1
0
mirror of synced 2024-12-21 10:25:54 +01:00
bemaniutils/bemani/format/afp/swf.py

2452 lines
117 KiB
Python

import os
import struct
import sys
from typing import Any, Dict, List, Optional, Tuple
from typing_extensions import Final
from .decompile import ByteCode
from .types import (
Matrix,
Color,
Point,
Rectangle,
AP2Action,
AP2Tag,
AP2Trigger,
DefineFunction2Action,
InitRegisterAction,
StoreRegisterAction,
JumpAction,
WithAction,
PushAction,
AddNumVariableAction,
AddNumRegisterAction,
IfAction,
GetURL2Action,
StartDragAction,
GotoFrame2Action,
Register,
StringConstant,
NULL,
UNDEFINED,
THIS,
ROOT,
PARENT,
CLIP,
GLOBAL,
)
from .util import TrackedCoverage, VerboseOutput
class NamedTagReference:
def __init__(self, swf_name: str, tag_name: str) -> None:
self.swf = swf_name
self.tag = tag_name
def as_dict(self, *args: Any, **kwargs: Any) -> Dict[str, Any]:
return {
'swf': self.swf,
'tag': self.tag,
}
def __repr__(self) -> str:
return f"{self.swf}.{self.tag}"
class TagPointer:
# A pointer to a tag in this SWF by Tag ID and containing an optional initialization bytecode
# to run for this tag when it is placed/executed.
def __init__(self, id: Optional[int], init_bytecode: Optional[ByteCode] = None) -> None:
self.id = id
self.init_bytecode = init_bytecode
def as_dict(self, *args: Any, **kwargs: Any) -> Dict[str, Any]:
return {
'id': self.id,
'init_bytecode': self.init_bytecode.as_dict(*args, **kwargs) if self.init_bytecode else None,
}
class Frame:
def __init__(self, start_tag_offset: int, num_tags: int, imported_tags: List[TagPointer] = []) -> None:
# The start tag offset into the tag list where we should begin placing/executing tags for this frame.
self.start_tag_offset = start_tag_offset
# The number of tags to pace/execute during this frame.
self.num_tags = num_tags
# A list of any imported tags that are to be placed this frame.
self.imported_tags = imported_tags or []
# The current tag we're processing, if any.
self.current_tag = 0
def as_dict(self, *args: Any, **kwargs: Any) -> Dict[str, Any]:
return {
'start_tag_offset': self.start_tag_offset,
'num_tags': self.num_tags,
'imported_tags': [i.as_dict(*args, **kwargs) for i in self.imported_tags],
}
class Tag:
# Any tag that can appear in the SWF. All tags will subclass from this for their behavior.
def __init__(self, id: Optional[int]) -> None:
self.id = id
def as_dict(self, *args: Any, **kwargs: Any) -> Dict[str, Any]:
return {
'id': self.id,
'type': self.__class__.__name__,
}
class AP2ShapeTag(Tag):
id: int
def __init__(self, id: int, reference: str) -> None:
super().__init__(id)
# The reference is the name of a shape (geo structure) that defines this primitive or sprite.
self.reference = reference
def as_dict(self, *args: Any, **kwargs: Any) -> Dict[str, Any]:
return {
**super().as_dict(*args, **kwargs),
'reference': self.reference,
}
class AP2ImageTag(Tag):
id: int
def __init__(self, id: int, reference: str) -> None:
super().__init__(id)
# The reference is the name of a texture that will be displayed directly.
self.reference = reference
def as_dict(self, *args: Any, **kwargs: Any) -> Dict[str, Any]:
return {
**super().as_dict(*args, **kwargs),
'reference': self.reference,
}
class AP2DefineFontTag(Tag):
id: int
def __init__(self, id: int, fontname: str, xml_prefix: str, heights: List[int], text_indexes: List[int]) -> None:
super().__init__(id)
# The font name is just the pretty name of the font.
self.fontname = fontname
# The XML prefix is the reference into any font XML to look up individual
# glyphs for a font in a texture map.
self.xml_prefix = xml_prefix
# The list of heights are concatenated with the above XML prefix and the
# unicode glyph you want to display, to find the corresponding location
# in the texture map.
self.heights = heights
# The list of text indexes are concatenated with the above prefix and height
# as a hex value to grab the actual character location in the font. It can
# be interpreted as an ascii value using chr() most of the time.
self.text_indexes = text_indexes
def as_dict(self, *args: Any, **kwargs: Any) -> Dict[str, Any]:
return {
**super().as_dict(*args, **kwargs),
'fontname': self.fontname,
'xml_prefix': self.xml_prefix,
'heights': self.heights,
'text_indexes': self.text_indexes,
}
class AP2TextChar:
def __init__(self, font_text_index: int, width: float) -> None:
# Given the parent line's font, this is an offset into the font's text indexes.
# This allows you to look up what actual character is being displayed at this
# location.
self.font_text_index = font_text_index
# This is the width of the character. Don't know why this isn't looked up in
# the font?
self.width = width
def as_dict(self, *args: Any, **kwargs: Any) -> Dict[str, Any]:
return {
'font_text_index': self.font_text_index,
'width': self.width,
}
class AP2TextLine:
def __init__(self, font_tag: Optional[int], height: int, xpos: float, ypos: float, entries: List[AP2TextChar]) -> None:
self.font_tag = font_tag
self.font_height = height
self.xpos = xpos
self.ypos = ypos
self.entries = entries
def as_dict(self, *args: Any, **kwargs: Any) -> Dict[str, Any]:
return {
'font_tag': self.font_tag,
'font_height': self.font_height,
'xpos': self.xpos,
'ypos': self.ypos,
'entries': [e.as_dict(*args, **kwargs) for e in self.entries],
}
class AP2DefineMorphShapeTag(Tag):
id: int
def __init__(self, id: int) -> None:
# TODO: I need to figure out what morph shapes actually DO, and take the
# values that I parsed out store them here...
super().__init__(id)
def as_dict(self, *args: Any, **kwargs: Any) -> Dict[str, Any]:
return {
**super().as_dict(*args, **kwargs),
}
class AP2DefineButtonTag(Tag):
id: int
def __init__(self, id: int) -> None:
# TODO: I need to figure out what buttons actually DO, and take the
# values that I parsed out store them here...
super().__init__(id)
def as_dict(self, *args: Any, **kwargs: Any) -> Dict[str, Any]:
return {
**super().as_dict(*args, **kwargs),
}
class AP2PlaceCameraTag(Tag):
def __init__(self, camera_id: int, center: Optional[Point], focal_length: float) -> None:
super().__init__(None)
# This is not actually Tag ID, just a way to refer to the camera. Confusing, I know.
# Probably this happened when they hacked 3D into the format.
self.camera_id = camera_id
self.center = center
self.focal_length = focal_length
def as_dict(self, *args: Any, **kwargs: Any) -> Dict[str, Any]:
return {
**super().as_dict(*args, **kwargs),
"camera_id": self.camera_id,
'center': self.center.as_dict(*args, **kwargs) if self.center is not None else None,
"focal_length": self.focal_length,
}
class AP2DefineTextTag(Tag):
id: int
def __init__(self, id: int, lines: List[AP2TextLine]) -> None:
super().__init__(id)
self.lines = lines
def as_dict(self, *args: Any, **kwargs: Any) -> Dict[str, Any]:
return {
**super().as_dict(*args, **kwargs),
'lines': [line.as_dict(*args, **kwargs) for line in self.lines],
}
class AP2DoActionTag(Tag):
def __init__(self, bytecode: ByteCode) -> None:
# Do Action Tags are not identified by any tag ID.
super().__init__(None)
# The bytecode is the actual execution that we expect to perform once
# this tag is placed/executed.
self.bytecode = bytecode
def as_dict(self, *args: Any, **kwargs: Any) -> Dict[str, Any]:
return {
**super().as_dict(*args, **kwargs),
'bytecode': self.bytecode.as_dict(*args, **kwargs),
}
class AP2PlaceObjectTag(Tag):
PROJECTION_NONE: Final[int] = 0
PROJECTION_AFFINE: Final[int] = 1
PROJECTION_PERSPECTIVE: Final[int] = 2
def __init__(
self,
object_id: int,
depth: int,
src_tag_id: Optional[int],
movie_name: Optional[str],
label_name: Optional[int],
blend: Optional[int],
update: bool,
transform: Optional[Matrix],
rotation_origin: Optional[Point],
projection: int,
mult_color: Optional[Color],
add_color: Optional[Color],
triggers: Dict[int, List[ByteCode]],
unrecognized_options: bool,
) -> None:
# Place Object Tags are not identified by any tag ID.
super().__init__(None)
# The object ID that we should associate with this object, for removal
# and presumably update and other uses. Not the same as Tag ID.
self.object_id = object_id
# The depth (level) that we should remove objects from.
self.depth = depth
# The source tag ID (should point at an AP2ShapeTag or AP2SpriteTag by ID) if present.
self.source_tag_id = src_tag_id
# The name of the object this should be placed in, if present.
self.movie_name = movie_name
# A name index, possibly referred to later by a Name Reference tag section.
self.label_name = label_name
# The blend mode of this object, if present.
self.blend = blend
# Whether this is an object update (True) or a new object (False).
self.update = update
# Whether there is a transform matrix to apply before placing/updating this object or not.
self.transform = transform
self.rotation_origin = rotation_origin
# What projection system to use when displaying this object.
self.projection = projection
# If there is a color to blend with the sprite/shape when drawing.
self.mult_color = mult_color
# If there is a color to add with the sprite/shape when drawing.
self.add_color = add_color
# List of triggers for this object, and their respective bytecodes to execute when the trigger
# fires.
self.triggers = triggers
# Whether this tag has unrecognized options applied to it.
self.unrecognized_options = unrecognized_options
def as_dict(self, *args: Any, **kwargs: Any) -> Dict[str, Any]:
return {
**super().as_dict(*args, **kwargs),
'object_id': self.object_id,
'depth': self.depth,
'source_tag_id': self.source_tag_id,
'movie_name': self.movie_name,
'label_name': self.label_name,
'blend': self.blend,
'update': self.update,
'transform': self.transform.as_dict(*args, **kwargs) if self.transform is not None else None,
'rotation_origin': self.rotation_origin.as_dict(*args, **kwargs) if self.rotation_origin is not None else None,
'projection': 'none' if self.projection == self.PROJECTION_NONE else ('affine' if self.projection == self.PROJECTION_AFFINE else 'perspective'),
'mult_color': self.mult_color.as_dict(*args, **kwargs) if self.mult_color is not None else None,
'add_color': self.add_color.as_dict(*args, **kwargs) if self.add_color is not None else None,
'triggers': {i: [b.as_dict(*args, **kwargs) for b in t] for (i, t) in self.triggers.items()}
}
def __repr__(self) -> str:
return f"AP2PlaceObjectTag(object_id={self.object_id}, depth={self.depth})"
class AP2RemoveObjectTag(Tag):
def __init__(self, object_id: int, depth: int) -> None:
# Remove Object Tags are not identified by any tag ID.
super().__init__(None)
# The object ID that we should remove, or 0 if we should only remove by depth.
self.object_id = object_id
# The depth (level) that we should remove objects from.
self.depth = depth
def as_dict(self, *args: Any, **kwargs: Any) -> Dict[str, Any]:
return {
**super().as_dict(*args, **kwargs),
'object_id': self.object_id,
'depth': self.depth,
}
class AP2DefineSpriteTag(Tag):
id: int
def __init__(self, id: int, tags: List[Tag], frames: List[Frame], labels: Dict[str, int]) -> None:
super().__init__(id)
# The list of tags that this sprite consists of. Sprites are, much like vanilla
# SWFs, basically entire SWF movies embedded in them.
self.tags = tags
# The list of frames this SWF occupies.
self.frames = frames
# A list of strings pointing at frame numbers as used in bytecode.
self.labels = labels
def as_dict(self, *args: Any, **kwargs: Any) -> Dict[str, Any]:
return {
**super().as_dict(*args, **kwargs),
'tags': [t.as_dict(*args, **kwargs) for t in self.tags],
'frames': [f.as_dict(*args, **kwargs) for f in self.frames],
'labels': self.labels,
}
class AP2DefineEditTextTag(Tag):
id: int
def __init__(self, id: int, font_tag_id: int, font_height: int, rect: Rectangle, color: Color, default_text: Optional[str] = None) -> None:
super().__init__(id)
