citra-mk7/src/video_core/rasterizer.cpp

367 lines
17 KiB
C++

// Copyright 2014 Citra Emulator Project
// Licensed under GPLv2
// Refer to the license.txt file included.
#include <algorithm>
#include "common/common_types.h"
#include "math.h"
#include "pica.h"
#include "rasterizer.h"
#include "vertex_shader.h"
#include "debug_utils/debug_utils.h"
namespace Pica {
namespace Rasterizer {
static void DrawPixel(int x, int y, const Math::Vec4<u8>& color) {
u32* color_buffer = (u32*)Memory::GetPointer(registers.framebuffer.GetColorBufferAddress());
u32 value = (color.a() << 24) | (color.r() << 16) | (color.g() << 8) | color.b();
// Assuming RGBA8 format until actual framebuffer format handling is implemented
*(color_buffer + x + y * registers.framebuffer.GetWidth()) = value;
}
static u32 GetDepth(int x, int y) {
u16* depth_buffer = (u16*)Memory::GetPointer(registers.framebuffer.GetDepthBufferAddress());
// Assuming 16-bit depth buffer format until actual format handling is implemented
return *(depth_buffer + x + y * registers.framebuffer.GetWidth());
}
static void SetDepth(int x, int y, u16 value) {
u16* depth_buffer = (u16*)Memory::GetPointer(registers.framebuffer.GetDepthBufferAddress());
// Assuming 16-bit depth buffer format until actual format handling is implemented
*(depth_buffer + x + y * registers.framebuffer.GetWidth()) = value;
}
void ProcessTriangle(const VertexShader::OutputVertex& v0,
const VertexShader::OutputVertex& v1,
const VertexShader::OutputVertex& v2)
{
// NOTE: Assuming that rasterizer coordinates are 12.4 fixed-point values
struct Fix12P4 {
Fix12P4() {}
Fix12P4(u16 val) : val(val) {}
static u16 FracMask() { return 0xF; }
static u16 IntMask() { return (u16)~0xF; }
operator u16() const {
return val;
}
bool operator < (const Fix12P4& oth) const {
return (u16)*this < (u16)oth;
}
private:
u16 val;
};
// vertex positions in rasterizer coordinates
auto FloatToFix = [](float24 flt) {
return Fix12P4(flt.ToFloat32() * 16.0f);
};
auto ScreenToRasterizerCoordinates = [FloatToFix](const Math::Vec3<float24> vec) {
return Math::Vec3<Fix12P4>{FloatToFix(vec.x), FloatToFix(vec.y), FloatToFix(vec.z)};
};
Math::Vec3<Fix12P4> vtxpos[3]{ ScreenToRasterizerCoordinates(v0.screenpos),
ScreenToRasterizerCoordinates(v1.screenpos),
ScreenToRasterizerCoordinates(v2.screenpos) };
// TODO: Proper scissor rect test!
u16 min_x = std::min({vtxpos[0].x, vtxpos[1].x, vtxpos[2].x});
u16 min_y = std::min({vtxpos[0].y, vtxpos[1].y, vtxpos[2].y});
u16 max_x = std::max({vtxpos[0].x, vtxpos[1].x, vtxpos[2].x});
u16 max_y = std::max({vtxpos[0].y, vtxpos[1].y, vtxpos[2].y});
min_x &= Fix12P4::IntMask();
min_y &= Fix12P4::IntMask();
max_x = ((max_x + Fix12P4::FracMask()) & Fix12P4::IntMask());
max_y = ((max_y + Fix12P4::FracMask()) & Fix12P4::IntMask());
// Triangle filling rules: Pixels on the right-sided edge or on flat bottom edges are not
// drawn. Pixels on any other triangle border are drawn. This is implemented with three bias
// values which are added to the barycentric coordinates w0, w1 and w2, respectively.
