1
0
mirror of synced 2024-11-15 02:17:36 +01:00
bemaniutils/bemani/utils/afputils.py
2020-11-09 03:01:42 +00:00

848 lines
33 KiB
Python

#! /usr/bin/env python3
import argparse
import os
import os.path
import struct
import sys
import textwrap
from PIL import Image # type: ignore
from typing import Any, List, Optional
from bemani.format.dxt import DXTBuffer
from bemani.protocol.binary import BinaryEncoding
from bemani.protocol.lz77 import Lz77
# Coverage tracker to help find missing chunks.
coverage: List[bool]
def add_coverage(offset: int, length: int, unique: bool = True) -> None:
global coverage
for i in range(offset, offset + length):
if coverage[i] and unique:
raise Exception(f"Already covered {hex(offset)}!")
coverage[i] = True
def print_coverage() -> None:
global coverage
# First offset that is not coverd in a run.
start = None
for offset, covered in enumerate(coverage):
if covered:
if start is not None:
print(f"Uncovered: {hex(start)} - {hex(offset)} ({offset-start} bytes)")
start = None
else:
if start is None:
start = offset
if start is not None:
# Print final range
offset = len(coverage)
print(f"Uncovered: {hex(start)} - {hex(offset)} ({offset-start} bytes)")
def get_until_null(data: bytes, offset: int) -> bytes:
out = b""
while data[offset] != 0:
out += data[offset:(offset + 1)]
offset += 1
return out
def cap32(val: int) -> int:
return val & 0xFFFFFFFF
def poly(val: int) -> int:
if (val >> 31) & 1 != 0:
return 0x4C11DB7
else:
return 0
def crc32(bytestream: bytes) -> int:
# Janky 6-bit CRC for ascii names in PMAN structures.
result = 0
for byte in bytestream:
for i in range(6):
result = poly(result) ^ cap32((result << 1) | ((byte >> i) & 1))
return result
def descramble_text(text: bytes, obfuscated: bool) -> str:
if len(text):
if obfuscated and (text[0] - 0x20) > 0x7F:
# Gotta do a weird demangling where we swap the
# top bit.
return bytes(((x + 0x80) & 0xFF) for x in text).decode('ascii')
else:
return text.decode('ascii')
else:
return ""
def descramble_pman(package_data: bytes, offset: int, endian: str, obfuscated: bool) -> List[str]:
# Unclear what the first three unknowns are, but the fourth
# looks like it could possibly be two int16s indicating unknown?
magic, expect_zero, flags1, flags2, numentries, flags3, data_offset = struct.unpack(
f"{endian}4sIIIIII",
package_data[offset:(offset + 28)],
)
add_coverage(offset, 28)
# I have never seen the first unknown be anything other than zero,
# so lets lock that down.
if expect_zero != 0:
raise Exception("Got a non-zero value for expected zero location in PMAN!")
if endian == "<" and magic != b"PMAN":
raise Exception("Invalid magic value in PMAN structure!")
if endian == ">" and magic != b"NAMP":
raise Exception("Invalid magic value in PMAN structure!")
names: List[Optional[str]] = [None] * numentries
if numentries > 0:
# Jump to the offset, parse it out
for i in range(numentries):
file_offset = data_offset + (i * 12)
name_crc, entry_no, nameoffset = struct.unpack(
f"{endian}III",
package_data[file_offset:(file_offset + 12)],
)
add_coverage(file_offset, 12)
if nameoffset == 0:
raise Exception("Expected name offset in PMAN data!")