# The ID of the Ap2DefineFontTag that we want to use for the text.
self.font_tag_id = font_tag_id
# The height we want to select for the text (must be one of the heights in
# the referenced Ap2DefineFontTag tag).
self.font_height = font_height
# The bounding rectangle for this exit text control.
self.rect = rect
# The text color we want to use when displaying the text.
self.color = color
# The default text that should be present in the control when it is initially placed/executed.
self.default_text = default_text
def as_dict(self, *args: Any, **kwargs: Any) -> Dict[str, Any]:
return {
**super().as_dict(*args, **kwargs),
'font_tag_id': self.font_tag_id,
'font_height': self.font_height,
'rect': self.rect.as_dict(*args, **kwargs),
'color': self.color.as_dict(*args, **kwargs),
'default_text': self.default_text,
}
class SWF(VerboseOutput, TrackedCoverage):
def __init__(
self,
name: str,
data: bytes,
descramble_info: bytes = b"",
) -> None:
# First, init the coverage engine.
super().__init__()
# Name of this SWF, according to the container it was extracted from.
self.name: str = name
# Name of this SWF, as referenced by other SWFs that require imports from it.
self.exported_name: str = ""
# Full, unparsed data for this SWF, as well as the descrambling headers.
self.data: bytes = data
self.descramble_info: bytes = descramble_info
# Data version of this SWF.
self.data_version: int = 0
# Container version of this SWF.
self.container_version: int = 0
# The requested frames per second this SWF plays at.
self.fps: float = 0.0
# Background color of this SWF movie.
self.color: Optional[Color] = None
# Location of this SWF in screen space.
self.location: Rectangle = Rectangle.Empty()
# Exported tags, indexed by their name and pointing to the Tag ID that name identifies.
self.exported_tags: Dict[str, int] = {}
# Imported tags, indexed by their Tag ID, and pointing at the SWF asset and exported tag name.
self.imported_tags: Dict[int, NamedTagReference] = {}
# Actual tags for this SWF, ordered by their appearance in the file.
self.tags: List[Tag] = []
# Frames of this SWF, with the tag offset in the above list and number of tags to
# "execute" that frame.
self.frames: List[Frame] = []
# Reference LUT for mapping object reference IDs and frame numbers to names a used in bytecode.
self.labels: Dict[str, int] = {}
# SWF string table. This is used for faster lookup of strings as well as
# tracking which strings in the table have been parsed correctly.
self.__strings: Dict[int, Tuple[str, bool]] = {}
# Whether this is parsed or not.
self.parsed = False
def print_coverage(self, *args: Any, **kwargs: Any) -> None:
# First print uncovered bytes
super().print_coverage(*args, **kwargs)
# Now, print uncovered strings
for offset, (string, covered) in self.__strings.items():
if covered:
continue
print(f"Uncovered string: {hex(offset)} - {string}", file=sys.stderr)
def as_dict(self, *args: Any, **kwargs: Any) -> Dict[str, Any]:
return {
'name': self.name,
'exported_name': self.exported_name,
'data_version': self.data_version,
'container_version': self.container_version,
'fps': self.fps,
'color': self.color.as_dict(*args, **kwargs) if self.color is not None else None,
'location': self.location.as_dict(*args, **kwargs),
'exported_tags': self.exported_tags,
'imported_tags': {i: self.imported_tags[i].as_dict(*args, **kwargs) for i in self.imported_tags},
'tags': [t.as_dict(*args, **kwargs) for t in self.tags],
'frames': [f.as_dict(*args, **kwargs) for f in self.frames],
'labels': self.labels,
}
def __parse_bytecode(self, bytecode_name: Optional[str], datachunk: bytes, string_offsets: List[int] = [], prefix: str = "") -> ByteCode:
# First, we need to check if this is a SWF-style bytecode or an AP2 bytecode.
ap2_sentinel = struct.unpack("<B", datachunk[0:1])[0]
if ap2_sentinel != 0xFF:
raise Exception("Encountered SWF-style bytecode but we don't support this!")
# Now, we need to grab the flags byte which tells us how to find the actual bytecode.
flags = struct.unpack("<B", datachunk[1:2])[0]
if flags & 0x1:
# There is an offset pointer telling us where the data is as well as string offset tables.
string_offsets_count = struct.unpack("<H", datachunk[2:4])[0]
# We don't want to overwrite the global ones with our current ones.
if not string_offsets:
string_offsets = list(struct.unpack("<" + ("H" * string_offsets_count), datachunk[4:(4 + (2 * string_offsets_count))]))
offset_ptr = (string_offsets_count + 2) * 2
else:
# The data directly follows, no pointer.
offset_ptr = 2
self.vprint(f"{prefix} Flags: {hex(flags)}, ByteCode Actual Offset: {hex(offset_ptr)}", component="bytecode")
# Actually parse out the opcodes:
actions: List[AP2Action] = []
while offset_ptr < len(datachunk):
# We leave it up to the individual opcode handlers to increment the offset pointer. By default, parameterless
# opcodes increase by one. Everything else increases by its own amount. Opcode parsing here is done in big-endian
# as the game code seems to always parse big-endian values.
opcode = struct.unpack(">B", datachunk[offset_ptr:(offset_ptr + 1)])[0]
action_name = AP2Action.action_to_name(opcode)
lineno = offset_ptr
if opcode in AP2Action.actions_without_params():
# Simple opcodes need no parsing, they can go directly onto the stack.
self.vprint(f"{prefix} {lineno}: {action_name}", component="bytecode")
offset_ptr += 1
actions.append(AP2Action(lineno, opcode))
elif opcode == AP2Action.DEFINE_FUNCTION2:
function_flags, funcname_offset, bytecode_offset, _, bytecode_count = struct.unpack(
">HHHBH",
datachunk[(offset_ptr + 1):(offset_ptr + 10)],
)
if funcname_offset == 0:
funcname = None
else:
funcname = self.__get_string(funcname_offset)
offset_ptr += 10 + (3 * bytecode_offset)
self.vprint(f"{prefix} {lineno}: {action_name} Flags: {hex(function_flags)}, Name: {funcname or '<anonymous function>'}, ByteCode Offset: {hex(bytecode_offset)}, ByteCode Length: {hex(bytecode_count)}", component="bytecode")
# No name for this chunk, it will only ever be decompiled and printed in the context of another
# chunk.
function = self.__parse_bytecode(None, datachunk[offset_ptr:(offset_ptr + bytecode_count)], string_offsets=string_offsets, prefix=prefix + " ")
self.vprint(f"{prefix} END_{action_name}", component="bytecode")
actions.append(DefineFunction2Action(lineno, funcname, function_flags, function))
offset_ptr += bytecode_count
elif opcode == AP2Action.PUSH:
obj_count = struct.unpack(">B", datachunk[(offset_ptr + 1):(offset_ptr + 2)])[0]
offset_ptr += 2
self.vprint(f"{prefix} {lineno}: {action_name}", component="bytecode")
objects: List[Any] = []
while obj_count > 0:
obj_to_create = struct.unpack(">B", datachunk[offset_ptr:(offset_ptr + 1)])[0]
offset_ptr += 1
if obj_to_create == 0x0:
# Integer "0" object.
objects.append(0)
self.vprint(f"{prefix} INTEGER: 0", component="bytecode")
elif obj_to_create == 0x1:
# Float object, represented internally as a double.
fval = struct.unpack(">f", datachunk[offset_ptr:(offset_ptr + 4)])[0]
objects.append(fval)
offset_ptr += 4
self.vprint(f"{prefix} FLOAT: {fval}", component="bytecode")
elif obj_to_create == 0x2:
# Null pointer object.
objects.append(NULL)
self.vprint(f"{prefix} NULL", component="bytecode")
elif obj_to_create == 0x3:
# Undefined constant.
objects.append(UNDEFINED)
self.vprint(f"{prefix} UNDEFINED", component="bytecode")
elif obj_to_create == 0x4:
# Register value.
regno = struct.unpack(">B", datachunk[offset_ptr:(offset_ptr + 1)])[0]
objects.append(Register(regno))
offset_ptr += 1
self.vprint(f"{prefix} REGISTER NO: {regno}", component="bytecode")
elif obj_to_create == 0x5:
# Boolean "TRUE" object.
objects.append(True)
self.vprint(f"{prefix} BOOLEAN: True", component="bytecode")
elif obj_to_create == 0x6:
# Boolean "FALSE" object.
objects.append(False)
self.vprint(f"{prefix} BOOLEAN: False", component="bytecode")
elif obj_to_create == 0x7:
# Integer object.
ival = struct.unpack(">i", datachunk[offset_ptr:(offset_ptr + 4)])[0]
objects.append(ival)
offset_ptr += 4
self.vprint(f"{prefix} INTEGER: {ival}", component="bytecode")
elif obj_to_create == 0x8:
# String constant object.
const_offset = struct.unpack(">B", datachunk[offset_ptr:(offset_ptr + 1)])[0]
const = self.__get_string(string_offsets[const_offset])
objects.append(const)
offset_ptr += 1
self.vprint(f"{prefix} STRING CONST: {const}", component="bytecode")
elif obj_to_create == 0x9:
# String constant, but with 16 bits for the offset. Probably not used except
# on the largest files.
const_offset = struct.unpack(">H", datachunk[offset_ptr:(offset_ptr + 2)])[0]
const = self.__get_string(string_offsets[const_offset])
objects.append(const)
offset_ptr += 2
self.vprint(f"{prefix} STRING CONST: {const}", component="bytecode")
elif obj_to_create == 0xa:
# NaN constant.
objects.append(float("nan"))
self.vprint(f"{prefix} NAN", component="bytecode")
elif obj_to_create == 0xb:
# Infinity constant.
objects.append(float("inf"))
self.vprint(f"{prefix} INFINITY", component="bytecode")
elif obj_to_create == 0xc:
# Pointer to "this" object, whatever currently is executing the bytecode.
objects.append(THIS)
self.vprint(f"{prefix} POINTER TO THIS", component="bytecode")
elif obj_to_create == 0xd:
# Pointer to "root" object, which is the movieclip this bytecode exists in.
objects.append(ROOT)
self.vprint(f"{prefix} POINTER TO ROOT", component="bytecode")
elif obj_to_create == 0xe:
# Pointer to "parent" object, whatever currently is executing the bytecode.
# This seems to be the parent of the movie clip, or the current movieclip
# if that isn't set.
objects.append(PARENT)
self.vprint(f"{prefix} POINTER TO PARENT", component="bytecode")
elif obj_to_create == 0xf:
# Current movie clip.
objects.append(CLIP)
self.vprint(f"{prefix} POINTER TO CURRENT MOVIECLIP", component="bytecode")
elif obj_to_create == 0x10:
# Property constant with no alias.
propertyval = struct.unpack(">B", datachunk[offset_ptr:(offset_ptr + 1)])[0] + 0x100
objects.append(StringConstant(propertyval))
offset_ptr += 1
self.vprint(f"{prefix} PROPERTY CONST NAME: {StringConstant.property_to_name(propertyval)}", component="bytecode")
elif obj_to_create == 0x11:
# Property constant referencing a string table entry.
propertyval, reference = struct.unpack(">BB", datachunk[offset_ptr:(offset_ptr + 2)])
propertyval += 0x100
referenceval = self.__get_string(string_offsets[reference])
objects.append(StringConstant(propertyval, referenceval))
offset_ptr += 2
self.vprint(f"{prefix} PROPERTY CONST NAME: {StringConstant.property_to_name(propertyval)}, ALIAS: {referenceval}", component="bytecode")
elif obj_to_create == 0x12:
# Same as above, but with allowance for a 16-bit constant offset.
propertyval, reference = struct.unpack(">BH", datachunk[offset_ptr:(offset_ptr + 3)])
propertyval += 0x100
referenceval = self.__get_string(string_offsets[reference])
objects.append(StringConstant(propertyval, referenceval))
offset_ptr += 3
self.vprint(f"{prefix} PROPERTY CONST NAME: {StringConstant.property_to_name(propertyval)}, ALIAS: {referenceval}", component="bytecode")
elif obj_to_create == 0x13:
# Class property name.
propertyval = struct.unpack(">B", datachunk[offset_ptr:(offset_ptr + 1)])[0] + 0x300
objects.append(StringConstant(propertyval))
offset_ptr += 1
self.vprint(f"{prefix} CLASS CONST NAME: {StringConstant.property_to_name(propertyval)}", component="bytecode")
elif obj_to_create == 0x14:
# Class property constant with alias.
propertyval, reference = struct.unpack(">BB", datachunk[offset_ptr:(offset_ptr + 2)])
propertyval += 0x300
referenceval = self.__get_string(string_offsets[reference])
objects.append(StringConstant(propertyval, referenceval))
offset_ptr += 2
self.vprint(f"{prefix} CLASS CONST NAME: {StringConstant.property_to_name(propertyval)}, ALIAS: {referenceval}", component="bytecode")
# One would expect 0x15 to be identical to 0x12 but for class properties instead. However, it appears
# that this has been omitted from game binaries.
elif obj_to_create == 0x16:
# Func property name.
propertyval = struct.unpack(">B", datachunk[offset_ptr:(offset_ptr + 1)])[0] + 0x400
objects.append(StringConstant(propertyval))
offset_ptr += 1
self.vprint(f"{prefix} FUNC CONST NAME: {StringConstant.property_to_name(propertyval)}", component="bytecode")
elif obj_to_create == 0x17:
# Func property name referencing a string table entry.
propertyval, reference = struct.unpack(">BB", datachunk[offset_ptr:(offset_ptr + 2)])
propertyval += 0x400
referenceval = self.__get_string(string_offsets[reference])
objects.append(StringConstant(propertyval, referenceval))
offset_ptr += 2
self.vprint(f"{prefix} FUNC CONST NAME: {StringConstant.property_to_name(propertyval)}, ALIAS: {referenceval}", component="bytecode")
# Same comment with 0x15 applies here with 0x18.
elif obj_to_create == 0x19:
# Other property name.
propertyval = struct.unpack(">B", datachunk[offset_ptr:(offset_ptr + 1)])[0] + 0x200
objects.append(StringConstant(propertyval))
offset_ptr += 1
self.vprint(f"{prefix} OTHER CONST NAME: {StringConstant.property_to_name(propertyval)}", component="bytecode")
elif obj_to_create == 0x1a:
# Other property name referencing a string table entry.
propertyval, reference = struct.unpack(">BB", datachunk[offset_ptr:(offset_ptr + 2)])
propertyval += 0x200
referenceval = self.__get_string(string_offsets[reference])
objects.append(StringConstant(propertyval, referenceval))
offset_ptr += 2
self.vprint(f"{prefix} OTHER CONST NAME: {StringConstant.property_to_name(propertyval)}, ALIAS: {referenceval}", component="bytecode")
# Same comment with 0x15 and 0x18 applies here with 0x1b.
elif obj_to_create == 0x1c:
# Event property name.
propertyval = struct.unpack(">B", datachunk[offset_ptr:(offset_ptr + 1)])[0] + 0x500
objects.append(StringConstant(propertyval))
offset_ptr += 1
self.vprint(f"{prefix} EVENT CONST NAME: {StringConstant.property_to_name(propertyval)}", component="bytecode")
elif obj_to_create == 0x1d:
# Event property name referencing a string table entry.
propertyval, reference = struct.unpack(">BB", datachunk[offset_ptr:(offset_ptr + 2)])
propertyval += 0x500
referenceval = self.__get_string(string_offsets[reference])
objects.append(StringConstant(propertyval, referenceval))
offset_ptr += 2
self.vprint(f"{prefix} EVENT CONST NAME: {StringConstant.property_to_name(propertyval)}, ALIAS: {referenceval}", component="bytecode")
# Same comment with 0x15, 0x18 and 0x1b applies here with 0x1e.
elif obj_to_create == 0x1f:
# Key constants.
propertyval = struct.unpack(">B", datachunk[offset_ptr:(offset_ptr + 1)])[0] + 0x600
objects.append(StringConstant(propertyval))
offset_ptr += 1
self.vprint(f"{prefix} KEY CONST NAME: {StringConstant.property_to_name(propertyval)}", component="bytecode")
elif obj_to_create == 0x20:
# Key property name referencing a string table entry.
propertyval, reference = struct.unpack(">BB", datachunk[offset_ptr:(offset_ptr + 2)])
propertyval += 0x600
referenceval = self.__get_string(string_offsets[reference])
objects.append(StringConstant(propertyval, referenceval))
offset_ptr += 2
self.vprint(f"{prefix} KEY CONST NAME: {StringConstant.property_to_name(propertyval)}, ALIAS: {referenceval}", component="bytecode")
# Same comment with 0x15, 0x18, 0x1b and 0x1e applies here with 0x21.
elif obj_to_create == 0x22:
# Pointer to global object.
objects.append(GLOBAL)
self.vprint(f"{prefix} POINTER TO GLOBAL OBJECT", component="bytecode")
elif obj_to_create == 0x23:
# Negative infinity.
objects.append(float("-inf"))
self.vprint(f"{prefix} -INFINITY", component="bytecode")
elif obj_to_create == 0x24:
# Some other property name.
propertyval = struct.unpack(">B", datachunk[offset_ptr:(offset_ptr + 1)])[0] + 0x700
objects.append(StringConstant(propertyval))
offset_ptr += 1
self.vprint(f"{prefix} ETC2 CONST NAME: {StringConstant.property_to_name(propertyval)}", component="bytecode")
# Possibly in newer binaries, 0x25 and 0x26 are implemented as 8-bit and 16-bit alias pointer
# versions of 0x24.
elif obj_to_create == 0x27:
# Some other property name.
propertyval = struct.unpack(">B", datachunk[offset_ptr:(offset_ptr + 1)])[0] + 0x800
objects.append(StringConstant(propertyval))
offset_ptr += 1
self.vprint(f"{prefix} ORGFUNC2 CONST NAME: {StringConstant.property_to_name(propertyval)}", component="bytecode")
# Possibly in newer binaries, 0x28 and 0x29 are implemented as 8-bit and 16-bit alias pointer
# versions of 0x27.
elif obj_to_create == 0x2a:
# Some other property name.
propertyval = struct.unpack(">B", datachunk[offset_ptr:(offset_ptr + 1)])[0] + 0x900
objects.append(StringConstant(propertyval))
offset_ptr += 1
self.vprint(f"{prefix} ETCFUNC2 CONST NAME: {StringConstant.property_to_name(propertyval)}", component="bytecode")
# Possibly in newer binaries, 0x2b and 0x2c are implemented as 8-bit and 16-bit alias pointer
# versions of 0x2a.
elif obj_to_create == 0x2d:
# Some other property name.
propertyval = struct.unpack(">B", datachunk[offset_ptr:(offset_ptr + 1)])[0] + 0xa00
objects.append(StringConstant(propertyval))
offset_ptr += 1
self.vprint(f"{prefix} EVENT2 CONST NAME: {StringConstant.property_to_name(propertyval)}", component="bytecode")
# Possibly in newer binaries, 0x2e and 0x2f are implemented as 8-bit and 16-bit alias pointer
# versions of 0x2d.
elif obj_to_create == 0x30:
# Some other property name.
propertyval = struct.unpack(">B", datachunk[offset_ptr:(offset_ptr + 1)])[0] + 0xb00
objects.append(StringConstant(propertyval))
offset_ptr += 1
self.vprint(f"{prefix} EVENT METHOD CONST NAME: {StringConstant.property_to_name(propertyval)}", component="bytecode")
# Possibly in newer binaries, 0x31 and 0x32 are implemented as 8-bit and 16-bit alias pointer
# versions of 0x30.
elif obj_to_create == 0x33:
# Signed 64 bit integer init. Uses special "S64" type.
int64 = struct.unpack(">q", datachunk[offset_ptr:(offset_ptr + 8)])
objects.append(int64)
offset_ptr += 8
self.vprint(f"{prefix} INTEGER: {int64}", component="bytecode")
elif obj_to_create == 0x34:
# Some other property names.
propertyval = struct.unpack(">B", datachunk[offset_ptr:(offset_ptr + 1)])[0] + 0xc00
objects.append(StringConstant(propertyval))
offset_ptr += 1
self.vprint(f"{prefix} GENERIC CONST NAME: {StringConstant.property_to_name(propertyval)}", component="bytecode")
# Possibly in newer binaries, 0x35 and 0x36 are implemented as 8-bit and 16-bit alias pointer
# versions of 0x34.
elif obj_to_create == 0x37:
# Integer object but one byte.
ival = struct.unpack(">b", datachunk[offset_ptr:(offset_ptr + 1)])[0]
objects.append(ival)
offset_ptr += 1
self.vprint(f"{prefix} INTEGER: {ival}", component="bytecode")
elif obj_to_create == 0x38:
# Some other property names.
propertyval = struct.unpack(">B", datachunk[offset_ptr:(offset_ptr + 1)])[0] + 0xd00
objects.append(StringConstant(propertyval))
offset_ptr += 1
self.vprint(f"{prefix} GENERIC2 CONST NAME: {StringConstant.property_to_name(propertyval)}", component="bytecode")
# Possibly in newer binaries, 0x39 and 0x3a are implemented as 8-bit and 16-bit alias pointer
# versions of 0x38.
else:
raise Exception(f"Unsupported object {hex(obj_to_create)} to push!")
obj_count -= 1
self.vprint(f"{prefix} END_{action_name}", component="bytecode")
actions.append(PushAction(lineno, objects))
elif opcode == AP2Action.INIT_REGISTER:
obj_count = struct.unpack(">B", datachunk[(offset_ptr + 1):(offset_ptr + 2)])[0]
offset_ptr += 2
self.vprint(f"{prefix} {lineno}: {action_name}", component="bytecode")
init_registers: List[Register] = []
while obj_count > 0:
register_no = struct.unpack(">B", datachunk[offset_ptr:(offset_ptr + 1)])[0]
init_registers.append(Register(register_no))
offset_ptr += 1
obj_count -= 1
self.vprint(f"{prefix} REGISTER NO: {register_no}", component="bytecode")
self.vprint(f"{prefix} END_{action_name}", component="bytecode")
actions.append(InitRegisterAction(lineno, init_registers))
elif opcode == AP2Action.STORE_REGISTER:
obj_count = struct.unpack(">B", datachunk[(offset_ptr + 1):(offset_ptr + 2)])[0]
offset_ptr += 2
self.vprint(f"{prefix} {lineno}: {action_name}", component="bytecode")
store_registers: List[Register] = []
while obj_count > 0:
register_no = struct.unpack(">B", datachunk[offset_ptr:(offset_ptr + 1)])[0]
store_registers.append(Register(register_no))
offset_ptr += 1
obj_count -= 1
self.vprint(f"{prefix} REGISTER NO: {register_no}", component="bytecode")
self.vprint(f"{prefix} END_{action_name}", component="bytecode")
actions.append(StoreRegisterAction(lineno, store_registers, preserve_stack=True))
elif opcode == AP2Action.STORE_REGISTER2:
register_no = struct.unpack(">B", datachunk[(offset_ptr + 1):(offset_ptr + 2)])[0]
offset_ptr += 2
self.vprint(f"{prefix} {lineno}: {action_name}", component="bytecode")
self.vprint(f"{prefix} REGISTER NO: {register_no}", component="bytecode")
self.vprint(f"{prefix} END_{action_name}", component="bytecode")
actions.append(StoreRegisterAction(lineno, [Register(register_no)], preserve_stack=False))
elif opcode == AP2Action.IF:
jump_if_true_offset = struct.unpack(">h", datachunk[(offset_ptr + 1):(offset_ptr + 3)])[0]
jump_if_true_offset += (lineno + 3)
offset_ptr += 3
self.vprint(f"{prefix} {lineno}: Offset If True: {jump_if_true_offset}", component="bytecode")
actions.append(IfAction(lineno, IfAction.COMP_IS_TRUE, jump_if_true_offset))
elif opcode == AP2Action.IF2:
if2_type, jump_if_true_offset = struct.unpack(">Bh", datachunk[(offset_ptr + 1):(offset_ptr + 4)])
jump_if_true_offset += (lineno + 4)
offset_ptr += 4
self.vprint(f"{prefix} {lineno}: {action_name} {IfAction.comparison_to_str(if2_type)}, Offset If True: {jump_if_true_offset}", component="bytecode")
actions.append(IfAction(lineno, if2_type, jump_if_true_offset))
elif opcode == AP2Action.JUMP:
jump_offset = struct.unpack(">h", datachunk[(offset_ptr + 1):(offset_ptr + 3)])[0]
jump_offset += (lineno + 3)
offset_ptr += 3
self.vprint(f"{prefix} {lineno}: {action_name} Offset: {jump_offset}", component="bytecode")
actions.append(JumpAction(lineno, jump_offset))
elif opcode == AP2Action.WITH:
skip_offset = struct.unpack(">H", datachunk[(offset_ptr + 1):(offset_ptr + 3)])[0]
offset_ptr += 3
# TODO: I have absolutely no idea what the data which exists in the bytecode buffer at this point
# represents...
unknown_data = datachunk[offset_ptr:(offset_ptr + skip_offset)]
offset_ptr += skip_offset
self.vprint(f"{prefix} {lineno}: {action_name} Unknown Data Length: {skip_offset}", component="bytecode")
actions.append(WithAction(lineno, unknown_data))
elif opcode == AP2Action.ADD_NUM_VARIABLE:
amount_to_add = struct.unpack(">b", datachunk[(offset_ptr + 1):(offset_ptr + 2)])[0]
offset_ptr += 2
self.vprint(f"{prefix} {lineno}: {action_name} Add Value: {amount_to_add}", component="bytecode")
actions.append(AddNumVariableAction(lineno, amount_to_add))
elif opcode == AP2Action.GET_URL2:
get_url_action = struct.unpack(">B", datachunk[(offset_ptr + 1):(offset_ptr + 2)])[0]
offset_ptr += 2
self.vprint(f"{prefix} {lineno}: {action_name} URL Action: {get_url_action >> 6}", component="bytecode")
actions.append(GetURL2Action(lineno, get_url_action >> 6))
elif opcode == AP2Action.START_DRAG:
constraint = struct.unpack(">b", datachunk[(offset_ptr + 1):(offset_ptr + 2)])[0]
offset_ptr += 2
self.vprint(f"{prefix} {lineno}: {action_name} Constrain Mouse: {'yes' if constraint > 0 else ('no' if constraint == 0 else 'check stack')}", component="bytecode")
actions.append(StartDragAction(lineno, constrain=True if constraint > 0 else (False if constraint == 0 else None)))
elif opcode == AP2Action.ADD_NUM_REGISTER:
register_no, amount_to_add = struct.unpack(">Bb", datachunk[(offset_ptr + 1):(offset_ptr + 3)])
offset_ptr += 3
self.vprint(f"{prefix} {lineno}: {action_name} Register No: {register_no}, Add Value: {amount_to_add}", component="bytecode")
actions.append(AddNumRegisterAction(lineno, Register(register_no), amount_to_add))
elif opcode == AP2Action.GOTO_FRAME2:
flags = struct.unpack(">B", datachunk[(offset_ptr + 1):(offset_ptr + 2)])[0]
offset_ptr += 2
if flags & 0x1:
post = "STOP"
else:
post = "PLAY"
if flags & 0x2:
# Additional frames to add on top of stack value.
additional_frames = struct.unpack(">H", datachunk[offset_ptr:(offset_ptr + 2)])[0]
offset_ptr += 2
else:
additional_frames = 0
self.vprint(f"{prefix} {lineno}: {action_name} AND {post} Additional Frames: {additional_frames}", component="bytecode")
actions.append(GotoFrame2Action(lineno, additional_frames, stop=bool(flags & 0x1)))
else:
raise Exception(f"Can't advance, no handler for opcode {opcode} ({hex(opcode)})!")