// NOTE: These are the PSP filling rules. Not sure if the 3DS uses the same ones...
auto IsRightSideOrFlatBottomEdge = [](const Math::Vec2<Fix12P4>& vtx,
const Math::Vec2<Fix12P4>& line1,
const Math::Vec2<Fix12P4>& line2)
{
if (line1.y == line2.y) {
// just check if vertex is above us => bottom line parallel to x-axis
return vtx.y < line1.y;
} else {
// check if vertex is on our left => right side
// TODO: Not sure how likely this is to overflow
return (int)vtx.x < (int)line1.x + ((int)line2.x - (int)line1.x) * ((int)vtx.y - (int)line1.y) / ((int)line2.y - (int)line1.y);
}
};
int bias0 = IsRightSideOrFlatBottomEdge(vtxpos[0].xy(), vtxpos[1].xy(), vtxpos[2].xy()) ? -1 : 0;
int bias1 = IsRightSideOrFlatBottomEdge(vtxpos[1].xy(), vtxpos[2].xy(), vtxpos[0].xy()) ? -1 : 0;
int bias2 = IsRightSideOrFlatBottomEdge(vtxpos[2].xy(), vtxpos[0].xy(), vtxpos[1].xy()) ? -1 : 0;
// TODO: Not sure if looping through x first might be faster
for (u16 y = min_y; y < max_y; y += 0x10) {
for (u16 x = min_x; x < max_x; x += 0x10) {
// Calculate the barycentric coordinates w0, w1 and w2
auto orient2d = [](const Math::Vec2<Fix12P4>& vtx1,
const Math::Vec2<Fix12P4>& vtx2,
const Math::Vec2<Fix12P4>& vtx3) {
const auto vec1 = Math::MakeVec(vtx2 - vtx1, 0);
const auto vec2 = Math::MakeVec(vtx3 - vtx1, 0);
// TODO: There is a very small chance this will overflow for sizeof(int) == 4
return Math::Cross(vec1, vec2).z;
};
int w0 = bias0 + orient2d(vtxpos[1].xy(), vtxpos[2].xy(), {x, y});
int w1 = bias1 + orient2d(vtxpos[2].xy(), vtxpos[0].xy(), {x, y});
int w2 = bias2 + orient2d(vtxpos[0].xy(), vtxpos[1].xy(), {x, y});
int wsum = w0 + w1 + w2;
// If current pixel is not covered by the current primitive
if (w0 < 0 || w1 < 0 || w2 < 0)
continue;
// Perspective correct attribute interpolation:
// Attribute values cannot be calculated by simple linear interpolation since
// they are not linear in screen space. For example, when interpolating a
// texture coordinate across two vertices, something simple like
// u = (u0*w0 + u1*w1)/(w0+w1)
// will not work. However, the attribute value divided by the
// clipspace w-coordinate (u/w) and and the inverse w-coordinate (1/w) are linear
// in screenspace. Hence, we can linearly interpolate these two independently and
// calculate the interpolated attribute by dividing the results.
// I.e.
// u_over_w = ((u0/v0.pos.w)*w0 + (u1/v1.pos.w)*w1)/(w0+w1)
// one_over_w = (( 1/v0.pos.w)*w0 + ( 1/v1.pos.w)*w1)/(w0+w1)
// u = u_over_w / one_over_w
//
// The generalization to three vertices is straightforward in baricentric coordinates.
