// dear imgui: Renderer for Vulkan // This needs to be used along with a Platform Binding (e.g. GLFW, SDL, Win32, custom..) // Missing features: // [ ] Renderer: User texture binding. Changes of ImTextureID aren't supported by this binding! See https://github.com/ocornut/imgui/pull/914 // You can copy and use unmodified imgui_impl_* files in your project. See main.cpp for an example of using this. // If you are new to dear imgui, read examples/README.txt and read the documentation at the top of imgui.cpp. // https://github.com/ocornut/imgui // The aim of imgui_impl_vulkan.h/.cpp is to be usable in your engine without any modification. // IF YOU FEEL YOU NEED TO MAKE ANY CHANGE TO THIS CODE, please share them and your feedback at https://github.com/ocornut/imgui/ // CHANGELOG // (minor and older changes stripped away, please see git history for details) // 2019-04-04: Vulkan: Avoid passing negative coordinates to vkCmdSetScissor, which debug validation layers do not like. // 2019-04-01: Vulkan: Support for 32-bit index buffer (#define ImDrawIdx unsigned int). // 2019-02-16: Vulkan: Viewport and clipping rectangles correctly using draw_data->FramebufferScale to allow retina display. // 2018-11-30: Misc: Setting up io.BackendRendererName so it can be displayed in the About Window. // 2018-08-25: Vulkan: Fixed mishandled VkSurfaceCapabilitiesKHR::maxImageCount=0 case. // 2018-06-22: Inverted the parameters to ImGui_ImplVulkan_RenderDrawData() to be consistent with other bindings. // 2018-06-08: Misc: Extracted imgui_impl_vulkan.cpp/.h away from the old combined GLFW+Vulkan example. // 2018-06-08: Vulkan: Use draw_data->DisplayPos and draw_data->DisplaySize to setup projection matrix and clipping rectangle. // 2018-03-03: Vulkan: Various refactor, created a couple of ImGui_ImplVulkanH_XXX helper that the example can use and that viewport support will use. // 2018-03-01: Vulkan: Renamed ImGui_ImplVulkan_Init_Info to ImGui_ImplVulkan_InitInfo and fields to match more closely Vulkan terminology. // 2018-02-16: Misc: Obsoleted the io.RenderDrawListsFn callback, ImGui_ImplVulkan_Render() calls ImGui_ImplVulkan_RenderDrawData() itself. // 2018-02-06: Misc: Removed call to ImGui::Shutdown() which is not available from 1.60 WIP, user needs to call CreateContext/DestroyContext themselves. // 2017-05-15: Vulkan: Fix scissor offset being negative. Fix new Vulkan validation warnings. Set required depth member for buffer image copy. // 2016-11-13: Vulkan: Fix validation layer warnings and errors and redeclare gl_PerVertex. // 2016-10-18: Vulkan: Add location decorators & change to use structs as in/out in glsl, update embedded spv (produced with glslangValidator -x). Null the released resources. // 2016-08-27: Vulkan: Fix Vulkan example for use when a depth buffer is active. #include "imgui.h" #include "imgui_impl_vulkan.h" #include // Vulkan data static const VkAllocationCallbacks* g_Allocator = NULL; static VkPhysicalDevice g_PhysicalDevice = VK_NULL_HANDLE; static VkInstance