mirror of
https://github.com/PabloMK7/citra.git
synced 2025-01-25 07:43:43 +01:00
e2c7954be5
These helpers aren't really part of the kernel, and mem_map.cpp/h is going to be moved there next.
237 lines
7.4 KiB
C++
237 lines
7.4 KiB
C++
// Copyright 2015 Citra Emulator Project
|
|
// Licensed under GPLv2 or any later version
|
|
// Refer to the license.txt file included.
|
|
|
|
#include <array>
|
|
|
|
#include "common/assert.h"
|
|
#include "common/common_types.h"
|
|
#include "common/logging/log.h"
|
|
#include "common/swap.h"
|
|
|
|
#include "core/memory.h"
|
|
#include "core/memory_setup.h"
|
|
|
|
namespace Memory {
|
|
|
|
enum class PageType {
|
|
/// Page is unmapped and should cause an access error.
|
|
Unmapped,
|
|
/// Page is mapped to regular memory. This is the only type you can get pointers to.
|
|
Memory,
|
|
/// Page is mapped to a I/O region. Writing and reading to this page is handled by functions.
|
|
Special,
|
|
};
|
|
|
|
/**
|
|
* A (reasonably) fast way of allowing switchable and remmapable process address spaces. It loosely
|
|
* mimics the way a real CPU page table works, but instead is optimized for minimal decoding and
|
|
* fetching requirements when acessing. In the usual case of an access to regular memory, it only
|
|
* requires an indexed fetch and a check for NULL.
|
|
*/
|
|
struct PageTable {
|
|
static const size_t NUM_ENTRIES = 1 << (32 - PAGE_BITS);
|
|
|
|
/**
|
|
* Array of memory pointers backing each page. An entry can only be non-null if the
|
|
* corresponding entry in the `attributes` array is of type `Memory`.
|
|
*/
|
|
std::array<u8*, NUM_ENTRIES> pointers;
|
|
|
|
/**
|
|
* Array of fine grained page attributes. If it is set to any value other than `Memory`, then
|
|
* the corresponding entry in `pointer` MUST be set to null.
|
|
*/
|
|
std::array<PageType, NUM_ENTRIES> attributes;
|
|
};
|
|
|
|
/// Singular page table used for the singleton process
|
|
static PageTable main_page_table;
|
|
/// Currently active page table
|
|
static PageTable* current_page_table = &main_page_table;
|
|
|
|
static void MapPages(u32 base, u32 size, u8* memory, PageType type) {
|
|
LOG_DEBUG(HW_Memory, "Mapping %p onto %08X-%08X", memory, base * PAGE_SIZE, (base + size) * PAGE_SIZE);
|
|
|
|
u32 end = base + size;
|
|
|
|
while (base != end) {
|
|
ASSERT_MSG(base < PageTable::NUM_ENTRIES, "out of range mapping at %08X", base);
|
|
|
|
current_page_table->attributes[base] = type;
|
|
current_page_table->pointers[base] = memory;
|
|
|
|
base += 1;
|
|
if (memory != nullptr)
|
|
memory += PAGE_SIZE;
|
|
}
|
|
}
|
|
|
|
void InitMemoryMap() {
|
|
main_page_table.pointers.fill(nullptr);
|
|
main_page_table.attributes.fill(PageType::Unmapped);
|
|
}
|
|
|
|
void MapMemoryRegion(VAddr base, u32 size, u8* target) {
|
|
ASSERT_MSG((size & PAGE_MASK) == 0, "non-page aligned size: %08X", size);
|
|
ASSERT_MSG((base & PAGE_MASK) == 0, "non-page aligned base: %08X", base);
|
|
MapPages(base / PAGE_SIZE, size / PAGE_SIZE, target, PageType::Memory);
|
|
}
|
|
|
|
void MapIoRegion(VAddr base, u32 size) {
|
|
ASSERT_MSG((size & PAGE_MASK) == 0, "non-page aligned size: %08X", size);
|
|
ASSERT_MSG((base & PAGE_MASK) == 0, "non-page aligned base: %08X", base);
|
|
MapPages(base / PAGE_SIZE, size / PAGE_SIZE, nullptr, PageType::Special);
|
|
}
|
|
|
|
void UnmapRegion(VAddr base, u32 size) {
|
|
ASSERT_MSG((size & PAGE_MASK) == 0, "non-page aligned size: %08X", size);
|
|
ASSERT_MSG((base & PAGE_MASK) == 0, "non-page aligned base: %08X", base);
|
|
MapPages(base / PAGE_SIZE, size / PAGE_SIZE, nullptr, PageType::Unmapped);
|
|
}
|
|
|
|
template <typename T>
|
|
T Read(const VAddr vaddr) {
|
|
const u8* page_pointer = current_page_table->pointers[vaddr >> PAGE_BITS];
|
|
if (page_pointer) {
|
|
return *reinterpret_cast<const T*>(page_pointer + (vaddr & PAGE_MASK));
|
|
}
|
|
|
|
PageType type = current_page_table->attributes[vaddr >> PAGE_BITS];
|
|
switch (type) {
|
|
case PageType::Unmapped:
|
|
LOG_ERROR(HW_Memory, "unmapped Read%lu @ 0x%08X", sizeof(T) * 8, vaddr);
