553 lines
21 KiB
Python
553 lines
21 KiB
Python
import math
|
|
import multiprocessing
|
|
import signal
|
|
from PIL import Image # type: ignore
|
|
from typing import Any, List, Optional, Sequence, Union
|
|
|
|
from ..types import Color, Matrix, Point
|
|
|
|
|
|
def clamp(color: float) -> int:
|
|
return min(max(0, round(color)), 255)
|
|
|
|
|
|
def blend_normal(
|
|
# RGBA color tuple representing what's already at the dest.
|
|
dest: Sequence[int],
|
|
# RGBA color tuple representing the source we want to blend to the dest.
|
|
src: Sequence[int],
|
|
) -> Sequence[int]:
|
|
# "Normal" blend mode, which is just alpha blending. Various games use the DX
|
|
# equation Src * As + Dst * (1 - As). We premultiply Dst by Ad as well, since
|
|
# we are blitting onto a destination that could have transparency. Once we are
|
|
# done, we divide out the premultiplied Ad in order to put the pixes back to
|
|
# their full blended values since we are not setting the destination alpha to 1.0.
|
|
# This enables partial transparent backgrounds to work properly.
|
|
|
|
# Short circuit for speed.
|
|
if src[3] == 0:
|
|
return dest
|
|
if src[3] == 255:
|
|
return src
|
|
|
|
# Calculate alpha blending.
|
|
srcpercent = src[3] / 255.0
|
|
destpercent = dest[3] / 255.0
|
|
srcremainder = 1.0 - srcpercent
|
|
new_alpha = max(min(0.0, srcpercent + destpercent * srcremainder), 1.0)
|
|
return (
|
|
clamp(((dest[0] * destpercent * srcremainder) + (src[0] * srcpercent)) / new_alpha),
|
|
clamp(((dest[1] * destpercent * srcremainder) + (src[1] * srcpercent)) / new_alpha),
|
|
clamp(((dest[2] * destpercent * srcremainder) + (src[2] * srcpercent)) / new_alpha),
|
|
clamp(255 * new_alpha)
|
|
)
|
|
|
|
|
|
def blend_addition(
|
|
# RGBA color tuple representing what's already at the dest.
|
|
dest: Sequence[int],
|
|
# RGBA color tuple representing the source we want to blend to the dest.
|
|
src: Sequence[int],
|
|
) -> Sequence[int]:
|
|
# "Addition" blend mode, which is used for fog/clouds/etc. Various games use the DX
|
|
# equation Src * As + Dst * 1. It appears jubeat does not premultiply the source
|
|
# by its alpha component.
|
|
|
|
# Short circuit for speed.
|
|
if src[3] == 0:
|
|
return dest
|
|
|
|
# Calculate final color blending.
|
|
srcpercent = src[3] / 255.0
|
|
return (
|
|
clamp(dest[0] + (src[0] * srcpercent)),
|
|
clamp(dest[1] + (src[1] * srcpercent)),
|
|
clamp(dest[2] + (src[2] * srcpercent)),
|
|
# Additive blending doesn't actually make sense on semi-transparent destinations,
|
|
# as that implies that the semi-transparent pixel will be later displayed on top
|
|
# of something else. That doesn't work since additive blending needs to non-linearly
|
|
# mix with the destination. So, in reality, we should be doing what subtractive
|
|
# blending does and keeping the destination alpha (which should always be 255),
|
|
# but if somebody renders an animation with additive blending meant to go over a
|
|
# background onto a transparent or semi-transparent background this will make the
|
|
# resulting graphic look more correct.
|
|
clamp(dest[3] + (255 * srcpercent)),
|
|
)
|
|
|
|
|
|
def blend_subtraction(
|
|
# RGBA color tuple representing what's already at the dest.
|
|
dest: Sequence[int],
|
|
# RGBA color tuple representing the source we want to blend to the dest.
|
|
src: Sequence[int],
|
|
) -> Sequence[int]:
|
|
# "Subtraction" blend mode, used for darkening an image. Various games use the DX
|
|
# equation Dst * 1 - Src * As. It appears jubeat does not premultiply the source
|
|
# by its alpha component much like the "additive" blend above..
|
|
|
|
# Short circuit for speed.
|
|
if src[3] == 0:
|
|
return dest
|
|
|
|
# Calculate final color blending.
|
|
srcpercent = src[3] / 255.0
|
|
return (
|
|
clamp(dest[0] - (src[0] * srcpercent)),
|
|
clamp(dest[1] - (src[1] * srcpercent)),
|
|
clamp(dest[2] - (src[2] * srcpercent)),
|
|
dest[3],
|
|
)
|
|
|
|
|
|
def blend_multiply(
|
|
# RGBA color tuple representing what's already at the dest.
|
|
dest: Sequence[int],
|
|
# RGBA color tuple representing the source we want to blend to the dest.
|
|
src: Sequence[int],
|
|
) -> Sequence[int]:
|
|
# "Multiply" blend mode, used for darkening an image. Various games use the DX
|
|
# equation Src * 0 + Dst * Src. It appears jubeat uses the alternative formula
|
|
# Src * Dst + Dst * (1 - As) which reduces to the first equation as long as the
|
|
# source alpha is always 255.
|
|
|
|
# Calculate final color blending.
|
|
return (
|
|
clamp(255 * ((dest[0] / 255.0) * (src[0] / 255.0))),
|
|
clamp(255 * ((dest[1] / 255.0) * (src[1] / 255.0))),
|
|
clamp(255 * ((dest[2] / 255.0) * (src[2] / 255.0))),
|
|
dest[3],
|
|
)
|
|
|
|
|
|
def blend_mask_create(
|
|
# RGBA color tuple representing what's already at the dest.
|
|
dest: Sequence[int],
|
|
# RGBA color tuple representing the source we want to blend to the dest.
|
|
src: Sequence[int],
|
|
) -> Sequence[int]:
|
|
# Mask creating just allows a pixel to be drawn if the source image has a nonzero
|
|
# alpha, according to the SWF spec.
|
|
if src[3] != 0:
|
|
return (255, 0, 0, 255)
|
|
else:
|
|
return (0, 0, 0, 0)
|
|
|
|
|
|
def blend_mask_combine(
|
|
# RGBA color tuple representing what's already at the dest.
|
|
dest: Sequence[int],
|
|
# RGBA color tuple representing the source we want to blend to the dest.
|
|
src: Sequence[int],
|
|
) -> Sequence[int]:
|
|
# Mask blending just takes the source and destination and ands them together, making
|
|
# a final mask that is the intersection of the original mask and the new mask. The
|
|
# reason we even have a color component to this is for debugging visibility.
|
|
if dest[3] != 0 and src[3] != 0:
|
|
return (255, 0, 0, 255)
|
|
else:
|
|
return (0, 0, 0, 0)
|
|
|
|
|
|
def blend_point(
|
|
add_color: Color,
|
|
mult_color: Color,
|
|
# This should be a sequence of exactly 4 values, either bytes or a tuple.
|
|
src_color: Sequence[int],
|
|
# This should be a sequence of exactly 4 values, either bytes or a tuple.
|
|
dest_color: Sequence[int],
|
|
blendfunc: int,
|
|
) -> Sequence[int]:
|
|
# Calculate multiplicative and additive colors against the source.
|
|
src_color = (
|
|
clamp((src_color[0] * mult_color.r) + (255 * add_color.r)),
|
|
clamp((src_color[1] * mult_color.g) + (255 * add_color.g)),
|
|
clamp((src_color[2] * mult_color.b) + (255 * add_color.b)),
|
|
clamp((src_color[3] * mult_color.a) + (255 * add_color.a)),
|
|
)
|
|
|
|
if blendfunc == 3:
|
|
return blend_multiply(dest_color, src_color)
