.name],
name_to_length[texture.name], # Structure length
0xDEADBEEF, # Structure offset (we will fix this later)
)
# Now, put down the texture chunk itself and then strings that were new in this chunk.
body = self.write_strings(body, pending_strings)
pending_strings = {}
if self.features & 0x08:
# Mapping between individual graphics and their respective textures.
offset = AFPFile.align(len(body))
body = AFPFile.pad(body, offset)
# First, lay down pointers and length, regardless of number of entries.
bitchunks[3] = struct.pack(f"{self.endian}II", len(self.texture_to_region), offset)
for bounds in self.texture_to_region:
body += struct.pack(
f"{self.endian}HHHHH",
bounds.textureno,
bounds.left,
bounds.top,
bounds.right,
bounds.bottom,
)
if self.features & 0x40:
# Unknown file chunk.
offset = AFPFile.align(len(body))
body = AFPFile.pad(body, offset)
# First, lay down pointers and length, regardless of number of entries.
bitchunks[6] = struct.pack(f"{self.endian}II", len(self.unknown1), offset)
# Now, calculate where we can put strings.
string_offset = AFPFile.align(len(body) + (len(self.unknown1) * 16))
# Now, write out chunks and strings.
for entry1 in self.unknown1:
if entry1.name not in string_offsets:
# We haven't written this string out yet, so put it on our pending list.
pending_strings[entry1.name] = string_offset
string_offsets[entry1.name] = string_offset
# Room for the null byte!
string_offset += len(entry1.name) + 1
# Write out the chunk itself.
body += struct.pack(f"{self.endian}I", string_offsets[entry1.name]) + entry1.data
# Now, put down the strings that were new in this chunk.
body = self.write_strings(body, pending_strings)
pending_strings = {}
if self.features & 0x100:
# Two unknown bytes, first is a length or a count. Secound is
# an optional offset to grab another set of bytes from.
offset = AFPFile.align(len(body))
body = AFPFile.pad(body, offset)
# First, lay down pointers and length, regardless of number of entries.
bitchunks[8] = struct.pack(f"{self.endian}II", len(self.unknown2), offset)
# Now, write out chunks and strings.
for entry2 in self.unknown2:
# Write out the chunk itself.
body += entry2.data
if self.features & 0x800:
# This is the names and locations of the animations as far as I can tell.
offset = AFPFile.align(len(body))
body = AFPFile.pad(body, offset)
bitchunks[11] = struct.pack(f"{self.endian}II", len(self.animations), offset)
# Now, calculate where we can put animations and their names.
animation_offset = AFPFile.align(len(body) + (len(self.animations) * 12))
string_offset = AFPFile.align(animation_offset + sum(AFPFile.align(len(a.data)) for a in self.animations))
animdata = b""
# Now, lay them out.
for animation in self.animations:
if animation.name not in string_offsets:
# We haven't written this string out yet, so put it on our pending list.
pending_strings[animation.name] = string_offset
string_offsets[animation.name] = string_offset
# Room for the null byte!
string_offset += len(animation.name) + 1
# Write out the chunk itself.
body += struct.pack(
f"{self.endian}III",
string_offsets[animation.name],
len(animation.data),
animation_offset + len(animdata),
)
animdata += AFPFile.pad(animation.data, AFPFile.align(len(animation.data)))
# Now, lay out the data itself and finally string names.
body = self.write_strings(body + animdata, pending_strings)
pending_strings = {}
if self.features & 0x2000:
# This is the names and data for shapes as far as I can tell.
offset = AFPFile.align(len(body))
body = AFPFile.pad(body, offset)
bitchunks[13] = struct.pack(f"{self.endian}II", len(self.shapes), offset)
# Now, calculate where we can put shapes and their names.
shape_offset = AFPFile.align(len(body) + (len(self.shapes) * 12))
string_offset = AFPFile.align(shape_offset + sum(AFPFile.align(len(s.data)) for s in self.shapes))
shapedata = b""
# Now, lay them out.
for shape in self.shapes:
if shape.name not in string_offsets:
# We haven't written this string out yet, so put it on our pending list.
pending_strings[shape.name] = string_offset
string_offsets[shape.name] = string_offset
# Room for the null byte!
string_offset += len(shape.name) + 1
# Write out the chunk itself.
body += struct.pack(
f"{self.endian}III",
string_offsets[shape.name],
len(shape.data),
shape_offset + len(shapedata),
)
shapedata += AFPFile.pad(shape.data, AFPFile.align(len(shape.data)))
# Now, lay out the data itself and finally string names.
body = self.write_strings(body + shapedata, pending_strings)
pending_strings = {}
if self.features & 0x02:
# Mapping between texture index and the name of the texture.
offset = AFPFile.align(len(body))
body = AFPFile.pad(body, offset)
# Lay down PMAN pointer and PMAN structure itself.
bitchunks[1] = struct.pack(f"{self.endian}I", offset)
body = self.write_pman(body, offset, self.texturemap, string_offsets)
if self.features & 0x10:
# Names of the graphics regions, so we can look into the texture_to_region
# mapping above.
offset = AFPFile.align(len(body))
body = AFPFile.pad(body, offset)
# Lay down PMAN pointer and PMAN structure itself.
bitchunks[4] = struct.pack(f"{self.endian}I", offset)
body = self.write_pman(body, offset, self.regionmap, string_offsets)
if self.features & 0x80:
# One unknown byte, treated as an offset. This is clearly the mapping for the parsed
# structures from 0x40, but I don't know what those are.
offset = AFPFile.align(len(body))
body = AFPFile.pad(body, offset)
# Lay down PMAN pointer and PMAN structure itself.
bitchunks[7] = struct.pack(f"{self.endian}I", offset)
body = self.write_pman(body, offset, self.unk_pman1, string_offsets)
if self.features & 0x200:
# I am pretty sure this is a mapping for the structures parsed at 0x100.
offset = AFPFile.align(len(body))
body = AFPFile.pad(body, offset)
# Lay down PMAN pointer and PMAN structure itself.
bitchunks[9] = struct.pack(f"{self.endian}I", offset)
body = self.write_pman(body, offset, self.unk_pman2, string_offsets)
if self.features & 0x1000:
# Mapping of animations to their ID.
offset = AFPFile.align(len(body))
body = AFPFile.pad(body, offset)
# Lay down PMAN pointer and PMAN structure itself.
bitchunks[12] = struct.pack(f"{self.endian}I", offset)
body = self.write_pman(body, offset, self.animmap, string_offsets)
if self.features & 0x4000:
# Mapping of shapes to their ID.
offset = AFPFile.align(len(body))
body = AFPFile.pad(body, offset)
# Lay down PMAN pointer and PMAN structure itself.
bitchunks[14] = struct.pack(f"{self.endian}I", offset)
body = self.write_pman(body, offset, self.shapemap, string_offsets)
if self.features & 0x10000:
# Font information.
offset = AFPFile.align(len(body))
body = AFPFile.pad(body, offset)
bitchunks[16] = struct.pack(f"{self.endian}I", offset)
# Now, encode the font information.
fontbytes = self.benc.encode(self.fontdata)
body += struct.pack(
f"{self.endian}III",
0,
len(fontbytes),
offset + 12,
)
body += fontbytes
if self.features & 0x400:
# I haven't seen any files with any meaningful information for this, but
# it gets included anyway since games seem to parse it.
offset = AFPFile.align(len(body))
body = AFPFile.pad(body, offset)
# Point to current data location (seems to be what original files do too).
bitchunks[10] = struct.pack(f"{self.endian}I", offset)
if self.features & 0x8000:
# Unknown, never seen bit. We shouldn't be here, we set ourselves
# to read-only.
raise Exception("This should not be possible!")
if self.features & 0x20000:
# Animation header information.
offset = AFPFile.align(len(body))
body = AFPFile.pad(body, offset)
bitchunks[17] = struct.pack(f"{self.endian}I", offset)
# Now, calculate where we can put animation headers.
animation_offset = AFPFile.align(len(body) + (len(self.animations) * 12))
animheader = b""
# Now, lay them out.
for animation in self.animations:
# Write out the chunk itself.
body += struct.pack(
f"{self.endian}III",
0,
len(animation.header),
animation_offset + len(animheader),
)
animheader += AFPFile.pad(animation.header, AFPFile.align(len(animation.header)))
# Now, lay out the header itself
body += animheader
if self.features & 0x01:
# Now, go back and add texture data to the end of the file, fixing up the
# pointer to said data we wrote down earlier.
for texture in self.textures:
# Grab the offset we need to fix, our current offset and place
# the texture data itself down.
fix_offset, texture_data = texture_to_update_offset[texture.name]
offset = AFPFile.align(len(body))
body = AFPFile.pad(body, offset) + texture_data
# Now, update the patch location to make sure we point at the texture data.
body = body[:fix_offset] + struct.pack(f"{self.endian}I", offset) + body[(fix_offset + 4):]