return ByteCode(bytecode_name, actions, offset_ptr)
def __parse_tag(
self,
ap2_version: int,
afp_version: int,
ap2data: bytes,
tagid: int,
size: int,
dataoffset: int,
tag_parent_sprite: Optional[int],
tag_frame: str,
prefix: str = "",
) -> Tag:
if tagid == AP2Tag.AP2_SHAPE:
if size != 4:
raise Exception(f"Invalid shape size {size}")
unknown, shape_id = struct.unpack("<HH", ap2data[dataoffset:(dataoffset + 4)])
self.add_coverage(dataoffset, size)
# I'm not sure what the unknown value is. It doesn't seem to be parsed by either BishiBashi or Jubeat
# when I've looked, but it does appear to be non-zero sometimes in Pop'n Music animations.
shape_reference = f"{self.exported_name}_shape{shape_id}"
self.vprint(f"{prefix} Tag ID: {shape_id}, AFP Reference: {shape_reference}, Unknown: {unknown}", component="tags")
return AP2ShapeTag(shape_id, shape_reference)
elif tagid == AP2Tag.AP2_DEFINE_SPRITE:
sprite_flags, sprite_id = struct.unpack("<HH", ap2data[dataoffset:(dataoffset + 4)])
self.add_coverage(dataoffset, 4)
if sprite_flags & 1 == 0:
# This is an old-style tag, it has data directly following the header.
subtags_offset = dataoffset + 4
else:
# This is a new-style tag, it has a relative data pointer.
subtags_offset = struct.unpack("<I", ap2data[(dataoffset + 4):(dataoffset + 8)])[0] + dataoffset
self.add_coverage(dataoffset + 4, 4)
self.vprint(f"{prefix} Tag ID: {sprite_id}", component="tags")
tags, frames, labels = self.__parse_tags(ap2_version, afp_version, ap2data, subtags_offset, sprite_id, prefix=" " + prefix)
return AP2DefineSpriteTag(sprite_id, tags, frames, labels)
elif tagid == AP2Tag.AP2_DEFINE_FONT:
unk, font_id, fontname_offset, xml_prefix_offset, text_index_count, height_count = struct.unpack("<HHHHHH", ap2data[dataoffset:(dataoffset + 12)])
self.add_coverage(dataoffset, 12)
fontname = self.__get_string(fontname_offset)
xml_prefix = self.__get_string(xml_prefix_offset)
self.vprint(
f"{prefix} Tag ID: {font_id}, Unknown: {unk}, Font Name: {fontname}, "
f"XML Prefix: {xml_prefix}, Text Index Entries: {text_index_count}, Height Entries: {height_count}",
component="tags",
)
text_indexes: List[int] = []
for i in range(text_index_count):
entry_offset = dataoffset + 12 + (i * 2)
entry_value = struct.unpack("<H", ap2data[entry_offset:(entry_offset + 2)])[0]
text_indexes.append(entry_value)
self.add_coverage(entry_offset, 2)
self.vprint(f"{prefix} Text Index: {i}: {entry_value} ({chr(entry_value)})", component="tags")
heights: List[int] = []
for i in range(height_count):
entry_offset = dataoffset + 12 + (text_index_count * 2) + (i * 2)
entry_value = struct.unpack("<H", ap2data[entry_offset:(entry_offset + 2)])[0]
heights.append(entry_value)
self.add_coverage(entry_offset, 2)
self.vprint(f"{prefix} Height: {entry_value}", component="tags")
return AP2DefineFontTag(font_id, fontname, xml_prefix, heights, text_indexes)
elif tagid == AP2Tag.AP2_DO_ACTION:
datachunk = ap2data[dataoffset:(dataoffset + size)]
bytecode = self.__parse_bytecode(f"on_enter_{f'sprite_{tag_parent_sprite}' if tag_parent_sprite is not None else 'main'}_{tag_frame}", datachunk, prefix=prefix)
self.add_coverage(dataoffset, size)
return AP2DoActionTag(bytecode)
elif tagid == AP2Tag.AP2_PLACE_OBJECT:
# Allow us to keep track of what we've consumed.
datachunk = ap2data[dataoffset:(dataoffset + size)]
flags, depth, object_id = struct.unpack("<IHH", datachunk[0:8])
self.add_coverage(dataoffset, 8)
running_pointer = 8
# Make sure we grab the second half of flags as well, since this is read first for
# newer games.
if flags & 0x80000000:
more_flags = struct.unpack("<I", datachunk[running_pointer:(running_pointer + 4)])[0]
self.add_coverage(dataoffset + running_pointer, 4)
running_pointer += 4
flags = flags | (more_flags << 32)
unhandled_flags = flags & ~0x80000000
else:
unhandled_flags = flags
self.vprint(f"{prefix} Flags: {hex(flags)}, Object ID: {object_id}, Depth: {depth}", component="tags")
unrecognized_options = False
if flags & 0x2:
# Has a shape component.
unhandled_flags &= ~0x2
src_tag_id = struct.unpack("<H", datachunk[running_pointer:(running_pointer + 2)])[0]
self.add_coverage(dataoffset + running_pointer, 2)
running_pointer += 2
self.vprint(f"{prefix} Source Tag ID: {src_tag_id}", component="tags")
else:
src_tag_id = None
label_name = None
if flags & 0x10:
unhandled_flags &= ~0x10
label_name = struct.unpack("<H", datachunk[running_pointer:(running_pointer + 2)])[0]
self.add_coverage(dataoffset + running_pointer, 2)
running_pointer += 2
self.vprint(f"{prefix} Frame Label ID: {label_name}", component="tags")
movie_name = None
if flags & 0x20:
# Has movie name component.
unhandled_flags &= ~0x20
nameoffset = struct.unpack("<H", datachunk[running_pointer:(running_pointer + 2)])[0]
self.add_coverage(dataoffset + running_pointer, 2)
movie_name = self.__get_string(nameoffset)
running_pointer += 2
self.vprint(f"{prefix} Movie Name: {movie_name}", component="tags")
if flags & 0x40:
unhandled_flags &= ~0x40
unk3 = struct.unpack("<H", datachunk[running_pointer:(running_pointer + 2)])[0]
self.add_coverage(dataoffset + running_pointer, 2)
running_pointer += 2
unrecognized_options = True
self.vprint(f"{prefix} Unk3: {hex(unk3)}", component="tags")
if flags & 0x20000:
# Has blend component.
unhandled_flags &= ~0x20000
blend = struct.unpack("<B", datachunk[running_pointer:(running_pointer + 1)])[0]
self.add_coverage(dataoffset + running_pointer, 1)
running_pointer += 1
self.vprint(f"{prefix} Blend: {hex(blend)}", component="tags")
else:
blend = None
# Due to possible misalignment, we need to realign.
misalignment = running_pointer & 3
if misalignment > 0:
catchup = 4 - misalignment
self.add_coverage(dataoffset + running_pointer, catchup)
running_pointer += catchup
# Handle transformation matrix.
transform = Matrix.identity()
scale_set = False
rotate_set = False
if flags & 0x100:
# Has scale component.
unhandled_flags &= ~0x100
a_int, d_int = struct.unpack("<ii", datachunk[running_pointer:(running_pointer + 8)])
self.add_coverage(dataoffset + running_pointer, 8)
running_pointer += 8
transform.a = float(a_int) / 1024.0
transform.d = float(d_int) / 1024.0
scale_set = True
self.vprint(f"{prefix} Transform Matrix A: {transform.a}, D: {transform.d}", component="tags")
if flags & 0x200:
# Has rotate component.
unhandled_flags &= ~0x200
b_int, c_int = struct.unpack("<ii", datachunk[running_pointer:(running_pointer + 8)])
self.add_coverage(dataoffset + running_pointer, 8)
running_pointer += 8
transform.b = float(b_int) / 1024.0
transform.c = float(c_int) / 1024.0
rotate_set = True
self.vprint(f"{prefix} Transform Matrix B: {transform.b}, C: {transform.c}", component="tags")
if flags & 0x400:
# Has translate component.
unhandled_flags &= ~0x400
tx_int, ty_int = struct.unpack("<ii", datachunk[running_pointer:(running_pointer + 8)])
self.add_coverage(dataoffset + running_pointer, 8)
running_pointer += 8
transform.tx = float(tx_int) / 20.0
transform.ty = float(ty_int) / 20.0
self.vprint(f"{prefix} Transform Matrix TX: {transform.tx}, TY: {transform.ty}", component="tags")
# Handle object colors
multcolor = Color(1.0, 1.0, 1.0, 1.0)
addcolor = Color(0.0, 0.0, 0.0, 0.0)
multdisplayed = False
adddisplayed = False
if flags & 0x800:
# Multiplicative color present.
unhandled_flags &= ~0x800
r, g, b, a = struct.unpack("<hhhh", datachunk[running_pointer:(running_pointer + 8)])
self.add_coverage(dataoffset + running_pointer, 8)
running_pointer += 8
multcolor.r = float(r) / 255.0
multcolor.g = float(g) / 255.0
multcolor.b = float(b) / 255.0
multcolor.a = float(a) / 255.0
self.vprint(f"{prefix} Mult Color: {multcolor}", component="tags")
multdisplayed = True
if flags & 0x1000:
# Additive color present.
unhandled_flags &= ~0x1000
r, g, b, a = struct.unpack("<hhhh", datachunk[running_pointer:(running_pointer + 8)])
self.add_coverage(dataoffset + running_pointer, 8)
running_pointer += 8
addcolor.r = float(r) / 255.0
addcolor.g = float(g) / 255.0
addcolor.b = float(b) / 255.0
addcolor.a = float(a) / 255.0
self.vprint(f"{prefix} Add Color: {addcolor}", component="tags")
adddisplayed = True
if flags & 0x2000:
# Multiplicative color present, smaller integers.
unhandled_flags &= ~0x2000
rgba = struct.unpack("<I", datachunk[running_pointer:(running_pointer + 4)])[0]
self.add_coverage(dataoffset + running_pointer, 4)
running_pointer += 4
multcolor.r = float((rgba >> 24) & 0xFF) / 255.0
multcolor.g = float((rgba >> 16) & 0xFF) / 255.0
multcolor.b = float((rgba >> 8) & 0xFF) / 255.0
multcolor.a = float(rgba & 0xFF) / 255.0
self.vprint(f"{prefix} Mult Color: {multcolor}", component="tags")
multdisplayed = True
if flags & 0x4000:
# Additive color present, smaller integers.
unhandled_flags &= ~0x4000
rgba = struct.unpack("<I", datachunk[running_pointer:(running_pointer + 4)])[0]
self.add_coverage(dataoffset + running_pointer, 4)
running_pointer += 4
addcolor.r = float((rgba >> 24) & 0xFF) / 255.0
addcolor.g = float((rgba >> 16) & 0xFF) / 255.0
addcolor.b = float((rgba >> 8) & 0xFF) / 255.0
addcolor.a = float(rgba & 0xFF) / 255.0
self.vprint(f"{prefix} Add Color: {addcolor}", component="tags")