g_Instance = VK_NULL_HANDLE; static VkDevice g_Device = VK_NULL_HANDLE; static uint32_t g_QueueFamily = (uint32_t)-1; static VkQueue g_Queue = VK_NULL_HANDLE; static VkPipelineCache g_PipelineCache = VK_NULL_HANDLE; static VkDescriptorPool g_DescriptorPool = VK_NULL_HANDLE; static VkRenderPass g_RenderPass = VK_NULL_HANDLE; static void (*g_CheckVkResultFn)(VkResult err) = NULL; static VkDeviceSize g_BufferMemoryAlignment = 256; static VkPipelineCreateFlags g_PipelineCreateFlags = 0; static VkDescriptorSetLayout g_DescriptorSetLayout = VK_NULL_HANDLE; static VkPipelineLayout g_PipelineLayout = VK_NULL_HANDLE; static VkDescriptorSet g_DescriptorSet = VK_NULL_HANDLE; static VkPipeline g_Pipeline = VK_NULL_HANDLE; // Frame data struct FrameDataForRender { VkDeviceMemory VertexBufferMemory; VkDeviceMemory IndexBufferMemory; VkDeviceSize VertexBufferSize; VkDeviceSize IndexBufferSize; VkBuffer VertexBuffer; VkBuffer IndexBuffer; }; static int g_FrameIndex = 0; static FrameDataForRender g_FramesDataBuffers[IMGUI_VK_QUEUED_FRAMES] = {}; // Font data static VkSampler g_FontSampler = VK_NULL_HANDLE; static VkDeviceMemory g_FontMemory = VK_NULL_HANDLE; static VkImage g_FontImage = VK_NULL_HANDLE; static VkImageView g_FontView = VK_NULL_HANDLE; static VkDeviceMemory g_UploadBufferMemory = VK_NULL_HANDLE; static VkBuffer g_UploadBuffer = VK_NULL_HANDLE; // glsl_shader.vert, compiled with: // # glslangValidator -V -x -o glsl_shader.vert.u32 glsl_shader.vert /* #version 450 core layout(location = 0) in vec2 aPos; layout(location = 1) in vec2 aUV; layout(location = 2) in vec4 aColor; layout(push_constant) uniform uPushConstant { vec2 uScale; vec2 uTranslate; } pc; out gl_PerVertex { vec4 gl_Position; }; layout(location = 0) out struct { vec4 Color; vec2 UV; } Out; void main() { Out.Color = aColor; Out.UV = aUV; gl_Position = vec4(aPos * pc.uScale + pc.uTranslate, 0, 1); } */ static uint32_t __glsl_shader_vert_spv[] = { 0x07230203,0x00010000,0x00080001,0x0000002e,0x00000000,0x00020011,0x00000001,0x0006000b, 0x00000001,0x4c534c47,0x6474732e,0x3035342e,0x00000000,0x0003000e,0x00000000,0x00000001, 0x000a000f,0x00000000,0x00000004,0x6e69616d,0x00000000,0x0000000b,0x0000000f,0x00000015, 0x0000001b,0x0000001c,0x00030003,0x00000002,0x000001c2,0x00040005,0x00000004,0x6e69616d, 0x00000000,0x00030005,0x00000009,0x00000000,0x00050006,0x00000009,0x00000000,0x6f6c6f43, 0x00000072,0x00040006,0x00000009,0x00000001,0x00005655,0x00030005,0x0000000b,0x0074754f, 0x00040005,0x0000000f,0x6c6f4361,0x0000726f,0x00030005,0x00000015,0x00565561,0x00060005, 0x00000019,0x505f6c67,0x65567265,0x78657472,0x00000000,0x00060006,0x00000019,0x00000000, 0x505f6c67,0x7469736f,0x006e6f69,0x00030005,0x0000001b,0x00000000,0x00040005,0x0000001c, 0x736f5061,0x00000000,0x00060005,0x0000001e,0x73755075,0x6e6f4368,0x6e617473,0x00000074, 0x00050006,0x0000001e,0x00000000,0x61635375,0x0000656c,0x00060006,0x0000001e,0x00000001, 0x61725475,0x616c736e,0x00006574,0x00030005,0x00000020,0x00006370,0x00040047,0x0000000b, 