|
|
# TODO: blend mode 4, which is "screen" blending according to SWF references. I've only seen this
|
|
# in Jubeat and it implements it using OpenGL equation Src * (1 - Dst) + Dst * 1.
|
|
# TODO: blend mode 5, which is "lighten" blending according to SWF references. Jubeat does not
|
|
# premultiply by alpha, but the GL/DX equation is max(Src * As, Dst * 1).
|
|
# TODO: blend mode 6, which is "darken" blending according to SWF references. Jubeat does not
|
|
# premultiply by alpha, but the GL/DX equation is min(Src * As, Dst * 1).
|
|
# TODO: blend mode 10, which is "invert" according to SWF references. The only game I could find
|
|
# that implemented this had equation Src * (1 - Dst) + Dst * (1 - As).
|
|
# TODO: blend mode 13, which is "overlay" according to SWF references. The equation seems to be
|
|
# Src * Dst + Dst * Src but Jubeat thinks it should be Src * Dst + Dst * (1 - As).
|
|
elif blendfunc == 8:
|
|
return blend_addition(dest_color, src_color)
|
|
elif blendfunc == 9 or blendfunc == 70:
|
|
return blend_subtraction(dest_color, src_color)
|
|
# TODO: blend mode 75, which is not in the SWF spec and appears to have the equation
|
|
# Src * (1 - Dst) + Dst * (1 - Src).
|
|
elif blendfunc == 256:
|
|
# Dummy blend function for calculating masks.
|
|
return blend_mask_combine(dest_color, src_color)
|
|
elif blendfunc == 257:
|
|
# Dummy blend function for calculating masks.
|
|
return blend_mask_create(dest_color, src_color)
|
|
else:
|
|
return blend_normal(dest_color, src_color)
|
|
|
|
|
|
def affine_composite(
|
|
img: Image.Image,
|
|
add_color: Color,
|
|
mult_color: Color,
|
|
transform: Matrix,
|
|
mask: Optional[Image.Image],
|
|
blendfunc: int,
|
|
texture: Image.Image,
|
|
single_threaded: bool = False,
|
|
enable_aa: bool = True,
|
|
) -> Image.Image:
|
|
# Calculate the inverse so we can map canvas space back to texture space.
|
|
try:
|
|
inverse = transform.inverse()
|
|
except ZeroDivisionError:
|
|
# If this happens, that means one of the scaling factors was zero, making
|
|
# this object invisible. We can ignore this since the object should not
|
|
# be drawn.
|
|
return img
|
|
|
|
# Warn if we have an unsupported blend.
|
|
if blendfunc not in {0, 1, 2, 3, 8, 9, 70, 256, 257}:
|
|
print(f"WARNING: Unsupported blend {blendfunc}")
|
|
return img
|
|
|
|
# These are calculated properties and caching them outside of the loop
|
|
# speeds things up a bit.
|
|
imgwidth = img.width
|
|
imgheight = img.height
|
|
texwidth = texture.width
|
|
texheight = texture.height
|
|
|
|
# Calculate the maximum range of update this texture can possibly reside in.
|
|
pix1 = transform.multiply_point(Point.identity())
|
|
pix2 = transform.multiply_point(Point.identity().add(Point(texwidth, 0)))
|
|
pix3 = transform.multiply_point(Point.identity().add(Point(0, texheight)))
|
|
pix4 = transform.multiply_point(Point.identity().add(Point(texwidth, texheight)))
|
|
|
|
# Map this to the rectangle we need to sweep in the rendering image.
|
|
minx = max(int(min(pix1.x, pix2.x, pix3.x, pix4.x)), 0)
|
|
maxx = min(int(max(pix1.x, pix2.x, pix3.x, pix4.x)) + 1, imgwidth)
|
|
miny = max(int(min(pix1.y, pix2.y, pix3.y, pix4.y)), 0)
|
|
maxy = min(int(max(pix1.y, pix2.y, pix3.y, pix4.y)) + 1, imgheight)
|
|
|
|
if maxx <= minx or maxy <= miny:
|
|
# This image is entirely off the screen!
|
|
return img
|
|
|
|
cores = multiprocessing.cpu_count()
|
|
if single_threaded or cores < 2:
|
|
# Get the data in an easier to manipulate and faster to update fashion.
|
|
imgbytes = bytearray(img.tobytes('raw', 'RGBA'))
|
|
texbytes = texture.tobytes('raw', 'RGBA')
|
|
if mask:
|
|
alpha = mask.split()[-1]
|
|
maskbytes = alpha.tobytes('raw', 'L')
|
|
else:
|
|
maskbytes = None
|
|
|
|
# We don't have enough CPU cores to bother multiprocessing.
|
|
for imgy in range(miny, maxy):
|
|
for imgx in range(minx, maxx):
|
|
# Determine offset
|
|
imgoff = (imgx + (imgy * imgwidth)) * 4
|
|
imgbytes[imgoff:(imgoff + 4)] = pixel_renderer(
|
|
imgx,
|
|
imgy,
|
|
imgwidth,
|
|
texwidth,
|
|
texheight,
|
|
inverse,
|
|
add_color,
|
|
mult_color,
|
|
blendfunc,
|
|
imgbytes,
|
|
texbytes,
|
|
maskbytes,
|
|
enable_aa,
|
|
)
|
|
|
|
img = Image.frombytes('RGBA', (imgwidth, imgheight), bytes(imgbytes))
|
|
else:
|
|
imgbytes = img.tobytes('raw', 'RGBA')
|
|
texbytes = texture.tobytes('raw', 'RGBA')
|
|
if mask:
|
|
alpha = mask.split()[-1]
|
|
maskbytes = alpha.tobytes('raw', 'L')
|
|
else:
|
|
maskbytes = None
|
|
|
|
# Let's spread the load across multiple processors.
|
|
procs: List[multiprocessing.Process] = []
|
|
work: multiprocessing.Queue = multiprocessing.Queue()
|
|
results: multiprocessing.Queue = multiprocessing.Queue()
|
|
expected: int = 0
|
|
interrupted: bool = False
|
|
|
|
def ctrlc(sig: Any, frame: Any) -> None:
|
|
nonlocal interrupted
|
|
interrupted = True
|
|
|
|
previous_handler = signal.getsignal(signal.SIGINT)
|
|
signal.signal(signal.SIGINT, ctrlc)
|
|
|
|
for _ in range(cores):
|
|
proc = multiprocessing.Process(
|
|
target=line_renderer,
|
|
args=(
|
|
work,
|
|
results,
|
|
minx,
|
|
maxx,
|
|
imgwidth,
|
|
texwidth,
|
|
texheight,
|
|
inverse,
|
|
add_color,
|
|
mult_color,
|
|
blendfunc,
|
|
imgbytes,
|
|
texbytes,
|
|
maskbytes,
|
|
enable_aa,
|
|
),
|
|
)
|
|
procs.append(proc)
|
|
proc.start()
|
|
|
|
for imgy in range(miny, maxy):
|
|
work.put(imgy)
|
|
expected += 1
|
|
|
|
lines: List[bytes] = [
|
|
imgbytes[x:(x + (imgwidth * 4))]
|
|
for x in range(
|
|
0,
|
|
imgwidth * imgheight * 4,
|
|
imgwidth * 4,
|
|
)
|
|
]
|
|
for _ in range(expected):
|
|
imgy, result = results.get()
|
|
lines[imgy] = result
|
|
|
|
for proc in procs:
|
|
work.put(None)
|
|
for proc in procs:
|
|
proc.join()
|
|
|
|
signal.signal(signal.SIGINT, previous_handler)
|
|
if interrupted:
|
|
raise KeyboardInterrupt()
|
|
|
|
img = Image.frombytes('RGBA', (imgwidth, imgheight), b''.join(lines))
|
|
return img
|
|
|
|
|
|
def line_renderer(
|
|
work: multiprocessing.Queue,
|
|
results: multiprocessing.Queue,
|
|
minx: int,
|
|
maxx: int,
|
|
imgwidth: int,
|
|
texwidth: int,
|
|
texheight: int,
|
|
inverse: Matrix,
|
|
add_color: Color,
|
|
mult_color: Color,
|
|
blendfunc: int,
|
|
imgbytes: Union[bytes, bytearray],
|
|
texbytes: Union[bytes, bytearray],
|
|
maskbytes: Optional[Union[bytes, bytearray]],
|
|
enable_aa: bool,
|
|
) -> None:
|
|
while True:
|
|
imgy = work.get()
|
|
if imgy is None:
|
|
return
|
|
|
|
rowbytes = bytearray(imgbytes[(imgy * imgwidth * 4):((imgy + 1) * imgwidth * 4)])
|
|
for imgx in range(imgwidth):
|
|
if imgx < minx or imgx >= maxx:
|
|
# No need to even consider this pixel.
|
|
continue
|
|
else:
|
|
# Blit new pixel into the correct range.
|
|
rowbytes[(imgx * 4):((imgx + 1) * 4)] = pixel_renderer(
|
|
imgx,
|
|
imgy,
|
|
imgwidth,
|
|
texwidth,
|
|
texheight,
|
|
inverse,
|
|
add_color,
|
|
mult_color,
|
|
blendfunc,
|
|
imgbytes,
|
|
texbytes,
|
|
maskbytes,
|
|
enable_aa,
|
|
)
|
|
|
|
results.put((imgy, bytes(rowbytes)))
|
|
|
|
|
|
def pixel_renderer(
|
|
imgx: int,
|
|
imgy: int,
|
|
imgwidth: int,
|
|
texwidth: int,
|
|
texheight: int,
|
|
inverse: Matrix,
|
|
add_color: Color,
|
|
mult_color: Color,
|
|
blendfunc: int,
|
|
imgbytes: Union[bytes, bytearray],
|
|
texbytes: Union[bytes, bytearray],
|
|
maskbytes: Optional[Union[bytes, bytearray]],
|
|
enable_aa: bool,
|
|
) -> Sequence[int]:
|
|
# Determine offset
|
|
maskoff = imgx + (imgy * imgwidth)
|
|
imgoff = maskoff * 4
|
|
|
|
if maskbytes is not None and maskbytes[maskoff] == 0:
|
|
# This pixel is masked off!
|
|
return imgbytes[imgoff:(imgoff + 4)]
|
|
|
|
if enable_aa:
|
|
r = 0
|
|
g = 0
|
|
b = 0
|
|
a = 0
|
|
count = 0
|
|
denom = 0
|
|
|
|
# Essentially what we're doing here is calculating the scale, clamping it at 1.0 as the
|
|
# minimum and then setting the AA sample swing accordingly. This has the effect of anti-aliasing
|
|
# scaled up images a bit softer than would otherwise be achieved.
|
|
xscale = 1.0 / math.sqrt(inverse.a * inverse.a + inverse.b * inverse.b)
|
|
yscale = 1.0 / math.sqrt(inverse.c * inverse.c + inverse.d * inverse.d)
|
|
|
|
# These are used for picking the various sample points for SSAA method below.
|
|
xswing = 0.5 * max(1.0, xscale)
|
|
yswing = 0.5 * max(1.0, yscale)
|
|
|
|
xpoints = [0.5 - xswing, 0.5 - (xswing / 2.0), 0.5, 0.5 + (xswing / 2.0), 0.5 + xswing]
|
|
ypoints = [0.5 - yswing, 0.5 - (yswing / 2.0), 0.5, 0.5 + (yswing / 2.0), 0.5 + yswing]
|
|
|
|
# First, figure out if we can use bilinear resampling.
|
|
bilinear = False
|
|
if xscale >= 1.0 and yscale >= 1.0:
|
|
aaloc = inverse.multiply_point(Point(imgx + 0.5, imgy + 0.5))
|
|
aax, aay = aaloc.as_tuple()
|
|
if not (aax <= 0 or aay <= 0 or aax >= (texwidth - 1) or aay >= (texheight - 1)):
|
|
bilinear = True
|
|
|
|
# Now perform the desired AA operation.
|
|
if bilinear:
|
|
# Calculate the pixel we're after, and what percentage into the pixel we are.
|
|
texloc = inverse.multiply_point(Point(imgx + 0.5, imgy + 0.5))
|
|
aax, aay = texloc.as_tuple()
|
|
aaxrem = texloc.x - aax
|
|
aayrem = texloc.y - aay
|
|
|
|
# Find the four pixels that we can interpolate from. The first number is the x, and second is y.
|
|
tex00 = (aax + (aay * texwidth)) * 4
|
|
tex10 = tex00 + 4
|
|
tex01 = (aax + ((aay + 1) * texwidth)) * 4
|
|
tex11 = tex01 + 4
|
|
|
|
# Calculate various scaling factors based on alpha and percentage.
|
|
tex00percent = texbytes[tex00 + 3] / 255.0
|
|
tex10percent = texbytes[tex10 + 3] / 255.0
|
|
tex01percent = texbytes[tex01 + 3] / 255.0
|
|
tex11percent = texbytes[tex11 + 3] / 255.0
|
|
|
|
y0percent = (tex00percent * (1.0 - aaxrem)) + (tex10percent * aaxrem)
|
|
y1percent = (tex01percent * (1.0 - aaxrem)) + (tex11percent * aaxrem)
|
|
finalpercent = (y0percent * (1.0 - aayrem)) + (y1percent * aayrem)
|
|
|
|
if finalpercent <= 0.0:
|
|
# This pixel would be blank, so we avoid dividing by zero.
|
|
average = [255, 255, 255, 0]
|
|
else:
|
|
# Interpolate in the X direction on both Y axis.
|
|
y0r = ((texbytes[tex00] * tex00percent * (1.0 - aaxrem)) + (texbytes[tex10] * tex10percent * aaxrem))
|
|
y0g = ((texbytes[tex00 + 1] * tex00percent * (1.0 - aaxrem)) + (texbytes[tex10 + 1] * tex10percent * aaxrem))
|
|
y0b = ((texbytes[tex00 + 2] * tex00percent * (1.0 - aaxrem)) + (texbytes[tex10 + 2] * tex10percent * aaxrem))
|
|
|
|
y1r = ((texbytes[tex01] * tex01percent * (1.0 - aaxrem)) + (texbytes[tex11] * tex11percent * aaxrem))
|
|
y1g = ((texbytes[tex01 + 1] * tex01percent * (1.0 - aaxrem)) + (texbytes[tex11 + 1] * tex11percent * aaxrem))
|
|
y1b = ((texbytes[tex01 + 2] * tex01percent * (1.0 - aaxrem)) + (texbytes[tex11 + 2] * tex11percent * aaxrem))
|
|
|
|
# Now interpolate the Y direction to get the final pixel value.
|
|
average = [
|
|
int(((y0r * (1.0 - aayrem)) + (y1r * aayrem)) / finalpercent),
|
|
int(((y0g * (1.0 - aayrem)) + (y1g * aayrem)) / finalpercent),
|
|
int(((y0b * (1.0 - aayrem)) + (y1b * aayrem)) / finalpercent),
|
|
int(finalpercent * 255),
|
|
]
|
|
else:
|
|
for addy in ypoints:
|
|
for addx in xpoints:
|
|
texloc = inverse.multiply_point(Point(imgx + addx, imgy + addy))
|
|
aax, aay = texloc.as_tuple()
|
|
|
|
# If we're out of bounds, don't update. Factor this in, however, so we can get partial
|
|
# transparency to the pixel that is already there.
|
|
denom += 1
|
|
if aax < 0 or aay < 0 or aax >= texwidth or aay >= texheight:
|
|
continue
|
|
|
|
# Grab the values to average, for SSAA. Make sure to factor in alpha as a poor-man's
|
|
# blend to ensure that partial transparency pixel values don't unnecessarily factor
|
|
# into average calculations.
|
|
texoff = (aax + (aay * texwidth)) * 4
|
|
|
|
# If this is a fully transparent pixel, the below formulas work out to adding nothing
|
|
# so we should skip this altogether.
|
|
if texbytes[texoff + 3] == 0:
|
|
continue
|
|
|
|
apercent = texbytes[texoff + 3] / 255.0
|
|
r += int(texbytes[texoff] * apercent)
|
|
g += int(texbytes[texoff + 1] * apercent)
|
|
b += int(texbytes[texoff + 2] * apercent)
|
|
a += texbytes[texoff + 3]
|
|
count += 1
|
|
|
|
if count == 0:
|
|
# None of the samples existed in-bounds.
|
|
return imgbytes[imgoff:(imgoff + 4)]
|
|
|
|
# Average the pixels. Make sure to divide out the alpha in preparation for blending.
|
|
alpha = a // denom
|
|
|
|
if alpha == 0:
|
|
average = [255, 255, 255, alpha]
|
|
else:
|
|
apercent = alpha / 255.0
|
|
average = [int((r / denom) / apercent), int((g / denom) / apercent), int((b / denom) / apercent), alpha]
|
|
|
|
# Finally, blend it with the destination.
|
|
return blend_point(add_color, mult_color, average, imgbytes[imgoff:(imgoff + 4)], blendfunc)
|
|
else:
|
|
# Calculate what texture pixel data goes here.
|
|
texloc = inverse.multiply_point(Point(imgx + 0.5, imgy + 0.5))
|
|
texx, texy = texloc.as_tuple()
|
|
|
|
# If we're out of bounds, don't update.
|
|
if texx < 0 or texy < 0 or texx >= texwidth or texy >= texheight:
|
|
return imgbytes[imgoff:(imgoff + 4)]
|
|
|
|
# Blend it.
|
|
texoff = (texx + (texy * texwidth)) * 4
|
|
return blend_point(add_color, mult_color, texbytes[texoff:(texoff + 4)], imgbytes[imgoff:(imgoff + 4)], blendfunc)
|