adddisplayed = True
# For easier debugging, display the default color when the color
# is being used.
if flags & 0x8:
if not multdisplayed:
self.vprint(f"{prefix} Mult Color: {multcolor}", component="tags")
if not adddisplayed:
self.vprint(f"{prefix} Add Color: {addcolor}", component="tags")
bytecodes: Dict[int, List[ByteCode]] = {}
if flags & 0x80:
# Object event triggers.
unhandled_flags &= ~0x80
event_flags, event_size = struct.unpack("<II", datachunk[running_pointer:(running_pointer + 8)])
self.add_coverage(dataoffset + running_pointer, 8)
if event_flags != 0:
_, count = struct.unpack("<HH", datachunk[(running_pointer + 8):(running_pointer + 12)])
self.add_coverage(dataoffset + running_pointer + 8, 4)
# The game does not seem to care about length here, but we do, so let's calculate
# offsets and use that for lengths.
bytecode_offsets: List[int] = []
for evt in range(count):
evt_offset = running_pointer + 12 + (evt * 8)
bytecode_offset = struct.unpack("<H", datachunk[(evt_offset + 6):(evt_offset + 8)])[0] + evt_offset
bytecode_offsets.append(bytecode_offset)
bytecode_offsets.append(event_size + running_pointer)
beginning_to_end: Dict[int, int] = {}
for i, bytecode_offset in enumerate(bytecode_offsets[:-1]):
beginning_to_end[bytecode_offset] = bytecode_offsets[i + 1]
self.vprint(f"{prefix} Event Triggers, Count: {count}", component="tags")
for evt in range(count):
evt_offset = running_pointer + 12 + (evt * 8)
evt_flags, _, keycode, bytecode_offset = struct.unpack("<IBBH", datachunk[evt_offset:(evt_offset + 8)])
self.add_coverage(dataoffset + evt_offset, 8)
events: List[str] = []
if evt_flags & AP2Trigger.ON_LOAD:
events.append("ON_LOAD")
if evt_flags & AP2Trigger.ON_ENTER_FRAME:
events.append("ON_ENTER_FRAME")
if evt_flags & AP2Trigger.ON_UNLOAD:
events.append("ON_UNLOAD")
if evt_flags & AP2Trigger.ON_MOUSE_MOVE:
events.append("ON_MOUSE_MOVE")
if evt_flags & AP2Trigger.ON_MOUSE_DOWN:
events.append("ON_MOUSE_DOWN")
if evt_flags & AP2Trigger.ON_MOUSE_UP:
events.append("ON_MOUSE_UP")
if evt_flags & AP2Trigger.ON_KEY_DOWN:
events.append("ON_KEY_DOWN")
if evt_flags & AP2Trigger.ON_KEY_UP:
events.append("ON_KEY_UP")
if evt_flags & AP2Trigger.ON_DATA:
events.append("ON_DATA")
if evt_flags & AP2Trigger.ON_PRESS:
events.append("ON_PRESS")
if evt_flags & AP2Trigger.ON_RELEASE:
events.append("ON_RELEASE")
if evt_flags & AP2Trigger.ON_RELEASE_OUTSIDE:
events.append("ON_RELEASE_OUTSIDE")
if evt_flags & AP2Trigger.ON_ROLL_OVER:
events.append("ON_ROLL_OVER")
if evt_flags & AP2Trigger.ON_ROLL_OUT:
events.append("ON_ROLL_OUT")
bytecode_offset += evt_offset
bytecode_length = beginning_to_end[bytecode_offset] - bytecode_offset
self.vprint(f"{prefix} Flags: {hex(evt_flags)} ({', '.join(events)}), KeyCode: {hex(keycode)}, ByteCode Offset: {hex(dataoffset + bytecode_offset)}, Length: {bytecode_length}", component="tags")
bytecode = self.__parse_bytecode(f"on_tag_{object_id}_event", datachunk[bytecode_offset:(bytecode_offset + bytecode_length)], prefix=prefix + " ")
self.add_coverage(dataoffset + bytecode_offset, bytecode_length)
bytecodes[evt_flags] = [*bytecodes.get(evt_flags, []), bytecode]
running_pointer += event_size
if flags & 0x10000:
# Some sort of filter data? Not sure what this is either. Needs more investigation
# if I encounter files with it. This seems to match up with SWF documentation on
# filters. Still have yet to see any files with it.
unhandled_flags &= ~0x10000
count, filter_size = struct.unpack("<HH", datachunk[running_pointer:(running_pointer + 4)])
self.add_coverage(dataoffset + running_pointer, 4)
running_pointer += filter_size
unrecognized_options = True
# TODO: This is not understood at all. I need to find data that uses it to continue.
# running_pointer + 4 starts a series of shorts (exactly count of them) which are
# all in the range of 0-7, corresponding to some sort of filter. They get sizes
# looked up and I presume there's data following this corresponding to those sizes.
# I don't know however as I've not encountered data with this bit.
self.vprint(f"{prefix} Unknown Filter data Count: {count}, Size: {filter_size}", component="tags")
rotation_origin = Point(0.0, 0.0, 0.0)
rotation_origin_set = False
if flags & 0x1000000:
# I am certain that this is the rotation origin, as treating it as such works for
# basically all files.
unhandled_flags &= ~0x1000000
x, y = struct.unpack("<ii", datachunk[running_pointer:(running_pointer + 8)])
self.add_coverage(dataoffset + running_pointer, 8)
running_pointer += 8
rotation_origin.x = float(x) / 20.0
rotation_origin.y = float(y) / 20.0
rotation_origin_set = True
self.vprint(f"{prefix} Rotation XY Origin: {rotation_origin.x}, {rotation_origin.y}", component="tags")
if flags & 0x200000000:
# This is Z rotation origin.
unhandled_flags &= ~0x200000000
z_int = struct.unpack("<i", datachunk[running_pointer:(running_pointer + 4)])[0]
self.add_coverage(dataoffset + running_pointer, 4)
running_pointer += 4
rotation_origin.z = float(z_int) / 20.0
rotation_origin_set = True
self.vprint(f"{prefix} Rotation Z Origin: {rotation_origin.z}", component="tags")
if flags & 0x2000000:
# Same as above, but initializing to 0, 0, 0 instead of from data.
unhandled_flags &= ~0x2000000
rotation_origin.x = 0.0
rotation_origin.y = 0.0
rotation_origin.z = 0.0
rotation_origin_set = True
self.vprint(f"{prefix} Rotation XYZ Origin: {rotation_origin.x}, {rotation_origin.y}, {rotation_origin.z}", component="tags")
if flags & 0x40000:
# This appears in newer IIDX to be an alternative method for populating
# transform scaling.
unhandled_flags &= ~0x40000
# This is a bit nasty, but the newest version of data we see in
# Bishi with this flag set is 0x8, and the oldest version in DDR
# PS3 is also 0x8. Newer AFP versions do something with this flag
# but Bishi straight-up ignores it (no code to even check it), so
# we must use a heuristic for determining if this is parseable...
if running_pointer == len(datachunk):
pass
else:
a_int, d_int = struct.unpack("<hh", datachunk[running_pointer:(running_pointer + 4)])
self.add_coverage(dataoffset + running_pointer, 4)
running_pointer += 4
transform.a = float(a_int) / 32768.0
transform.d = float(d_int) / 32768.0
scale_set = True
self.vprint(f"{prefix} Transform Matrix A: {transform.a}, D: {transform.d}", component="tags")
if flags & 0x80000:
# This appears in newer IIDX to be an alternative method for populating
# transform rotation.
unhandled_flags &= ~0x80000
b_int, c_int = struct.unpack("<hh", datachunk[running_pointer:(running_pointer + 4)])
self.add_coverage(dataoffset + running_pointer, 4)
running_pointer += 4
transform.b = float(b_int) / 32768.0
transform.c = float(c_int) / 32768.0
rotate_set = True
self.vprint(f"{prefix} Transform Matrix B: {transform.b}, C: {transform.c}", component="tags")
if flags & 0x100000:
# TODO: Some unknown short.
unhandled_flags &= ~0x100000
unk_4 = struct.unpack("<H", datachunk[running_pointer:(running_pointer + 2)])[0]
self.add_coverage(dataoffset + running_pointer, 2)
running_pointer += 2
unrecognized_options = True
self.vprint(f"{prefix} Unk 4: {unk_4}", component="tags")
# Due to possible misalignment, we need to realign.
misalignment = running_pointer & 3
if misalignment > 0:
catchup = 4 - misalignment
self.add_coverage(dataoffset + running_pointer, catchup)
running_pointer += catchup
if flags & 0x8000000:
# This is the translation offset "z" for a 3D transform matrix.
unhandled_flags &= ~0x8000000
tz_int = struct.unpack("<i", datachunk[running_pointer:(running_pointer + 4)])[0]
self.add_coverage(dataoffset + running_pointer, 4)
running_pointer += 4
transform.tz = tz_int / 20.0
self.vprint(f"{prefix} Translate Z offset: {transform.tz}", component="tags")
if flags & 0x10000000:
# This is a 3x3 grid of initializers for a 3D transform matrix. It appears that
# files also include the A/D and B/C pairs that match the correct locations in
# previous transform parsing sections, possibly for backwards compatibility?
unhandled_flags &= ~0x10000000
ints = struct.unpack("<iiiiiiiii", datachunk[running_pointer:(running_pointer + 36)])
self.add_coverage(dataoffset + running_pointer, 36)
running_pointer += 36
floats = [x / 1024.0 for x in ints]
# Due to the way the format works, a/b/c/d can be more accurately specified in
# some extended flag nodes above than they can be here. So, we favor those values
# if they were set.
if not scale_set:
transform.a11 = floats[0]
transform.a22 = floats[4]
if not rotate_set:
transform.a12 = floats[1]
transform.a21 = floats[3]
transform.a13 = floats[2]
transform.a23 = floats[5]
transform.a31 = floats[6]
transform.a32 = floats[7]
transform.a33 = floats[8]
self.vprint(f"{prefix} 3D Transform Matrix: {', '.join(str(f) for f in floats)}", component="tags")
if flags & 0x20000000:
# TODO: Again, absolutely no idea, gets passed into a function and I don't see how its used.
unhandled_flags &= ~0x20000000
unk_a, unk_b, unk_c = struct.unpack("<hbb", datachunk[running_pointer:(running_pointer + 4)])
self.add_coverage(dataoffset + running_pointer, 4)
running_pointer += 4
unrecognized_options = True
self.vprint(f"{prefix} Unknown Data: {unk_a}, {unk_b}, {unk_c}", component="tags")
if flags & 0x400000000:
# There's some serious hanky-panky going on here. The first 4 bytes are a bitmask,
# and we advance past data based on some calculation of the number of bits set.
# I'll need to run into some data using this to figure out what the heck is going on.
raise Exception("TODO")
if flags & 0x800000000:
unhandled_flags &= ~0x800000000
bitmask = struct.unpack("<I", datachunk[running_pointer:(running_pointer + 4)])[0]
self.add_coverage(dataoffset + running_pointer, 4)
running_pointer += 4
self.vprint(f"{prefix} Unknown Data Flags: {hex(bitmask)}", component="tags")
# I have no idea what any of this is either, so I am duplicating game logic in the
# hopes that someday it makes sense.
for bit in range(32):
if bool(bitmask & (1 << bit)):
unk_flags, unk_size = struct.unpack("<HH", datachunk[running_pointer:(running_pointer + 4)])
self.add_coverage(dataoffset + running_pointer, 4)