auto GetInterpolatedAttribute = [&](float24 attr0, float24 attr1, float24 attr2) {
auto attr_over_w = Math::MakeVec(attr0 / v0.pos.w,
attr1 / v1.pos.w,
attr2 / v2.pos.w);
auto w_inverse = Math::MakeVec(float24::FromFloat32(1.f) / v0.pos.w,
float24::FromFloat32(1.f) / v1.pos.w,
float24::FromFloat32(1.f) / v2.pos.w);
auto baricentric_coordinates = Math::MakeVec(float24::FromFloat32(w0),
float24::FromFloat32(w1),
float24::FromFloat32(w2));
float24 interpolated_attr_over_w = Math::Dot(attr_over_w, baricentric_coordinates);
float24 interpolated_w_inverse = Math::Dot(w_inverse, baricentric_coordinates);
return interpolated_attr_over_w / interpolated_w_inverse;
};
Math::Vec4<u8> primary_color{
(u8)(GetInterpolatedAttribute(v0.color.r(), v1.color.r(), v2.color.r()).ToFloat32() * 255),
(u8)(GetInterpolatedAttribute(v0.color.g(), v1.color.g(), v2.color.g()).ToFloat32() * 255),
(u8)(GetInterpolatedAttribute(v0.color.b(), v1.color.b(), v2.color.b()).ToFloat32() * 255),
(u8)(GetInterpolatedAttribute(v0.color.a(), v1.color.a(), v2.color.a()).ToFloat32() * 255)
};
Math::Vec4<u8> texture_color{};
float24 u = GetInterpolatedAttribute(v0.tc0.u(), v1.tc0.u(), v2.tc0.u());
float24 v = GetInterpolatedAttribute(v0.tc0.v(), v1.tc0.v(), v2.tc0.v());
if (registers.texturing_enable) {
// Images are split into 8x8 tiles. Each tile is composed of four 4x4 subtiles each
// of which is composed of four 2x2 subtiles each of which is composed of four texels.
// Each structure is embedded into the next-bigger one in a diagonal pattern, e.g.
// texels are laid out in a 2x2 subtile like this:
// 2 3
// 0 1
//
// The full 8x8 tile has the texels arranged like this:
//
// 42 43 46 47 58 59 62 63
// 40 41 44 45 56 57 60 61
// 34 35 38 39 50 51 54 55
// 32 33 36 37 48 49 52 53
// 10 11 14 15 26 27 30 31
// 08 09 12 13 24 25 28 29
// 02 03 06 07 18 19 22 23
// 00 01 04 05 16 17 20 21
// TODO: This is currently hardcoded for RGB8
u32* texture_data = (u32*)Memory::GetPointer(registers.texture0.GetPhysicalAddress());
// TODO(neobrain): Not sure if this swizzling pattern is used for all textures.
// To be flexible in case different but similar patterns are used, we keep this
// somewhat inefficient code around for now.
int s = (int)(u * float24::FromFloat32(registers.texture0.width)).ToFloat32();
int t = (int)(v * float24::FromFloat32(registers.texture0.height)).ToFloat32();
int texel_index_within_tile = 0;
for (int block_size_index = 0; block_size_index < 3; ++block_size_index) {
int sub_tile_width = 1 << block_size_index;
int sub_tile_height = 1 << block_size_index;
int sub_tile_index = (s & sub_tile_width) << block_size_index;
sub_tile_index += 2 * ((t & sub_tile_height) << block_size_index);
texel_index_within_tile += sub_tile_index;
}
const int block_width = 8;
const int block_height = 8;
int coarse_s = (s / block_width) * block_width;
int coarse_t = (t / block_height) * block_height;
const int row_stride = registers.texture0.width * 3;
u8* source_ptr = (u8*)texture_data + coarse_s * block_height * 3 + coarse_t * row_stride + texel_index_within_tile * 3;
texture_color.r() = source_ptr[2];
texture_color.g() = source_ptr[1];
texture_color.b() = source_ptr[0];
texture_color.a() = 0xFF;
DebugUtils::DumpTexture(registers.texture0, (u8*)texture_data);
}
// Texture environment - consists of 6 stages of color and alpha combining.
//
// Color combiners take three input color values from some source (e.g. interpolated
// vertex color, texture color, previous stage, etc), perform some very simple
// operations on each of them (e.g. inversion) and then calculate the output color
// with some basic arithmetic. Alpha combiners can be configured separately but work
// analogously.