bytedata = get_until_null(package_data, nameoffset)
add_coverage(nameoffset, len(bytedata) + 1, unique=False)
name = descramble_text(bytedata, obfuscated)
names[entry_no] = name
if name_crc != crc32(name.encode('ascii')):
raise Exception(f"Name CRC failed for {name}")
for i, name in enumerate(names):
if name is None:
raise Exception(f"Didn't get mapping for entry {i + 1}")
return names
def extract(
filename: str,
output_dir: str, *,
write: bool = True,
verbose: bool = False,
raw: bool = False,
xml: bool = False,
) -> None:
with open(filename, "rb") as fp:
data = fp.read()
# Initialize coverage. This is used to help find missed/hidden file
# sections that we aren't parsing correctly.
global coverage
coverage = [False] * len(data)
# Suppress debug text unless asked
if verbose:
vprint = print
else:
def vprint(*args: Any, **kwargs: Any) -> None: # type: ignore
pass
# First, check the signature
add_coverage(0, 4)
if data[0:4] == b"2PXT":
endian = "<"
elif data[0:4] == b"TXP2":
endian = ">"
else:
raise Exception("Invalid graphic file format!")
# Not sure what words 2 and 3 are, they seem to be some sort of
# version or date?
add_coverage(4, 8)
# Now, grab the file length, verify that we have the right amount
# of data.
length = struct.unpack(f"{endian}I", data[12:16])[0]
add_coverage(12, 4)
if length != len(data):
raise Exception(f"Invalid graphic file length, expecting {length} bytes!")
# I think that offset 16-20 are the file data offset, but I'm not sure?
header_length = struct.unpack(f"{endian}I", data[16:20])[0]
add_coverage(16, 4)
# Now, the meat of the file format. Bytes 20-24 are a bitfield for
# what parts of the header exist in the file. We need to understand
# each bit so we know how to skip past each section.
feature_mask = struct.unpack(f"{endian}I", data[20:24])[0]
add_coverage(20, 4)
header_offset = 24
# Lots of magic happens if this bit is set.
text_obfuscated = bool(feature_mask & 0x20)
legacy_lz = bool(feature_mask & 0x04)
modern_lz = bool(feature_mask & 0x40000)
# Get raw directory where we want to put files
path = os.path.abspath(output_dir)
if feature_mask & 0x01:
# List of textures that exist in the file, with pointers to their data.
length, offset = struct.unpack(f"{endian}II", data[header_offset:(header_offset + 8)])
add_coverage(header_offset, 8)
header_offset += 8
names = []
for x in range(length):
interesting_offset = offset + (x * 12)
if interesting_offset != 0:
name_offset, texture_length, texture_offset = struct.unpack(
f"{endian}III",
data[interesting_offset:(interesting_offset + 12)],
)
add_coverage(interesting_offset, 12)
if name_offset != 0:
# Let's decode this until the first null.
bytedata = get_until_null(data, name_offset)
add_coverage(name_offset, len(bytedata) + 1, unique=False)
name = descramble_text(bytedata, text_obfuscated)
names.append(name)
if texture_offset != 0:
filename = os.path.join(path, name)
if legacy_lz:
raise Exception("We don't support legacy lz mode!")
elif modern_lz:
# Get size, round up to nearest power of 4
inflated_size, deflated_size = struct.unpack(
">II",
data[texture_offset:(texture_offset + 8)],
)
add_coverage(texture_offset, 8)
if deflated_size != (texture_length - 8):
raise Exception("We got an incorrect length for lz texture!")
inflated_size = (inflated_size + 3) & (~3)
# Get the data offset
lz_data_offset = texture_offset + 8
lz_data = data[lz_data_offset:(lz_data_offset + deflated_size)]
add_coverage(lz_data_offset, deflated_size)
# This takes forever, so skip it if we're pretending.
if write:
print(f"Inflating {filename}...")
lz77 = Lz77()
raw_data = lz77.decompress(lz_data)
else:
raw_data = None
else:
inflated_size, deflated_size = struct.unpack(
">II",
data[texture_offset:(texture_offset + 8)],
)
# I'm guessing how raw textures work because I haven't seen them.
# I assume they're like the above, so lets put in some asertions.
if deflated_size != (texture_length - 8):
raise Exception("We got an incorrect length for raw texture!")
raw_data = data[(texture_offset + 8):(texture_offset + 8 + deflated_size)]
add_coverage(texture_offset, deflated_size + 8)
if not write:
print(f"Would write {filename} texture data...")
else:
# Now, see if we can extract this data.
print(f"Writing {filename} texture data...")