running_pointer += 4
chunk_size = (
# Either 2 or 6, depending on unk_flags & 0x10 set.
(((unk_flags & 0x10) | 0x8) >> 2) *
# Either 1 or 2, depending on unk_flags & 0x1 set.
((unk_flags & 1) + 1) *
# Raw size as read from the header above.
unk_size *
# I assume this is some number of shorts, much like many other
# file formats, so this is why all of these counts are doubled.
2
)
self.vprint(f"{prefix} WTF: {hex(unk_flags)}, {unk_size}, {chunk_size}", component="tags")
# Skip past data.
running_pointer += chunk_size
unrecognized_options = True
if flags & 0x1000000000:
# I have no idea what this is, but the two shorts that it pulls out are assigned
# to the same variables as those in 0x2000000000, so they're obviously linked.
unhandled_flags &= ~0x1000000000
unk1, unk2, unk3 = struct.unpack("<Ihh", datachunk[running_pointer:(running_pointer + 8)])
self.add_coverage(dataoffset + running_pointer, 8)
running_pointer += 8
unrecognized_options = True
self.vprint(f"{prefix} Unknown New Data: {unk1}, {unk2}, {unk3}", component="tags")
if flags & 0x2000000000:
# I have no idea what this is, but the two shorts that it pulls out are assigned
# to the same variables as those in 0x1000000000, so they're obviously linked.
unhandled_flags &= ~0x2000000000
unk1, unk2, unk3 = struct.unpack("<Hhh", datachunk[running_pointer:(running_pointer + 6)])
self.add_coverage(dataoffset + running_pointer, 6)
running_pointer += 6
unrecognized_options = True
self.vprint(f"{prefix} Unknown New Data: {unk1}, {unk2}, {unk3}", component="tags")
# Due to possible misalignment, we need to realign.
misalignment = running_pointer & 3
if misalignment > 0:
catchup = 4 - misalignment
self.add_coverage(dataoffset + running_pointer, catchup)
running_pointer += catchup
if flags & 0x4000000000:
raise Exception("TODO")
projection = AP2PlaceObjectTag.PROJECTION_NONE
unhandled_flags &= ~0x400000D
# This flag states whether we are creating a new object on this depth, or updating one.
if flags & 0x1:
self.vprint(f"{prefix} Update object request", component="tags")
update_request = True
else:
self.vprint(f"{prefix} Create object request", component="tags")
update_request = False
if flags & 0x18000004:
# Technically only flag 0x4 is the "use transform matrix" flag, but when they
# added perspective to the format, they also just made setting the TZ or the
# 3x3 transform portion of a 4x4 matrix equivalent. So if those exist, this
# implicitly is enabled.
self.vprint(f"{prefix} Use transform matrix", component="tags")
projection = AP2PlaceObjectTag.PROJECTION_AFFINE
transform_information = True
else:
self.vprint(f"{prefix} Ignore transform matrix", component="tags")
transform_information = False
if flags & 0x8:
self.vprint(f"{prefix} Use color information", component="tags")
color_information = True
else:
self.vprint(f"{prefix} Ignore color information", component="tags")
color_information = False
if flags & 0x4000000:
self.vprint(f"{prefix} Use 3D transform system", component="tags")
projection = AP2PlaceObjectTag.PROJECTION_PERSPECTIVE
else:
self.vprint(f"{prefix} Use 2D transform system", component="tags")
# Unset any previously set 3D transforms. Files shouldn't include both 3D
# transforms AND the old 2D transform flag, but let's respect that bit.
rotation_origin.z = 0.0
transform.a13 = 0.0
transform.a23 = 0.0
transform.a31 = 0.0
transform.a32 = 0.0
transform.a33 = 1.0
transform.a43 = 0.0
self.vprint(f"{prefix} Final transform: {transform}", component="tags")
if unhandled_flags != 0:
raise Exception(f"Did not handle {hex(unhandled_flags)} flag bits!")
if running_pointer < size:
raise Exception(f"Did not consume {size - running_pointer} bytes ({[hex(x) for x in datachunk[running_pointer:]]}) in object instantiation!")
if running_pointer != size:
raise Exception("Logic error!")
return AP2PlaceObjectTag(
object_id,
depth,
src_tag_id=src_tag_id,
movie_name=movie_name,
label_name=label_name,
blend=blend,
update=update_request,
transform=transform if transform_information else None,
rotation_origin=rotation_origin if rotation_origin_set else None,
projection=projection,
mult_color=multcolor if color_information else None,
add_color=addcolor if color_information else None,
triggers=bytecodes,
unrecognized_options=unrecognized_options,
)
elif tagid == AP2Tag.AP2_REMOVE_OBJECT:
if size != 4:
raise Exception(f"Invalid shape size {size}")
object_id, depth = struct.unpack("<HH", ap2data[dataoffset:(dataoffset + 4)])
self.vprint(f"{prefix} Object ID: {object_id}, Depth: {depth}", component="tags")
self.add_coverage(dataoffset, 4)
return AP2RemoveObjectTag(object_id, depth)
elif tagid == AP2Tag.AP2_DEFINE_TEXT:
flags, text_id, text_data_count, sub_data_total_count, text_data_offset, sub_data_base_offset = struct.unpack(
"<HHHHHH",
ap2data[dataoffset:(dataoffset + 12)],
)
self.add_coverage(dataoffset, 12)
if flags != 0:
raise Exception(f"Unexpected flags {hex(flags)} in AP2_DEFINE_TEXT!")
extra_data = (12 + (20 * text_data_count) + (4 * sub_data_total_count))
if size < extra_data:
raise Exception(f"Unexpected size {size}, expected at least {extra_data} for AP2_DEFINE_TEXT!")
if size > extra_data:
# There seems to be some amount of data left over at the end, not sure what it
# is or does. I don't see any references to it being used in the tag loader.
pass
self.vprint(f"{prefix} Tag ID: {text_id}, Count of Entries: {text_data_count}, Count of Sub Entries: {sub_data_total_count}", component="tags")
lines: List[AP2TextLine] = []
for i in range(text_data_count):
chunk_data_offset = dataoffset + text_data_offset + (20 * i)
chunk_flags, sub_data_count, font_tag, font_height, xpos, ypos, sub_data_offset, rgba = struct.unpack(
"<IHHHHHHI",
ap2data[chunk_data_offset:(chunk_data_offset + 20)],
)
self.add_coverage(chunk_data_offset, 20)
if not (chunk_flags & 0x1):
xpos = 0.0
else:
xpos = float(xpos) / 20.0
if not (chunk_flags & 0x2):
ypos = 0.0
else:
ypos = float(ypos) / 20.0
if not (chunk_flags & 0x8):
font_tag = None
color = Color(
float(rgba & 0xFF) / 255.0,
float((rgba >> 8) & 0xFF) / 255.0,
float((rgba >> 16) & 0xFF) / 255.0,
float((rgba >> 24) & 0xFF) / 255.0,
)
self.vprint(f"{prefix} Font Tag: {font_tag}, Font Height: {font_height}, X: {xpos}, Y: {ypos}, Count of Sub-Entries: {sub_data_count}, Color: {color}", component="tags")
base_offset = dataoffset + (sub_data_offset * 4) + sub_data_base_offset
offsets: List[AP2TextChar] = []
for i in range(sub_data_count):
sub_chunk_offset = base_offset + (i * 4)
font_text_index, xoff = struct.unpack(
"<HH",
ap2data[sub_chunk_offset:(sub_chunk_offset + 4)],
)
self.add_coverage(sub_chunk_offset, 4)
entry_width = round(float(xoff) / 20.0, 5)
offsets.append(AP2TextChar(font_text_index, entry_width))
self.vprint(f"{prefix} Font Text Index: {font_text_index}, X: {xpos}, Width: {entry_width}", component="tags")
# Make room for next character.
xpos = round(xpos + entry_width, 5)
lines.append(
AP2TextLine(
font_tag,
font_height,
xpos,
ypos,
offsets,
)
)
return AP2DefineTextTag(text_id, lines)
elif tagid == AP2Tag.AP2_DEFINE_EDIT_TEXT:
if size != 44:
raise Exception(f"Invalid size {size} to get data from AP2_DEFINE_EDIT_TEXT!")
flags, edit_text_id, defined_font_tag_id, font_height, unk_str2_offset = struct.unpack("<IHHHH", ap2data[dataoffset:(dataoffset + 12)])
self.add_coverage(dataoffset, 12)
unk1, unk2, unk3, unk4 = struct.unpack("<HHHH", ap2data[(dataoffset + 12):(dataoffset + 20)])
self.add_coverage(dataoffset + 12, 8)
rgba, f1, f2, f3, f4, variable_name_offset, default_text_offset = struct.unpack("<IiiiiHH", ap2data[(dataoffset + 20):(dataoffset + 44)])
self.add_coverage(dataoffset + 20, 24)
self.vprint(f"{prefix} Tag ID: {edit_text_id}, Font Tag: {defined_font_tag_id}, Height Selection: {font_height}, Flags: {hex(flags)}", component="tags")
unk_string2 = self.__get_string(unk_str2_offset) or None
self.vprint(f"{prefix} Unk String: {unk_string2}", component="tags")
rect = Rectangle(f1 / 20.0, f2 / 20.0, f3 / 20.0, f4 / 20.0)
self.vprint(f"{prefix} Rectangle: {rect}", component="tags")
variable_name = self.__get_string(variable_name_offset) or None
self.vprint(f"{prefix} Variable Name: {variable_name}", component="tags")
color = Color(
r=(rgba & 0xFF) / 255.0,
g=((rgba >> 8) & 0xFF) / 255.0,
b=((rgba >> 16) & 0xFF) / 255.0,
a=((rgba >> 24) & 0xFF) / 255.0,
)
self.vprint(f"{prefix} Text Color: {color}", component="tags")
self.vprint(f"{prefix} Unk1: {unk1}, Unk2: {unk2}, Unk3: {unk3}, Unk4: {unk4}", component="tags")
# flags & 0x20 means something with offset 16-18.
# flags & 0x200 is unk str below is a HTML tag.
if flags & 0x80:
# Has some sort of string pointer.
default_text = self.__get_string(default_text_offset) or None
self.vprint(f"{prefix} Default Text: {default_text}", component="tags")
else:
default_text = None
return AP2DefineEditTextTag(edit_text_id, defined_font_tag_id, font_height, rect, color, default_text=default_text)
elif tagid == AP2Tag.AP2_DEFINE_MORPH_SHAPE:
unk1, unk2, define_shape_id, _0x2c_count, _0x2e_count, another_count = struct.unpack("<HHHHHH", ap2data[dataoffset:(dataoffset + 12)])
self.add_coverage(dataoffset, 12)
_0x2c_offset, _0x2e_offset, another_offset = struct.unpack("<HHH", ap2data[(dataoffset + 44):(dataoffset + 50)])
self.add_coverage(dataoffset + 44, 6)
self.vprint(f"{prefix} Tag ID: {define_shape_id}, Unk1: {unk1}, Unk2: {unk2}, Count1: {_0x2c_count}, Count2: {_0x2e_count}, Another Count: {another_count}", component="tags")
for label, off, sz in [("0x2c", _0x2c_offset, _0x2c_count), ("0x2e", _0x2e_offset, _0x2e_count)]:
for i in range(sz):
short_offset = dataoffset + off + (2 * i)
loc = struct.unpack("<H", ap2data[short_offset:(short_offset + 2)])[0]
self.add_coverage(short_offset, 2)
chunk_offset = dataoffset + loc
flags, unk3, unk4 = struct.unpack("<HBB", ap2data[chunk_offset:(chunk_offset + 4)])
self.add_coverage(chunk_offset, 4)
chunk_offset += 4
self.vprint(f"{prefix} {label} Flags: {hex(flags)}, Unk3: {unk3}, Unk4-1: {(unk4 >> 2) & 0x3}, Unk4-2: {(unk4 & 0x3)}", component="tags")
unprocessed_flags = flags
if flags & 0x1:
int1, int2 = struct.unpack("<HH", ap2data[chunk_offset:(chunk_offset + 4)])
self.add_coverage(chunk_offset, 4)
chunk_offset += 4
unprocessed_flags &= ~0x1
# TODO: In game, 20.0 is divided by int1 cast to float, then int2 cast to float divided by 20.0 is
# subtracted from the first value, and that is multiplied by some percentage, and then the
# second value is added back in.
self.vprint(f"{prefix} Unknown Int1: {int1}, Int2: {int2}", component="tags")
if flags & 0x12:
intval, src_ptr = struct.unpack("<HH", ap2data[chunk_offset:(chunk_offset + 4)])
self.add_coverage(chunk_offset, 4)
chunk_offset += 4
unprocessed_flags &= ~0x12
self.vprint(f"{prefix} Unknown Float: {float(intval) / 20.0}, Source Bitmap ID: {src_ptr}", component="tags")
if flags & 0x4:
rgba1, rgba2 = struct.unpack("<II", ap2data[chunk_offset:(chunk_offset + 8)])
self.add_coverage(chunk_offset, 8)
chunk_offset += 8
unprocessed_flags &= ~0x4
color1 = Color(
r=(rgba1 & 0xFF) / 255.0,
g=((rgba1 >> 8) & 0xFF) / 255.0,
b=((rgba1 >> 16) & 0xFF) / 255.0,
a=((rgba1 >> 24) & 0xFF) / 255.0,
)
color2 = Color(
r=(rgba2 & 0xFF) / 255.0,
g=((rgba2 >> 8) & 0xFF) / 255.0,
b=((rgba2 >> 16) & 0xFF) / 255.0,
a=((rgba2 >> 24) & 0xFF) / 255.0,
)
self.vprint(f"{prefix} Start Color: {color1}, End Color: {color2}", component="tags")
if flags & 0x8:
a1, d1, a2, d2, b1, c1, b2, c2, tx1, ty1, tx2, ty2 = struct.unpack("<IIIIIIIIIIII", ap2data[chunk_offset:(chunk_offset + 48)])
self.add_coverage(chunk_offset, 48)
chunk_offset += 48
unprocessed_flags &= ~0x4
matrix1 = Matrix.affine(
a=a1,
b=b1,
c=c1,
d=d1,
tx=tx1,
ty=ty1,
)
matrix2 = Matrix.affine(
a=a2,
b=b2,
c=c2,
d=d2,
tx=tx2,
ty=ty2,
)
self.vprint(f"{prefix} Start Matrix: {matrix1}, End Matrix: {matrix2}", component="tags")
if flags & 0x20:
# TODO: This is kinda complicated and I don't see any data using it yet, looks like it
# has a 2-byte count, a 2 byte offset, and passes in whether flags bits 0x80 and 0x300
# are set.
raise Exception("TODO, this whole section!")