Math::Vec4<u8> combiner_output;
for (auto tev_stage : registers.GetTevStages()) {
using Source = Regs::TevStageConfig::Source;
using ColorModifier = Regs::TevStageConfig::ColorModifier;
using AlphaModifier = Regs::TevStageConfig::AlphaModifier;
using Operation = Regs::TevStageConfig::Operation;
auto GetColorSource = [&](Source source) -> Math::Vec3<u8> {
switch (source) {
case Source::PrimaryColor:
return primary_color.rgb();
case Source::Texture0:
return texture_color.rgb();
case Source::Constant:
return {tev_stage.const_r, tev_stage.const_g, tev_stage.const_b};
case Source::Previous:
return combiner_output.rgb();
default:
ERROR_LOG(GPU, "Unknown color combiner source %d\n", (int)source);
return {};
}
};
auto GetAlphaSource = [&](Source source) -> u8 {
switch (source) {
case Source::PrimaryColor:
return primary_color.a();
case Source::Texture0:
return texture_color.a();
case Source::Constant:
return tev_stage.const_a;
case Source::Previous:
return combiner_output.a();
default:
ERROR_LOG(GPU, "Unknown alpha combiner source %d\n", (int)source);
return 0;
}
};
auto GetColorModifier = [](ColorModifier factor, const Math::Vec3<u8>& values) -> Math::Vec3<u8> {
switch (factor)
{
case ColorModifier::SourceColor:
return values;
default:
ERROR_LOG(GPU, "Unknown color factor %d\n", (int)factor);
return {};
}
};
auto GetAlphaModifier = [](AlphaModifier factor, u8 value) -> u8 {
switch (factor) {
case AlphaModifier::SourceAlpha:
return value;
default:
ERROR_LOG(GPU, "Unknown color factor %d\n", (int)factor);
return 0;
}
};
auto ColorCombine = [](Operation op, const Math::Vec3<u8> input[3]) -> Math::Vec3<u8> {
switch (op) {
case Operation::Replace:
return input[0];
case Operation::Modulate:
return ((input[0] * input[1]) / 255).Cast<u8>();
default:
ERROR_LOG(GPU, "Unknown color combiner operation %d\n", (int)op);
return {};
}
};
auto AlphaCombine = [](Operation op, const std::array<u8,3>& input) -> u8 {
switch (op) {
case Operation::Replace:
return input[0];
case Operation::Modulate:
return input[0] * input[1] / 255;
default:
ERROR_LOG(GPU, "Unknown alpha combiner operation %d\n", (int)op);
return 0;
}
};
// color combiner
// NOTE: Not sure if the alpha combiner might use the color output of the previous
// stage as input. Hence, we currently don't directly write the result to
// combiner_output.rgb(), but instead store it in a temporary variable until
// alpha combining has been done.
Math::Vec3<u8> color_result[3] = {
GetColorModifier(tev_stage.color_modifier1, GetColorSource(tev_stage.color_source1)),
GetColorModifier(tev_stage.color_modifier2, GetColorSource(tev_stage.color_source2)),
GetColorModifier(tev_stage.color_modifier3, GetColorSource(tev_stage.color_source3))
};
auto color_output = ColorCombine(tev_stage.color_op, color_result);
// alpha combiner
std::array<u8,3> alpha_result = {
GetAlphaModifier(tev_stage.alpha_modifier1, GetAlphaSource(tev_stage.alpha_source1)),
GetAlphaModifier(tev_stage.alpha_modifier2, GetAlphaSource(tev_stage.alpha_source2)),
GetAlphaModifier(tev_stage.alpha_modifier3, GetAlphaSource(tev_stage.alpha_source3))
};
auto alpha_output = AlphaCombine(tev_stage.alpha_op, alpha_result);
combiner_output = Math::MakeVec(color_output, alpha_output);
}
// TODO: Not sure if the multiplication by 65535 has already been taken care
// of when transforming to screen coordinates or not.
u16 z = (u16)(((float)v0.screenpos[2].ToFloat32() * w0 +
(float)v1.screenpos[2].ToFloat32() * w1 +
(float)v2.screenpos[2].ToFloat32() * w2) * 65535.f / wsum);
SetDepth(x >> 4, y >> 4, z);
DrawPixel(x >> 4, y >> 4, combiner_output);
}
}
}
} // namespace Rasterizer
} // namespace Pica