# Bit 0x40000 is for lz options.
# Now, no matter what happened above, make sure file is aligned to 4 bytes.
offset = AFPFile.align(len(body))
body = AFPFile.pad(body, offset)
# Record the bitfield options into the bitfield structure, and we can
# get started writing the file out.
bitfields = struct.pack(f"{self.endian}I", self.features) + b"".join(bitchunks)
# Finally, now that we know the full file length, we can finish
# writing the header.
header += struct.pack(f"{self.endian}II", len(body), header_length + 24)
if len(header) != 20:
raise Exception("Logic error, incorrect header length!")
# Skip over padding to the body that we inserted specifically to track offsets
# against the headers.
return header + bitfields + body[(header_length + 24):]
def update_texture(self, name: str, png_data: bytes) -> None:
for texture in self.textures:
if texture.name == name:
# First, let's get the dimensions of this new picture and
# ensure that it is identical to the existing one.
img = Image.open(io.BytesIO(png_data))
if img.width != texture.width or img.height != texture.height:
raise Exception("Cannot update texture with different size!")
# Now, get the raw image data.
img = img.convert('RGBA')
texture.img = img
# Now, refresh the raw texture data for when we write it out.
self._refresh_texture(texture)
return
else:
raise Exception(f"There is no texture named {name}!")
def update_sprite(self, texture: str, sprite: str, png_data: bytes) -> None:
# First, identify the bounds where the texture lives.
for no, name in enumerate(self.texturemap.entries):
if name == texture:
textureno = no
break
else:
raise Exception(f"There is no texture named {texture}!")
for no, name in enumerate(self.regionmap.entries):
if name == sprite:
region = self.texture_to_region[no]
if region.textureno == textureno:
# We found the region associated with the sprite we want to update.
break
else:
raise Exception(f"There is no sprite named {sprite} on texture {texture}!")
# Now, figure out if the PNG data we got is valid.
sprite_img = Image.open(io.BytesIO(png_data))
if sprite_img.width != ((region.right // 2) - (region.left // 2)) or sprite_img.height != ((region.bottom // 2) - (region.top // 2)):
raise Exception("Cannot update sprite with different size!")
# Now, copy the data over and update the raw texture.
for tex in self.textures:
if tex.name == texture:
tex.img.paste(sprite_img, (region.left // 2, region.top // 2))
# Now, refresh the texture so when we save the file its updated.
self._refresh_texture(tex)
def _refresh_texture(self, texture: Texture) -> None:
if texture.fmt == 0x0B:
# 16-bit 565 color RGB format.
texture.raw = b"".join(
struct.pack(
f"{self.endian}H",
(
(((pixel[0] >> 3) & 0x1F) << 11) |
(((pixel[1] >> 2) & 0x3F) << 5) |
((pixel[2] >> 3) & 0x1F)
)
) for pixel in texture.img.getdata()
)
elif texture.fmt == 0x13:
# 16-bit A1R5G55 texture format.
texture.raw = b"".join(
struct.pack(
f"{self.endian}H",
(
(0x8000 if pixel[3] >= 128 else 0x0000) |
(((pixel[0] >> 3) & 0x1F) << 10) |
(((pixel[1] >> 3) & 0x1F) << 5) |
((pixel[2] >> 3) & 0x1F)
)
) for pixel in texture.img.getdata()
)
elif texture.fmt == 0x1F:
# 16-bit 4-4-4-4 RGBA format.
texture.raw = b"".join(
struct.pack(
f"{self.endian}H",
(
((pixel[2] >> 4) & 0xF) |
(((pixel[1] >> 4) & 0xF) << 4) |
(((pixel[0] >> 4) & 0xF) << 8) |
(((pixel[3] >> 4) & 0xF) << 12)
)
) for pixel in texture.img.getdata()
)
elif texture.fmt == 0x20:
# 32-bit RGBA format
texture.raw = b"".join(
struct.pack(
f"{self.endian}BBBB",
pixel[2],
pixel[1],
pixel[0],
pixel[3],
) for pixel in texture.img.getdata()
)
else:
raise Exception(f"Unsupported format {hex(texture.fmt)} for texture {texture.name}")