if unprocessed_flags:
raise Exception(f"Failed to process flags {hex(unprocessed_flags)}")
for i in range(another_count):
short_offset = dataoffset + another_offset + (2 * i)
loc = struct.unpack("<H", ap2data[short_offset:(short_offset + 2)])[0]
self.add_coverage(short_offset, 2)
chunk_offset = dataoffset + loc
unk5, some_count, a, b, c, unk6, i1, i2, i3, i4 = struct.unpack(
"<HHBBBBHHHH",
ap2data[chunk_offset:(chunk_offset + 16)]
)
self.add_coverage(chunk_offset, 16)
chunk_offset += 16
f1 = float(i1) / 20.0
f2 = float(i2) / 20.0
f3 = float(i3) / 20.0
f4 = float(i4) / 20.0
self.vprint(f"{prefix} Unk5: {unk5}, Unk6: {unk6}, F1: {f1}, F2: {f2}, F3: {f3}, F4: {f4}, ABC: {a} {b} {c}, Count: {some_count}", component="tags")
for _ in range(some_count):
shorts = struct.unpack("<HHHHHHHH", ap2data[chunk_offset:(chunk_offset + 16)])
self.add_coverage(chunk_offset, 16)
chunk_offset += 16
fv1 = float(shorts[0] + i1) / 20.0
fv2 = float(shorts[1] + i2) / 20.0
fv3 = float(shorts[2] + i3) / 20.0
fv4 = float(shorts[3] + i4) / 20.0
fv5 = float(shorts[0] + i1 + shorts[4]) / 20.0
fv6 = float(shorts[1] + i2 + shorts[5]) / 20.0
fv7 = float(shorts[2] + i3 + shorts[6]) / 20.0
fv8 = float(shorts[3] + i4 + shorts[7]) / 20.0
self.vprint(f"{prefix} Floats: {fv1} {fv2} {fv3} {fv4} {fv5} {fv6} {fv7} {fv8}", component="tags")
return AP2DefineMorphShapeTag(define_shape_id)
elif tagid == AP2Tag.AP2_DEFINE_BUTTON:
flags, button_id, source_tags_count, bytecode_count = struct.unpack("<HHHH", ap2data[dataoffset:(dataoffset + 8)])
self.add_coverage(dataoffset, 8)
self.vprint(f"{prefix} Tag ID: {button_id}, Flags: {hex(flags)}, Source Tags Count: {source_tags_count}, Unknown Count: {bytecode_count}", component="tags")
running_offset = dataoffset + 8
for _ in range(source_tags_count):
loc = struct.unpack("<H", ap2data[running_offset:(running_offset + 2)])[0]
self.add_coverage(running_offset, 2)
running_offset += 2
chunk_offset = dataoffset + loc
status_bitmask, depth, src_tag_id = struct.unpack("<IHH", ap2data[chunk_offset:(chunk_offset + 8)])
self.add_coverage(chunk_offset, 8)
chunk_offset += 8
rest_of_bitmask = status_bitmask & (~(0x20 + 0x100 + 0x200 + 0x400 + 0x800 + 0x1000 + 0x2000 + 0x4000 + 0x8000))
self.vprint(f"{prefix} Offset: {hex(loc)}, Flags: {hex(status_bitmask)}, Source Flags: {hex(rest_of_bitmask)}, Depth: {depth}, Source Tag ID: {src_tag_id}", component="tags")
# Parse the bitmask
if status_bitmask & 0x20:
# Blend parameter:
blend = struct.unpack("<B", ap2data[chunk_offset:(chunk_offset + 1)])[0]
self.add_coverage(chunk_offset, 4)
chunk_offset += 4
self.vprint(f"{prefix} Blend: {hex(blend)}", component="tags")
else:
blend = None
transform = Matrix.identity()
if status_bitmask & 0x100:
# Parse scale component of matrix.
a_int, d_int = struct.unpack("<ii", ap2data[chunk_offset:(chunk_offset + 8)])
self.add_coverage(chunk_offset, 8)
chunk_offset += 8
transform.a = float(a_int) / 1024.0
transform.d = float(d_int) / 1024.0
self.vprint(f"{prefix} Transform Matrix A: {transform.a}, D: {transform.d}", component="tags")
if status_bitmask & 0x200:
# Parse rotate component of matrix.
b_int, c_int = struct.unpack("<ii", ap2data[chunk_offset:(chunk_offset + 8)])
self.add_coverage(chunk_offset, 8)
chunk_offset += 8
transform.b = float(b_int) / 1024.0
transform.c = float(c_int) / 1024.0
self.vprint(f"{prefix} Transform Matrix B: {transform.b}, C: {transform.c}", component="tags")
if status_bitmask & 0x400:
# Parse transpose component of matrix.
tx_int, ty_int = struct.unpack("<ii", ap2data[chunk_offset:(chunk_offset + 8)])
self.add_coverage(chunk_offset, 8)
chunk_offset += 8
transform.tx = float(tx_int) / 20.0
transform.ty = float(ty_int) / 20.0
self.vprint(f"{prefix} Transform Matrix TX: {transform.tx}, TY: {transform.ty}", component="tags")
# Handle object colors
multcolor = Color(1.0, 1.0, 1.0, 1.0)
addcolor = Color(0.0, 0.0, 0.0, 0.0)
if flags & 0x800:
# Multiplicative color present.
r, g, b, a = struct.unpack("<HHHH", ap2data[chunk_offset:(chunk_offset + 8)])
self.add_coverage(chunk_offset, 8)
chunk_offset += 8
multcolor.r = float(r) / 255.0
multcolor.g = float(g) / 255.0
multcolor.b = float(b) / 255.0
multcolor.a = float(a) / 255.0
self.vprint(f"{prefix} Mult Color: {multcolor}", component="tags")
if flags & 0x1000:
# Additive color present.
r, g, b, a = struct.unpack("<HHHH", ap2data[chunk_offset:(chunk_offset + 8)])
self.add_coverage(chunk_offset, 8)
chunk_offset += 8
addcolor.r = float(r) / 255.0
addcolor.g = float(g) / 255.0
addcolor.b = float(b) / 255.0
addcolor.a = float(a) / 255.0
self.vprint(f"{prefix} Add Color: {addcolor}", component="tags")
if flags & 0x2000:
# Multiplicative color present, smaller integers.
rgba = struct.unpack("<I", ap2data[chunk_offset:(chunk_offset + 4)])[0]
self.add_coverage(chunk_offset, 4)
chunk_offset += 4
multcolor.r = float((rgba >> 24) & 0xFF) / 255.0
multcolor.g = float((rgba >> 16) & 0xFF) / 255.0
multcolor.b = float((rgba >> 8) & 0xFF) / 255.0
multcolor.a = float(rgba & 0xFF) / 255.0
self.vprint(f"{prefix} Mult Color: {multcolor}", component="tags")
if flags & 0x4000:
# Additive color present, smaller integers.
rgba = struct.unpack("<I", ap2data[chunk_offset:(chunk_offset + 4)])[0]
self.add_coverage(chunk_offset, 4)
chunk_offset += 4
addcolor.r = float((rgba >> 24) & 0xFF) / 255.0
addcolor.g = float((rgba >> 16) & 0xFF) / 255.0
addcolor.b = float((rgba >> 8) & 0xFF) / 255.0
addcolor.a = float(rgba & 0xFF) / 255.0
self.vprint(f"{prefix} Add Color: {addcolor}", component="tags")
if flags & 0x8000:
# Some sort of filter data? Not sure what this is either. Needs more investigation
# if I encounter files with it.
count, filter_size = struct.unpack("<HH", ap2data[chunk_offset:(chunk_offset + 4)])
self.add_coverage(chunk_offset, 4)
running_pointer += filter_size
# TODO: This is not understood at all. I need to find data that uses it to continue.
# running_pointer + 4 starts a series of shorts (exactly count of them) which are
# all in the range of 0-7, corresponding to some sort of filter. They get sizes
# looked up and I presume there's data following this corresponding to those sizes.
# I don't know however as I've not encountered data with this bit.
self.vprint(f"{prefix} Unknown Filter data Count: {count}, Size: {filter_size}", component="tags")
for _ in range(bytecode_count):
loc = struct.unpack("<H", ap2data[running_offset:(running_offset + 2)])[0]
self.add_coverage(running_offset, 2)
running_offset += 2
chunk_offset = dataoffset + loc
status_bitmask, keycode = struct.unpack("<HBxxxxx", ap2data[chunk_offset:(chunk_offset + 8)])
self.add_coverage(chunk_offset, 8)
# TODO: chunk_offset + 8 is a bytecode chunk that needs to be processed with __parse_bytecode
# but we don't know the length. The game just parses until it hits the end of the buffer or
# an END tag.
self.vprint(f"{prefix} Offset: {hex(loc)}, Bytecode Bitmask: {hex(status_bitmask)}, Keycode: {keycode}", component="tags")
raise Exception("TODO: Need to examine this section further if I find data with it!")
# Looks like sound data is either there for 4 button statuses or not there.
if flags & 0x2:
sound_count = 4
else:
sound_count = 0
for _ in range(sound_count):
loc = struct.unpack("<H", ap2data[running_offset:(running_offset + 2)])[0]
self.add_coverage(running_offset, 2)
running_offset += 2
chunk_offset = dataoffset + loc
unk1, sound_source_tag = struct.unpack("<HH", ap2data[chunk_offset:(chunk_offset + 4)])
self.add_coverage(chunk_offset, 4)
self.vprint(f"{prefix} Offset: {hex(loc)}, Sound Unk1: {unk1}, Source Tag ID: {sound_source_tag}", component="tags")
raise Exception("TODO: Need to examine this section further if I find data with it!")
return AP2DefineButtonTag(button_id)
elif tagid == AP2Tag.AP2_PLACE_CAMERA:
flags, camera_id, = struct.unpack("<HH", ap2data[dataoffset:(dataoffset + 4)])
self.add_coverage(dataoffset, 4)
running_data_ptr = dataoffset + 4
self.vprint(f"{prefix} Flags: {hex(flags)}, Camera ID: {camera_id}", component="tags")
center = None
if flags & 0x1:
i1, i2, i3 = struct.unpack("<iii", ap2data[running_data_ptr:(running_data_ptr + 12)])
self.add_coverage(running_data_ptr, 12)
running_data_ptr += 12
# This is the camera's X/Y/Z position in the scene, looking "down" at the canvas.
center = Point(i1 / 20.0, i2 / 20.0, i3 / 20.0)
self.vprint(f"{prefix} Camera Center: {center}", component="tags")
focal_length = 0.0
if flags & 0x2:
i4 = struct.unpack("<i", ap2data[running_data_ptr:(running_data_ptr + 4)])[0]
self.add_coverage(running_data_ptr, 4)
running_data_ptr += 4
# This is the focal length of the camera, used to construct the FOV.
focal_length = i4 / 20.0
self.vprint(f"{prefix} Focal Length: {focal_length}", component="tags")
if dataoffset + size != running_data_ptr:
raise Exception(f"Failed to parse {dataoffset + size - running_data_ptr} bytes of data!")
return AP2PlaceCameraTag(camera_id, center, focal_length)
elif tagid == AP2Tag.AP2_IMAGE:
if size != 8:
raise Exception(f"Invalid size {size} to get data from AP2_IMAGE!")
flags, image_id, image_str_ptr = struct.unpack("<IHH", ap2data[dataoffset:(dataoffset + 8)])
image_str = self.__get_string(image_str_ptr)
self.add_coverage(dataoffset, 8)
if flags & 0x2:
# This looks like we prepend "SWFA-" to the file name.
image_str = f"SWFA-{image_str}"
self.vprint(f"{prefix} Tag ID: {image_id}, Flags: {hex(flags)}, String: {image_str}", component="tags")
return AP2ImageTag(image_id, image_str)
else:
self.vprint(f"Unknown tag {hex(tagid)} with data {ap2data[dataoffset:(dataoffset + size)]!r}", component="tags")
raise Exception(f"Unimplemented tag {hex(tagid)}!")