(
magic,
header_flags1,
header_flags2,
length,
width,
height,
fmtflags,
expected_zero1,
expected_zero2,
) = struct.unpack(
f"{endian}4sIIIHHIII",
raw_data[0:32],
)
if length != len(raw_data):
raise Exception("Invalid texture length!")
# I have only ever observed the following values across two different games.
# Don't want to keep the chunk around so let's assert our assumptions.
if (expected_zero1 | expected_zero2) != 0:
raise Exception("Found unexpected non-zero value in texture header!")
if raw_data[32:44] != b'\0' * 12:
raise Exception("Found unexpected non-zero value in texture header!")
if struct.unpack(f"{endian}I", raw_data[44:48])[0] != 3:
raise Exception("Found unexpected value in texture header!")
if raw_data[48:64] != b'\0' * 16:
raise Exception("Found unexpected non-zero value in texture header!")
fmt = fmtflags & 0xFF
# Extract flags that the game cares about.
# flags1 = (fmtflags >> 24) & 0xFF
# flags2 = (fmtflags >> 16) & 0xFF
# These flags may have some significance, such as
# the unk3/unk4 possibly indicating texture doubling?
# unk1 = 3 if (flags1 & 0xF == 1) else 1
# unk2 = 3 if ((flags1 >> 4) & 0xF == 1) else 1
# unk3 = 1 if (flags2 & 0xF == 1) else 2
# unk4 = 1 if ((flags2 >> 4) & 0xF == 1) else 2
if endian == "<" and magic != b"TDXT":
raise Exception("Unexpected texture format!")
if endian == ">" and magic != b"TXDT":
raise Exception("Unexpected texture format!")
if fmt == 0x0B:
# 16-bit 565 color RGB format.
newdata = []
for i in range(width * height):
pixel = struct.unpack(
f"{endian}H",
raw_data[(64 + (i * 2)):(66 + (i * 2))],
)[0]
red = ((pixel >> 0) & 0x1F) << 3
green = ((pixel >> 5) & 0x3F) << 2
blue = ((pixel >> 11) & 0x1F) << 3
newdata.append(
struct.pack("<BBB", blue, green, red)
)
img = Image.frombytes(
'RGB', (width, height), b''.join(newdata), 'raw', 'RGB',
)
elif fmt == 0x0E:
# RGB image, no alpha.
img = Image.frombytes(
'RGB', (width, height), raw_data[64:], 'raw', 'RGB',
)
# 0x10 = Seems to be some sort of RGB with color swapping.
elif fmt == 0x15:
# RGBA format.
# TODO: The colors are wrong on this, need to investigate
# further.
img = Image.frombytes(
'RGBA', (width, height), raw_data[64:], 'raw', 'BGRA',
)
# 0x16 = DTX1 format, when I encounter this I'll hook it up.
elif fmt == 0x1A:
# DXT5 format.
dxt = DXTBuffer(width, height)
img = Image.frombuffer(
'RGBA',
(width, height),
dxt.DXT5Decompress(raw_data[64:], endian=endian),
'raw',
'RGBA',
0,
1,
)
# 0x1E = I have no idea what format this is.
elif fmt == 0x1F:
# 16-bit 4-4-4-4 RGBA format.
newdata = []
for i in range(width * height):
pixel = struct.unpack(
f"{endian}H",
raw_data[(64 + (i * 2)):(66 + (i * 2))],
)[0]
blue = ((pixel >> 0) & 0xF) << 4
green = ((pixel >> 4) & 0xF) << 4
red = ((pixel >> 8) & 0xF) << 4
alpha = ((pixel >> 12) & 0xF) << 4
newdata.append(
struct.pack("<BBBB", red, green, blue, alpha)
)
img = Image.frombytes(
'RGBA', (width, height), b''.join(newdata), 'raw', 'RGBA',
)
elif fmt == 0x20:
# RGBA format.
img = Image.frombytes(
'RGBA', (width, height), raw_data[64:], 'raw', 'BGRA',
)
else:
print(f"Unsupported format {hex(fmt)} for texture {name}")
img = None
# Actually place the file down.
os.makedirs(path, exist_ok=True)
if img:
with open(f"{filename}.png", "wb") as bfp:
img.save(bfp, format='PNG')
if not img or raw:
with open(f"{filename}.raw", "wb") as bfp:
bfp.write(raw_data)
if xml:
with open(f"{filename}.xml", "w") as sfp:
sfp.write(textwrap.dedent(f"""
<info>
<width>{width}</width>
<height>{height}</height>
<type>{hex(fmt)}</type>
<raw>{filename}.raw</raw>
</info>
""").strip())
vprint(f"Bit 0x000001 - count: {length}, offset: {hex(offset)}")
for name in names:
vprint(f" {name}")
else:
vprint("Bit 0x000001 - NOT PRESENT")
# Mapping between texture index and the name of the texture.
texturemap = []
if feature_mask & 0x02:
# Seems to be a structure that duplicates texture names? I am pretty
# sure this is used to map texture names to file indexes used elsewhere.
offset = struct.unpack(f"{endian}I", data[header_offset:(header_offset + 4)])[0]
add_coverage(header_offset, 4)
header_offset += 4
vprint(f"Bit 0x000002 - offset: {hex(offset)}")
if offset != 0:
texturemap = descramble_pman(data, offset, endian, text_obfuscated)
for i, name in enumerate(texturemap):
vprint(f" {i}: {name}")
else:
vprint("Bit 0x000002 - NOT PRESENT")
if feature_mask & 0x04:
vprint("Bit 0x000004 - legacy lz mode on")
else:
vprint("Bit 0x000004 - legacy lz mode off")
# Mapping between region index and the texture it goes to as well as the
# region of texture that this particular graphic makes up.
texture_to_region = []
if feature_mask & 0x08:
# Mapping between individual graphics and their respective textures.
# This is 10 bytes per entry. Seems to need both 0x2 (texture index)
# and 0x10 (region index).
length, offset = struct.unpack(f"{endian}II", data[header_offset:(header_offset + 8)])
add_coverage(header_offset, 8)
header_offset += 8
if offset != 0 and length > 0:
texture_to_region = [(0, (0, 0), (0, 0))] * length
for i in range(length):
descriptor_offset = offset + (10 * i)
texture_no, left, top, right, bottom = struct.unpack(
f"{endian}HHHHH",
data[descriptor_offset:(descriptor_offset + 10)],
)
add_coverage(descriptor_offset, 10)
if texture_no < 0 or texture_no >= len(texturemap):
raise Exception(f"Out of bounds texture {texture_no}")
# TODO: The offsets here seem to be off by a power of 2, there
# might be more flags in the above texture format that specify
# device scaling and such?
texture_to_region[i] = (texture_no, (left, top), (right, bottom))
vprint(f"Bit 0x000008 - count: {length}, offset: {hex(offset)}")
else:
vprint("Bit 0x000008 - NOT PRESENT")
if feature_mask & 0x10:
# Names of the graphics regions, so we can look into the texture_to_region
# mapping above.
offset = struct.unpack(f"{endian}I", data[header_offset:(header_offset + 4)])[0]
add_coverage(header_offset, 4)
header_offset += 4
vprint(f"Bit 0x000010 - offset: {hex(offset)}")
if offset != 0:
names = descramble_pman(data, offset, endian, text_obfuscated)
for i, name in enumerate(names):
if i < 0 or i >= len(texture_to_region):
raise Exception(f"Out of bounds region {i}")
region = texture_to_region[i]
texture = texturemap[region[0]]
filename = os.path.join(path, name)
if write:
# Actually place the file down.
os.makedirs(path, exist_ok=True)
if xml:
print(f"Writing {filename}.xml graphic information...")