0x0000001e,0x00000000,0x00040047,0x0000000f,0x0000001e,0x00000002,0x00040047,0x00000015, 0x0000001e,0x00000001,0x00050048,0x00000019,0x00000000,0x0000000b,0x00000000,0x00030047, 0x00000019,0x00000002,0x00040047,0x0000001c,0x0000001e,0x00000000,0x00050048,0x0000001e, 0x00000000,0x00000023,0x00000000,0x00050048,0x0000001e,0x00000001,0x00000023,0x00000008, 0x00030047,0x0000001e,0x00000002,0x00020013,0x00000002,0x00030021,0x00000003,0x00000002, 0x00030016,0x00000006,0x00000020,0x00040017,0x00000007,0x00000006,0x00000004,0x00040017, 0x00000008,0x00000006,0x00000002,0x0004001e,0x00000009,0x00000007,0x00000008,0x00040020, 0x0000000a,0x00000003,0x00000009,0x0004003b,0x0000000a,0x0000000b,0x00000003,0x00040015, 0x0000000c,0x00000020,0x00000001,0x0004002b,0x0000000c,0x0000000d,0x00000000,0x00040020, 0x0000000e,0x00000001,0x00000007,0x0004003b,0x0000000e,0x0000000f,0x00000001,0x00040020, 0x00000011,0x00000003,0x00000007,0x0004002b,0x0000000c,0x00000013,0x00000001,0x00040020, 0x00000014,0x00000001,0x00000008,0x0004003b,0x00000014,0x00000015,0x00000001,0x00040020, 0x00000017,0x00000003,0x00000008,0x0003001e,0x00000019,0x00000007,0x00040020,0x0000001a, 0x00000003,0x00000019,0x0004003b,0x0000001a,0x0000001b,0x00000003,0x0004003b,0x00000014, 0x0000001c,0x00000001,0x0004001e,0x0000001e,0x00000008,0x00000008,0x00040020,0x0000001f, 0x00000009,0x0000001e,0x0004003b,0x0000001f,0x00000020,0x00000009,0x00040020,0x00000021, 0x00000009,0x00000008,0x0004002b,0x00000006,0x00000028,0x00000000,0x0004002b,0x00000006, 0x00000029,0x3f800000,0x00050036,0x00000002,0x00000004,0x00000000,0x00000003,0x000200f8, 0x00000005,0x0004003d,0x00000007,0x00000010,0x0000000f,0x00050041,0x00000011,0x00000012, 0x0000000b,0x0000000d,0x0003003e,0x00000012,0x00000010,0x0004003d,0x00000008,0x00000016, 0x00000015,0x00050041,0x00000017,0x00000018,0x0000000b,0x00000013,0x0003003e,0x00000018, 0x00000016,0x0004003d,0x00000008,0x0000001d,0x0000001c,0x00050041,0x00000021,0x00000022, 0x00000020,0x0000000d,0x0004003d,0x00000008,0x00000023,0x00000022,0x00050085,0x00000008, 0x00000024,0x0000001d,0x00000023,0x00050041,0x00000021,0x00000025,0x00000020,0x00000013, 0x0004003d,0x00000008,0x00000026,0x00000025,0x00050081,0x00000008,0x00000027,0x00000024, 0x00000026,0x00050051,0x00000006,0x0000002a,0x00000027,0x00000000,0x00050051,0x00000006, 0x0000002b,0x00000027,0x00000001,0x00070050,0x00000007,0x0000002c,0x0000002a,0x0000002b, 0x00000028,0x00000029,0x00050041,0x00000011,0x0000002d,0x0000001b,0x0000000d,0x0003003e, 0x0000002d,0x0000002c,0x000100fd,0x00010038 }; // glsl_shader.frag, compiled with: // # glslangValidator -V -x -o glsl_shader.frag.u32 glsl_shader.frag /* #version 450 core layout(location = 0) out vec4 fColor; layout(set=0, binding=0) uniform sampler2D sTexture; layout(location = 0) in struct { vec4 Color; vec2 UV; } In; void main() { fColor = In.Color * texture(sTexture, In.UV.st); } */ static uint32_t __glsl_shader_frag_spv[] = { 0x07230203,0x00010000,0x00080001,0x0000001e,0x00000000,0x00020011,0x00000001,0x0006000b, 