# Make sure we don't use the old compressed data.
texture.compressed = None
def main() -> int:
parser = argparse.ArgumentParser(description="Konami AFP graphic file unpacker/repacker")
subparsers = parser.add_subparsers(help='Action to take', dest='action')
extract_parser = subparsers.add_parser('extract', help='Extract relevant textures from file')
extract_parser.add_argument(
"file",
metavar="FILE",
help="The file to extract",
)
extract_parser.add_argument(
"dir",
metavar="DIR",
help="Directory to extract to",
)
extract_parser.add_argument(
"-p",
"--pretend",
action="store_true",
help="Pretend to extract instead of extracting",
)
extract_parser.add_argument(
"-v",
"--verbose",
action="store_true",
help="Display verbuse debugging output",
)
extract_parser.add_argument(
"-r",
"--write-raw",
action="store_true",
help="Always write raw texture files",
)
extract_parser.add_argument(
"-m",
"--write-mappings",
action="store_true",
help="Write mapping files to disk",
)
extract_parser.add_argument(
"-g",
"--generate-mapping-overlays",
action="store_true",
help="Generate overlay images showing mappings",
)
extract_parser.add_argument(
"-s",
"--split-textures",
action="store_true",
help="Split textures into individual sprites",
)
update_parser = subparsers.add_parser('update', help='Update relevant textures in a file from a directory')
update_parser.add_argument(
"file",
metavar="FILE",
help="The file to update",
)
update_parser.add_argument(
"dir",
metavar="DIR",
help="Directory to update from",
)
update_parser.add_argument(
"-p",
"--pretend",
action="store_true",
help="Pretend to update instead of updating",
)
update_parser.add_argument(
"-v",
"--verbose",
action="store_true",
help="Display verbuse debugging output",
)
print_parser = subparsers.add_parser('print', help='Print the file contents as a JSON dictionary')
print_parser.add_argument(
"file",
metavar="FILE",
help="The file to print",
)
args = parser.parse_args()
if args.action == "extract":
if args.split_textures:
if args.write_raw:
raise Exception("Cannot write raw textures when splitting sprites!")
if args.generate_mapping_overlays:
raise Exception("Cannot generate mapping overlays when splitting sprites!")
with open(args.file, "rb") as bfp:
afpfile = AFPFile(bfp.read(), verbose=args.verbose)
# Actually place the files down.
os.makedirs(args.dir, exist_ok=True)
if not args.split_textures:
for texture in afpfile.textures:
filename = os.path.join(args.dir, texture.name)
if texture.img:
if args.pretend:
print(f"Would write {filename}.png texture...")
else:
print(f"Writing {filename}.png texture...")
with open(f"{filename}.png", "wb") as bfp:
texture.img.save(bfp, format='PNG')
if not texture.img or args.write_raw:
if args.pretend:
print(f"Would write {filename}.raw texture...")
else:
print(f"Writing {filename}.raw texture...")
with open(f"{filename}.raw", "wb") as bfp:
bfp.write(texture.raw)
if args.pretend:
print(f"Would write {filename}.xml texture info...")
else:
print(f"Writing {filename}.xml texture info...")
with open(f"{filename}.xml", "w") as sfp:
sfp.write(textwrap.dedent(f"""
<info>
<width>{texture.width}</width>
<height>{texture.height}</height>
<type>{hex(texture.fmt)}</type>
<raw>{filename}.raw</raw>
</info>
""").strip())
if args.write_mappings:
if not args.split_textures:
for i, name in enumerate(afpfile.regionmap.entries):
if i < 0 or i >= len(afpfile.texture_to_region):
raise Exception(f"Out of bounds region {i}")
region = afpfile.texture_to_region[i]
texturename = afpfile.texturemap.entries[region.textureno]
filename = os.path.join(args.dir, name)
if args.pretend:
print(f"Would write {filename}.xml region information...")
else:
print(f"Writing {filename}.xml region information...")
with open(f"{filename}.xml", "w") as sfp:
sfp.write(textwrap.dedent(f"""
<info>
<left>{region.left}</left>
<top>{region.top}</top>
<right>{region.right}</right>
<bottom>{region.bottom}</bottom>
<texture>{texturename}</texture>
</info>
""").strip())
if afpfile.fontdata is not None:
filename = os.path.join(args.dir, "fontinfo.xml")
if args.pretend:
print(f"Would write {filename} font information...")