with open(f"{filename}.xml", "w") as sfp:
sfp.write(textwrap.dedent(f"""
<info>
<left>{region[1][0]}</left>
<top>{region[1][1]}</top>
<right>{region[2][0]}</right>
<bottom>{region[2][1]}</bottom>
<texture>{texture}</texture>
</info>
""").strip())
else:
if xml:
print(f"Would write {filename}.xml graphic information...")
vprint(f" {i}: {name}")
else:
vprint("Bit 0x000010 - NOT PRESENT")
if feature_mask & 0x20:
vprint(f"Bit 0x000020 - text obfuscation on")
else:
vprint(f"Bit 0x000020 - text obfuscation off")
if feature_mask & 0x40:
# Two unknown bytes, first is a length or a count. Secound is
# an optional offset to grab another set of bytes from.
length, offset = struct.unpack(f"{endian}II", data[header_offset:(header_offset + 8)])
add_coverage(header_offset, 8)
header_offset += 8
# TODO: 0x40 has some weird offset calculations, gotta look into
# this further.
vprint(f"Bit 0x000040 - count: {length}, offset: {hex(offset)}")
for name in names:
vprint(f" {name}")
else:
vprint("Bit 0x000040 - NOT PRESENT")
if feature_mask & 0x80:
# One unknown byte, treated as an offset.
offset = struct.unpack(f"{endian}I", data[header_offset:(header_offset + 4)])[0]
add_coverage(header_offset, 4)
header_offset += 4
vprint(f"Bit 0x000080 - offset: {hex(offset)}")
if offset != 0:
names = descramble_pman(data, offset, endian, text_obfuscated)
for i, name in enumerate(names):
vprint(f" {i}: {name}")
else:
vprint("Bit 0x000080 - NOT PRESENT")
if feature_mask & 0x100:
# Two unknown bytes, first is a length or a count. Secound is
# an optional offset to grab another set of bytes from.
length, offset = struct.unpack(f"{endian}II", data[header_offset:(header_offset + 8)])
add_coverage(header_offset, 8)
header_offset += 8
vprint(f"Bit 0x000100 - count: {length}, offset: {hex(offset)}")
# TODO: We do something if length is > 0, we use the magic flag
# from above in this case to optionally transform each thing we
# extract. This is possibly names of some other type of struture?
else:
vprint("Bit 0x000100 - NOT PRESENT")
if feature_mask & 0x200:
# One unknown byte, treated as an offset.
offset = struct.unpack(f"{endian}I", data[header_offset:(header_offset + 4)])[0]
add_coverage(header_offset, 4)
header_offset += 4
vprint(f"Bit 0x000200 - offset: {hex(offset)}")
if offset != 0:
names = descramble_pman(data, offset, endian, text_obfuscated)
for i, name in enumerate(names):
vprint(f" {i}: {name}")
else:
vprint("Bit 0x000200 - NOT PRESENT")
if feature_mask & 0x400:
# One unknown byte, treated as an offset.
offset = struct.unpack(f"{endian}I", data[header_offset:(header_offset + 4)])[0]
add_coverage(header_offset, 4)
header_offset += 4
vprint(f"Bit 0x000400 - offset: {hex(offset)}")
else:
vprint("Bit 0x000400 - NOT PRESENT")
if feature_mask & 0x800:
# This is the names of the animations as far as I can tell.
length, offset = struct.unpack(f"{endian}II", data[header_offset:(header_offset + 8)])
add_coverage(header_offset, 8)
header_offset += 8
pp_19 = length
pp_20 = offset
vprint(f"Bit 0x000800 - count: {length}, offset: {hex(offset)}")
names = []
for x in range(length):
interesting_offset = offset + (x * 12)
if interesting_offset != 0:
name_offset, anim_length, anim_offset = struct.unpack(
f"{endian}III",
data[interesting_offset:(interesting_offset + 12)],
)
add_coverage(interesting_offset, 12)
if name_offset != 0:
# Let's decode this until the first null.
bytedata = get_until_null(data, name_offset)
add_coverage(name_offset, len(bytedata) + 1, unique=False)
name = descramble_text(bytedata, text_obfuscated)
names.append(name)
for name in names:
vprint(f" {name}")
else:
vprint("Bit 0x000800 - NOT PRESENT")
pp_19 = 0
pp_20 = 0
if feature_mask & 0x1000:
# Seems to be a secondary structure mirroring the above.
offset = struct.unpack(f"{endian}I", data[header_offset:(header_offset + 4)])[0]
add_coverage(header_offset, 4)
header_offset += 4
vprint(f"Bit 0x001000 - offset: {hex(offset)}")
if offset != 0:
names = descramble_pman(data, offset, endian, text_obfuscated)
for i, name in enumerate(names):
vprint(f" {i}: {name}")
else:
vprint("Bit 0x001000 - NOT PRESENT")
if feature_mask & 0x2000:
# I am making a very preliminary guess that these are shapes used along
# with animations specified below. The names in these sections tend to
# have the word "shape" in them.
length, offset = struct.unpack(f"{endian}II", data[header_offset:(header_offset + 8)])
add_coverage(header_offset, 8)
header_offset += 8
vprint(f"Bit 0x002000 - count: {length}, offset: {hex(offset)}")
# TODO: We do a LOT of extra stuff with this one, if count > 0...
names = []
for x in range(length):
shape_base_offset = offset + (x * 12)
if shape_base_offset != 0:
name_offset, shape_length, shape_offset = struct.unpack(
f"{endian}III",
data[shape_base_offset:(shape_base_offset + 12)],
)
add_coverage(shape_base_offset, 12)
add_coverage(shape_offset, shape_length)
# TODO: At the shape offset is a "D2EG" structure of some sort.
# I have no idea what these do. I would have to look into it
# more if its important.
if name_offset != 0:
# Let's decode this until the first null.
bytedata = get_until_null(data, name_offset)
add_coverage(name_offset, len(bytedata) + 1, unique=False)
name = descramble_text(bytedata, text_obfuscated)
names.append(name)
for name in names:
vprint(f" {name}")
else:
vprint("Bit 0x002000 - NOT PRESENT")
if feature_mask & 0x4000:
# Seems to be a secondary section mirroring the names from above.
offset = struct.unpack(f"{endian}I", data[header_offset:(header_offset + 4)])[0]
add_coverage(header_offset, 4)
header_offset += 4
vprint(f"Bit 0x004000 - offset: {hex(offset)}")
if offset != 0:
names = descramble_pman(data, offset, endian, text_obfuscated)
for i, name in enumerate(names):
vprint(f" {i}: {name}")
else:
vprint("Bit 0x004000 - NOT PRESENT")
if feature_mask & 0x8000:
# One unknown byte, treated as an offset.
offset = struct.unpack(f"{endian}I", data[header_offset:(header_offset + 4)])[0]
add_coverage(header_offset, 4)
header_offset += 4
vprint(f"Bit 0x008000 - offset: {hex(offset)}")
else:
vprint("Bit 0x008000 - NOT PRESENT")
if feature_mask & 0x10000:
# Included font package, BINXRPC encoded.
offset = struct.unpack(f"{endian}I", data[header_offset:(header_offset + 4)])[0]
add_coverage(header_offset, 4)
header_offset += 4
# I am not sure what the unknown byte is for. It always appears as
# all zeros in all files I've looked at.
expect_zero, length, binxrpc_offset = struct.unpack(f"{endian}III", data[offset:(offset + 12)])
add_coverage(offset, 12)
if expect_zero != 0:
# If we find non-zero versions of this, then that means updating the file is
# potentially unsafe as we could rewrite it incorrectly. So, let's assert!
raise Exception("Expected a zero in font package header!")