|
|
return 0;
|
|
case PageType::Memory:
|
|
ASSERT_MSG(false, "Mapped memory page without a pointer @ %08X", vaddr);
|
|
case PageType::Special:
|
|
LOG_ERROR(HW_Memory, "I/O reads aren't implemented yet @ %08X", vaddr);
|
|
return 0;
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
void Write(const VAddr vaddr, const T data) {
|
|
u8* page_pointer = current_page_table->pointers[vaddr >> PAGE_BITS];
|
|
if (page_pointer) {
|
|
*reinterpret_cast<T*>(page_pointer + (vaddr & PAGE_MASK)) = data;
|
|
return;
|
|
}
|
|
|
|
PageType type = current_page_table->attributes[vaddr >> PAGE_BITS];
|
|
switch (type) {
|
|
case PageType::Unmapped:
|
|
LOG_ERROR(HW_Memory, "unmapped Write%lu 0x%08X @ 0x%08X", sizeof(data) * 8, (u32) data, vaddr);
|
|
return;
|
|
case PageType::Memory:
|
|
ASSERT_MSG(false, "Mapped memory page without a pointer @ %08X", vaddr);
|
|
case PageType::Special:
|
|
LOG_ERROR(HW_Memory, "I/O writes aren't implemented yet @ %08X", vaddr);
|
|
return;
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
}
|
|
|
|
u8* GetPointer(const VAddr vaddr) {
|
|
u8* page_pointer = current_page_table->pointers[vaddr >> PAGE_BITS];
|
|
if (page_pointer) {
|
|
return page_pointer + (vaddr & PAGE_MASK);
|
|
}
|
|
|
|
LOG_ERROR(HW_Memory, "unknown GetPointer @ 0x%08x", vaddr);
|
|
return nullptr;
|
|
}
|
|
|
|
u8* GetPhysicalPointer(PAddr address) {
|
|
return GetPointer(PhysicalToVirtualAddress(address));
|
|
}
|
|
|
|
u8 Read8(const VAddr addr) {
|
|
return Read<u8>(addr);
|
|
}
|
|
|
|
u16 Read16(const VAddr addr) {
|
|
return Read<u16_le>(addr);
|
|
}
|
|
|
|
u32 Read32(const VAddr addr) {
|
|
return Read<u32_le>(addr);
|
|
}
|
|
|
|
u64 Read64(const VAddr addr) {
|
|
return Read<u64_le>(addr);
|
|
}
|
|
|
|
void Write8(const VAddr addr, const u8 data) {
|
|
Write<u8>(addr, data);
|
|
}
|
|
|
|
void Write16(const VAddr addr, const u16 data) {
|
|
Write<u16_le>(addr, data);
|
|
}
|
|
|
|
void Write32(const VAddr addr, const u32 data) {
|
|
Write<u32_le>(addr, data);
|
|
}
|
|
|
|
void Write64(const VAddr addr, const u64 data) {
|
|
Write<u64_le>(addr, data);
|
|
}
|
|
|
|
void WriteBlock(const VAddr addr, const u8* data, const size_t size) {
|
|
u32 offset = 0;
|
|
while (offset < (size & ~3)) {
|
|
Write32(addr + offset, *(u32*)&data[offset]);
|
|
offset += 4;
|
|
}
|
|
|
|
if (size & 2) {
|
|
Write16(addr + offset, *(u16*)&data[offset]);
|
|
offset += 2;
|
|
}
|
|
|
|
if (size & 1)
|
|
Write8(addr + offset, data[offset]);
|
|
}
|
|
|
|
PAddr VirtualToPhysicalAddress(const VAddr addr) {
|
|
if (addr == 0) {
|
|
return 0;
|
|
} else if (addr >= VRAM_VADDR && addr < VRAM_VADDR_END) {
|
|
return addr - VRAM_VADDR + VRAM_PADDR;
|
|
} else if (addr >= LINEAR_HEAP_VADDR && addr < LINEAR_HEAP_VADDR_END) {
|
|
return addr - LINEAR_HEAP_VADDR + FCRAM_PADDR;
|
|
} else if (addr >= DSP_RAM_VADDR && addr < DSP_RAM_VADDR_END) {
|
|
return addr - DSP_RAM_VADDR + DSP_RAM_PADDR;
|
|
} else if (addr >= IO_AREA_VADDR && addr < IO_AREA_VADDR_END) {
|
|
return addr - IO_AREA_VADDR + IO_AREA_PADDR;
|
|
}
|
|
|
|
LOG_ERROR(HW_Memory, "Unknown virtual address @ 0x%08X", addr);
|
|
// To help with debugging, set bit on address so that it's obviously invalid.
|
|
return addr | 0x80000000;
|
|
}
|
|
|
|
VAddr PhysicalToVirtualAddress(const PAddr addr) {
|
|
if (addr == 0) {
|
|
return 0;
|
|
} else if (addr >= VRAM_PADDR && addr < VRAM_PADDR_END) {
|
|
return addr - VRAM_PADDR + VRAM_VADDR;
|
|
} else if (addr >= FCRAM_PADDR && addr < FCRAM_PADDR_END) {
|
|
return addr - FCRAM_PADDR + LINEAR_HEAP_VADDR;
|
|
} else if (addr >= DSP_RAM_PADDR && addr < DSP_RAM_PADDR_END) {
|
|
return addr - DSP_RAM_PADDR + DSP_RAM_VADDR;
|
|
} else if (addr >= IO_AREA_PADDR && addr < IO_AREA_PADDR_END) {
|
|
return addr - IO_AREA_PADDR + IO_AREA_VADDR;
|
|
}
|
|
|
|
LOG_ERROR(HW_Memory, "Unknown physical address @ 0x%08X", addr);
|
|
// To help with debugging, set bit on address so that it's obviously invalid.
|
|
return addr | 0x80000000;
|
|
}
|
|
|
|
} // namespace
|