def __parse_tags(
self,
ap2_version: int,
afp_version: int,
ap2data: bytes,
tags_base_offset: int,
sprite: Optional[int],
prefix: str = "",
) -> Tuple[List[Tag], List[Frame], Dict[str, int]]:
name_reference_flags, name_reference_count, frame_count, tags_count, name_reference_offset, frame_offset, tags_offset = struct.unpack(
"<HHIIIII",
ap2data[tags_base_offset:(tags_base_offset + 24)]
)
self.add_coverage(tags_base_offset, 24)
# Fix up pointers.
tags_offset += tags_base_offset
name_reference_offset += tags_base_offset
frame_offset += tags_base_offset
# First, parse frames.
frames: List[Frame] = []
tag_to_frame: Dict[int, str] = {}
self.vprint(f"{prefix}Number of Frames: {frame_count}", component="tags")
for i in range(frame_count):
frame_info = struct.unpack("<I", ap2data[frame_offset:(frame_offset + 4)])[0]
self.add_coverage(frame_offset, 4)
start_tag_offset = frame_info & 0xFFFFF
num_tags_to_play = (frame_info >> 20) & 0xFFF
frames.append(Frame(start_tag_offset, num_tags_to_play))
self.vprint(f"{prefix} Frame Start Tag: {start_tag_offset}, Count: {num_tags_to_play}", component="tags")
for j in range(num_tags_to_play):
if start_tag_offset + j in tag_to_frame:
raise Exception("Logic error!")
tag_to_frame[start_tag_offset + j] = f"frame_{i}"
frame_offset += 4
# Now, parse regular tags.
tags: List[Tag] = []
self.vprint(f"{prefix}Number of Tags: {tags_count}", component="tags")
for i in range(tags_count):
tag = struct.unpack("<I", ap2data[tags_offset:(tags_offset + 4)])[0]
self.add_coverage(tags_offset, 4)
tagid = (tag >> 22) & 0x3FF
size = tag & 0x3FFFFF
if size > 0x200000:
raise Exception(f"Invalid tag size {size} ({hex(size)})")
self.vprint(f"{prefix} Tag: {hex(tagid)} ({AP2Tag.tag_to_name(tagid)}), Size: {hex(size)}, Offset: {hex(tags_offset + 4)}", component="tags")
tags.append(self.__parse_tag(ap2_version, afp_version, ap2data, tagid, size, tags_offset + 4, sprite, tag_to_frame.get(i, 'orphan'), prefix=prefix))
tags_offset += ((size + 3) & 0xFFFFFFFC) + 4 # Skip past tag header and data, rounding to the nearest 4 bytes.
# Finally, parse frame labels
self.vprint(f"{prefix}Number of Frame Labels: {name_reference_count}, Flags: {hex(name_reference_flags)}", component="tags")
labels: Dict[str, int] = {}
for _ in range(name_reference_count):
frameno, stringoffset = struct.unpack("<HH", ap2data[name_reference_offset:(name_reference_offset + 4)])
strval = self.__get_string(stringoffset)
self.add_coverage(name_reference_offset, 4)
labels[strval] = frameno
self.vprint(f"{prefix} Frame Number: {frameno}, Name: {strval}", component="tags")
name_reference_offset += 4
return tags, frames, labels
def __descramble(self, scrambled_data: bytes, descramble_info: bytes) -> bytes:
swap_len = {
1: 2,
2: 4,
3: 8,
}
data = bytearray(scrambled_data)
data_offset = 0
for i in range(0, len(descramble_info), 2):
swapword = struct.unpack("<H", descramble_info[i:(i + 2)])[0]
if swapword == 0:
break
offset = (swapword & 0x7F) * 2
swap_type = (swapword >> 13) & 0x7
loops = ((swapword >> 7) & 0x3F)
data_offset += offset
if swap_type == 0:
# Just jump forward based on loops
data_offset += 256 * loops
continue
if swap_type not in swap_len:
raise Exception(f"Unknown swap type {swap_type}!")
# Reverse the bytes
for _ in range(loops + 1):
data[data_offset:(data_offset + swap_len[swap_type])] = data[data_offset:(data_offset + swap_len[swap_type])][::-1]
data_offset += swap_len[swap_type]
return bytes(data)
def __descramble_stringtable(self, scrambled_data: bytes, stringtable_offset: int, stringtable_size: int) -> bytes:
data = bytearray(scrambled_data)
curstring: List[int] = []
curloc = stringtable_offset
addition = 128
for i in range(stringtable_size):
byte = (data[stringtable_offset + i] - addition) & 0xFF
data[stringtable_offset + i] = byte
addition += 1
if byte == 0:
if curstring:
# We found a string!
self.__strings[curloc - stringtable_offset] = (bytes(curstring).decode('utf8'), False)
curloc = stringtable_offset + i + 1
curstring = []
curloc = stringtable_offset + i + 1
else:
curstring.append(byte)
if curstring:
raise Exception("Logic error!")
if 0 in self.__strings:
raise Exception("Should not include null string!")
return bytes(data)
def __get_string(self, offset: int) -> str:
if offset == 0:
return ""
self.__strings[offset] = (self.__strings[offset][0], True)
return self.__strings[offset][0]
def parse(self, verbose: bool = False) -> None:
with self.covered(len(self.data), verbose):
with self.debugging(verbose):
self.__parse(verbose)
def __parse(self, verbose: bool) -> None:
# First, use the byteswap header to descramble the data.
data = self.__descramble(self.data, self.descramble_info)
# Start with the basic file header.
magic, length, version, nameoffset, flags, left, right, top, bottom = struct.unpack("<4sIHHIHHHH", data[0:24])
self.add_coverage(0, 24)
ap2_data_version = magic[0] & 0xFF
magic = bytes([magic[3] & 0x7F, magic[2] & 0x7F, magic[1] & 0x7F, 0x0])
if magic != b'AP2\x00':
raise Exception(f"Unrecognzied magic {magic}!")
if length != len(data):
raise Exception(f"Unexpected length in AFP header, {length} != {len(data)}!")
if ap2_data_version not in [7, 8, 9, 10]:
raise Exception(f"Unsupported AP2 container version {ap2_data_version}!")
if version != 0x200:
raise Exception(f"Unsupported AP2 version {version}!")
# The container version is analogous to the SWF file version. I'm pretty sure it
# dictates certain things like what properties are available. These appear strictly
# additive so we don't concern ourselves with this.
self.container_version = ap2_data_version
# The data version is basically used for how to parse tags. There was an older data
# version 0x100 that used more SWF-like bit-packed tags and while lots of code exists
# to parse this, the AP2 libraries will reject SWF data with this version.
self.data_version = version
# As far as I can tell, most things only care about the width and height of this
# movie, and I think the Shapes are rendered based on the width/height. However, it
# can have a non-zero x/y offset and I think this is used when rendering multiple
# movie clips?
self.location = Rectangle(left=left, right=right, top=top, bottom=bottom)
if flags & 0x1:
# This appears to be the animation background color.
rgba = struct.unpack("<I", data[28:32])[0]
self.color = Color(
r=(rgba & 0xFF) / 255.0,
g=((rgba >> 8) & 0xFF) / 255.0,
b=((rgba >> 16) & 0xFF) / 255.0,
a=((rgba >> 24) & 0xFF) / 255.0,
)
else:
self.color = None
self.add_coverage(28, 4)
if flags & 0x2:
# FPS can be either an integer or a float.
self.fps = struct.unpack("<i", data[24:28])[0] / 1024.0
else:
self.fps = struct.unpack("<f", data[24:28])[0]
self.add_coverage(24, 4)
if flags & 0x4:
# This seems related to imported tags.
imported_tag_initializers_offset = struct.unpack("<I", data[56:60])[0]
self.add_coverage(56, 4)
else:
# Imported tag initializer bytecode not present.
imported_tag_initializers_offset = None
# String table
stringtable_offset, stringtable_size = struct.unpack("<II", data[48:56])
self.add_coverage(48, 8)
# Descramble string table.
data = self.__descramble_stringtable(data, stringtable_offset, stringtable_size)
self.add_coverage(stringtable_offset, stringtable_size)
# Get exported SWF name.
self.exported_name = self.__get_string(nameoffset)
self.vprint(f"{os.linesep}AFP name: {self.name}", component="core")
self.vprint(f"Container Version: {hex(self.container_version)}", component="core")
self.vprint(f"Version: {hex(self.data_version)}", component="core")
self.vprint(f"Exported Name: {self.exported_name}", component="core")
self.vprint(f"SWF Flags: {hex(flags)}", component="core")
if flags & 0x1:
self.vprint(f" 0x1: Movie background color: {self.color}", component="core")
else:
self.vprint(" 0x1: No movie background color", component="core")
if flags & 0x2:
self.vprint(" 0x2: FPS is an integer", component="core")
else:
self.vprint(" 0x2: FPS is a float", component="core")
if flags & 0x4:
self.vprint(" 0x4: Imported tag initializer section present", component="core")
else:
self.vprint(" 0x4: Imported tag initializer section not present", component="core")
self.vprint(f"Dimensions: {int(self.location.width)}x{int(self.location.height)}", component="core")
self.vprint(f"Requested FPS: {self.fps}", component="core")
# Exported assets
num_exported_assets = struct.unpack("<H", data[32:34])[0]
asset_offset = struct.unpack("<I", data[40:44])[0]
self.add_coverage(32, 2)
self.add_coverage(40, 4)
# Parse exported asset tag names and their tag IDs.
self.exported_tags = {}
self.vprint(f"Number of Exported Tags: {num_exported_assets}", component="tags")
for assetno in range(num_exported_assets):
asset_tag_id, asset_string_offset = struct.unpack("<HH", data[asset_offset:(asset_offset + 4)])
self.add_coverage(asset_offset, 4)
asset_offset += 4
asset_name = self.__get_string(asset_string_offset)
self.exported_tags[asset_name] = asset_tag_id
self.vprint(f" {assetno}: Tag Name: {asset_name}, Tag ID: {asset_tag_id}", component="tags")
# Tag sections
tags_offset = struct.unpack("<I", data[36:40])[0]
self.add_coverage(36, 4)
self.tags, self.frames, self.labels = self.__parse_tags(ap2_data_version, version, data, tags_offset, None)
# Imported tags sections
imported_tags_count = struct.unpack("<h", data[34:36])[0]
imported_tags_offset = struct.unpack("<I", data[44:48])[0]
imported_tags_data_offset = imported_tags_offset + 4 * imported_tags_count
self.add_coverage(34, 2)
self.add_coverage(44, 4)
self.vprint(f"Number of Imported Tags: {imported_tags_count}", component="tags")
self.imported_tags = {}
for _ in range(imported_tags_count):
# First grab the SWF this is importing from, and the number of assets being imported.
swf_name_offset, count = struct.unpack("<HH", data[imported_tags_offset:(imported_tags_offset + 4)])
self.add_coverage(imported_tags_offset, 4)
swf_name = self.__get_string(swf_name_offset)
self.vprint(f" Source SWF: {swf_name}", component="tags")
# Now, grab the actual asset names being imported.
for _ in range(count):
asset_id_no, asset_name_offset = struct.unpack("<HH", data[imported_tags_data_offset:(imported_tags_data_offset + 4)])
self.add_coverage(imported_tags_data_offset, 4)
asset_name = self.__get_string(asset_name_offset)
self.imported_tags[asset_id_no] = NamedTagReference(swf_name=swf_name, tag_name=asset_name)
self.vprint(f" Tag ID: {asset_id_no}, Requested Asset: {asset_name}", component="tags")
imported_tags_data_offset += 4
imported_tags_offset += 4
# This appears to be bytecode to execute on a per-frame basis. We execute this every frame and
# only execute up to the point where we equal the current frame.
if imported_tag_initializers_offset is not None:
unk1, length = struct.unpack("<HH", data[imported_tag_initializers_offset:(imported_tag_initializers_offset + 4)])
self.add_coverage(imported_tag_initializers_offset, 4)
self.vprint(f"Imported Tag Initializer Offset: {hex(imported_tag_initializers_offset)}, Length: {length}", component="tags")
for i in range(length):
item_offset = imported_tag_initializers_offset + 4 + (i * 12)
tag_id, frame, action_bytecode_offset, action_bytecode_length = struct.unpack("<HHII", data[item_offset:(item_offset + 12)])
self.add_coverage(item_offset, 12)
bytecode: Optional[ByteCode] = None
if action_bytecode_length != 0:
self.vprint(f" Tag ID: {tag_id}, Frame: {frame}, ByteCode Offset: {hex(action_bytecode_offset + imported_tag_initializers_offset)}", component="tags")
bytecode_data = data[(action_bytecode_offset + imported_tag_initializers_offset):(action_bytecode_offset + imported_tag_initializers_offset + action_bytecode_length)]
bytecode = self.__parse_bytecode(f"on_import_tag_{tag_id}", bytecode_data)
else:
self.vprint(f" Tag ID: {tag_id}, Frame: {frame}, No ByteCode Present", component="tags")
# Add it to the frame's instructions
if frame >= len(self.frames):
raise Exception(f"Unexpected frame {frame}, we only have {len(self.frames)} frames in this movie!")
self.frames[frame].imported_tags.append(TagPointer(tag_id, bytecode))
if verbose:
self.print_coverage()
self.parsed = True