if binxrpc_offset != 0:
benc = BinaryEncoding()
fontdata = benc.decode(data[binxrpc_offset:(binxrpc_offset + length)])
add_coverage(binxrpc_offset, length)
else:
fontdata = None
vprint(f"Bit 0x010000 - offset: {hex(offset)}, binxrpc offset: {hex(binxrpc_offset)}")
if fontdata is not None:
filename = os.path.join(path, "fontinfo.xml")
if xml:
if write:
os.makedirs(path, exist_ok=True)
print(f"Writing {filename} font information...")
with open(filename, "w") as sfp:
sfp.write(str(fontdata))
else:
print(f"Would write {filename} font information...")
else:
vprint("Bit 0x010000 - NOT PRESENT")
if feature_mask & 0x20000:
# I am beginning to suspect that this is animation/level data. I have
# no idea what "afp" is.
offset = struct.unpack(f"{endian}I", data[header_offset:(header_offset + 4)])[0]
add_coverage(header_offset, 4)
header_offset += 4
vprint(f"Bit 0x020000 - offset: {hex(offset)}")
if offset > 0 and pp_19 > 0 and pp_20 > 0:
for x in range(pp_19):
structure_offset = offset + (x * 12)
anim_info_ptr = pp_20 + (x * 12)
# First word is always zero, as observed. I am not ENTIRELY sure that
# the second field is length, but it lines up with everything else
# I've observed and seems to make sense.
expect_zero, afp_header_length, afp_header = struct.unpack(
f"{endian}III",
data[structure_offset:(structure_offset + 12)]
)
add_coverage(structure_offset, 12)
add_coverage(afp_header, afp_header_length)
if expect_zero != 0:
# If we find non-zero versions of this, then that means updating the file is
# potentially unsafe as we could rewrite it incorrectly. So, let's assert!
raise Exception("Expected a zero in font package header!")
# This chunk of data is referred to by name, and then a chunk.
anim_name_offset, anim_afp_data_length, anim_afp_data_offset = struct.unpack(
f"{endian}III",
data[anim_info_ptr:(anim_info_ptr + 12)],
)
add_coverage(anim_info_ptr, 12, unique=False)
add_coverage(anim_afp_data_offset, anim_afp_data_length)
# Grab some debugging info to print, I am really not sure what to do with
# some of this data.
bytedata = get_until_null(data, anim_name_offset)
add_coverage(anim_name_offset, len(bytedata) + 1, unique=False)
name = descramble_text(bytedata, text_obfuscated)
vprint(" ", end="")
vprint(f"afp_header_length: {hex(afp_header_length)}, ", end="")
vprint(f"afp_header: {hex(afp_header)}, ", end="")
vprint(f"name: {name}, ", end="")
vprint(f"data: {hex(anim_afp_data_offset)}, ", end="")
vprint(f"length: {hex(anim_afp_data_length)}")
else:
vprint("Bit 0x020000 - NOT PRESENT")
if feature_mask & 0x40000:
vprint("Bit 0x040000 - modern lz mode on")
else:
vprint("Bit 0x040000 - modern lz mode off")
if header_offset != header_length:
raise Exception("Failed to parse bitfield of header correctly!")
if verbose:
print_coverage()
def main() -> int:
parser = argparse.ArgumentParser(description="Konami AFP graphic file unpacker.")
parser.add_argument(
"file",
metavar="FILE",
help="The file to extract",
)
parser.add_argument(
"dir",
metavar="DIR",
help="Directory to extract to",
)
parser.add_argument(
"-p",
"--pretend",
action="store_true",
help="Pretend to extract instead of extracting.",
)
parser.add_argument(
"-v",
"--verbose",
action="store_true",
help="Display verbuse debugging output.",
)
parser.add_argument(
"-r",
"--write-raw",
action="store_true",
help="Always write raw texture files.",
)
parser.add_argument(
"--write-mappings",
action="store_true",
help="Write mapping files to disk.",
)
args = parser.parse_args()
extract(
args.file,
args.dir,
write=not args.pretend,
verbose=args.verbose,
raw=args.write_raw,
xml=args.write_mappings,
)
return 0
if __name__ == "__main__":
sys.exit(main())