else:
print(f"Writing {filename} font information...")
with open(filename, "w") as sfp:
sfp.write(str(afpfile.fontdata))
if args.generate_mapping_overlays:
overlays: Dict[str, Any] = {}
for i, name in enumerate(afpfile.regionmap.entries):
if i < 0 or i >= len(afpfile.texture_to_region):
raise Exception(f"Out of bounds region {i}")
region = afpfile.texture_to_region[i]
texturename = afpfile.texturemap.entries[region.textureno]
if texturename not in overlays:
for texture in afpfile.textures:
if texture.name == texturename:
overlays[texturename] = Image.new(
'RGBA',
(texture.width, texture.height),
(0, 0, 0, 0),
)
break
else:
raise Exception(f"Couldn't find texture {texturename}")
draw = ImageDraw.Draw(overlays[texturename])
draw.rectangle(
((region.left // 2, region.top // 2), (region.right // 2, region.bottom // 2)),
fill=(0, 0, 0, 0),
outline=(255, 0, 0, 255),
width=1,
)
draw.text(
(region.left // 2, region.top // 2),
name,
fill=(255, 0, 255, 255),
)
for name, img in overlays.items():
filename = os.path.join(args.dir, name) + "_overlay.png"
if args.pretend:
print(f"Would write {filename} overlay...")
else:
print(f"Writing {filename} overlay...")
with open(filename, "wb") as bfp:
img.save(bfp, format='PNG')
if args.split_textures:
textures: Dict[str, Any] = {}
announced: Dict[str, bool] = {}
for i, name in enumerate(afpfile.regionmap.entries):
if i < 0 or i >= len(afpfile.texture_to_region):
raise Exception(f"Out of bounds region {i}")
region = afpfile.texture_to_region[i]
texturename = afpfile.texturemap.entries[region.textureno]
if texturename not in textures:
for tex in afpfile.textures:
if tex.name == texturename:
textures[texturename] = tex
break
else:
raise Exception("Could not find texture {texturename} to split!")
if textures[texturename].img:
# Grab the location in the image, save it out to a new file.
filename = f"{texturename}_{name}.png"
filename = os.path.join(args.dir, filename)
if args.pretend:
print(f"Would write {filename} sprite...")
else:
print(f"Writing {filename} sprite...")
sprite = textures[texturename].img.crop(
(region.left // 2, region.top // 2, region.right // 2, region.bottom // 2),
)
with open(filename, "wb") as bfp:
sprite.save(bfp, format='PNG')
else:
if not announced.get(texturename, False):
print(f"Cannot extract sprites from {texturename} because it is not a supported format!")
announced[texturename] = True
if args.action == "update":
# First, parse the file out
with open(args.file, "rb") as bfp:
afpfile = AFPFile(bfp.read(), verbose=args.verbose)
# Now, find any PNG files that match texture names.
for texture in afpfile.textures:
filename = os.path.join(args.dir, texture.name) + ".png"
if os.path.isfile(filename):
print(f"Updating {texture.name} from {filename}...")
with open(filename, "rb") as bfp:
afpfile.update_texture(texture.name, bfp.read())
# Now, find any PNG files that match a specific sprite.
for i, spritename in enumerate(afpfile.regionmap.entries):
if i < 0 or i >= len(afpfile.texture_to_region):
raise Exception(f"Out of bounds region {i}")
region = afpfile.texture_to_region[i]
texturename = afpfile.texturemap.entries[region.textureno]
# Grab the location in the image to see if it exists.
filename = f"{texturename}_{spritename}.png"
filename = os.path.join(args.dir, filename)
if os.path.isfile(filename):
print(f"Updating {texturename} sprite piece {spritename} from {filename}...")
with open(filename, "rb") as bfp:
afpfile.update_sprite(texturename, spritename, bfp.read())
# Now, write out the updated file
if args.pretend:
print(f"Would write {args.file}...")
afpfile.unparse()
else:
print(f"Writing {args.file}...")
data = afpfile.unparse()
with open(args.file, "wb") as bfp:
bfp.write(data)
if args.action == "print":
# First, parse the file out
with open(args.file, "rb") as bfp:
afpfile = AFPFile(bfp.read(), verbose=False)
# Now, print it
print(json.dumps(afpfile.as_dict(), sort_keys=True, indent=4))
return 0
if __name__ == "__main__":
sys.exit(main())