0x00000001,0x4c534c47,0x6474732e,0x3035342e,0x00000000,0x0003000e,0x00000000,0x00000001, 0x0007000f,0x00000004,0x00000004,0x6e69616d,0x00000000,0x00000009,0x0000000d,0x00030010, 0x00000004,0x00000007,0x00030003,0x00000002,0x000001c2,0x00040005,0x00000004,0x6e69616d, 0x00000000,0x00040005,0x00000009,0x6c6f4366,0x0000726f,0x00030005,0x0000000b,0x00000000, 0x00050006,0x0000000b,0x00000000,0x6f6c6f43,0x00000072,0x00040006,0x0000000b,0x00000001, 0x00005655,0x00030005,0x0000000d,0x00006e49,0x00050005,0x00000016,0x78655473,0x65727574, 0x00000000,0x00040047,0x00000009,0x0000001e,0x00000000,0x00040047,0x0000000d,0x0000001e, 0x00000000,0x00040047,0x00000016,0x00000022,0x00000000,0x00040047,0x00000016,0x00000021, 0x00000000,0x00020013,0x00000002,0x00030021,0x00000003,0x00000002,0x00030016,0x00000006, 0x00000020,0x00040017,0x00000007,0x00000006,0x00000004,0x00040020,0x00000008,0x00000003, 0x00000007,0x0004003b,0x00000008,0x00000009,0x00000003,0x00040017,0x0000000a,0x00000006, 0x00000002,0x0004001e,0x0000000b,0x00000007,0x0000000a,0x00040020,0x0000000c,0x00000001, 0x0000000b,0x0004003b,0x0000000c,0x0000000d,0x00000001,0x00040015,0x0000000e,0x00000020, 0x00000001,0x0004002b,0x0000000e,0x0000000f,0x00000000,0x00040020,0x00000010,0x00000001, 0x00000007,0x00090019,0x00000013,0x00000006,0x00000001,0x00000000,0x00000000,0x00000000, 0x00000001,0x00000000,0x0003001b,0x00000014,0x00000013,0x00040020,0x00000015,0x00000000, 0x00000014,0x0004003b,0x00000015,0x00000016,0x00000000,0x0004002b,0x0000000e,0x00000018, 0x00000001,0x00040020,0x00000019,0x00000001,0x0000000a,0x00050036,0x00000002,0x00000004, 0x00000000,0x00000003,0x000200f8,0x00000005,0x00050041,0x00000010,0x00000011,0x0000000d, 0x0000000f,0x0004003d,0x00000007,0x00000012,0x00000011,0x0004003d,0x00000014,0x00000017, 0x00000016,0x00050041,0x00000019,0x0000001a,0x0000000d,0x00000018,0x0004003d,0x0000000a, 0x0000001b,0x0000001a,0x00050057,0x00000007,0x0000001c,0x00000017,0x0000001b,0x00050085, 0x00000007,0x0000001d,0x00000012,0x0000001c,0x0003003e,0x00000009,0x0000001d,0x000100fd, 0x00010038 }; static uint32_t ImGui_ImplVulkan_MemoryType(VkMemoryPropertyFlags properties, uint32_t type_bits) { VkPhysicalDeviceMemoryProperties prop; vkGetPhysicalDeviceMemoryProperties(g_PhysicalDevice, &prop); for (uint32_t i = 0; i < prop.memoryTypeCount; i++) if ((prop.memoryTypes[i].propertyFlags & properties) == properties && type_bits & (1< req.alignment) ? g_BufferMemoryAlignment : req.alignment; VkMemoryAllocateInfo alloc_info = {}; alloc_info.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO; alloc_info.allocationSize = req.size; alloc_info.memoryTypeIndex = ImGui_ImplVulkan_MemoryType(VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, req.memoryTypeBits); err = vkAllocateMemory(g_Device, &alloc_info, g_Allocator, &buffer_memory); check_vk_result(err); err = vkBindBufferMemory(g_Device, buffer, buffer_memory, 0); check_vk_result(err); p_buffer_size = new_size; } // Render function // (this used to be set in io.RenderDrawListsFn and called by ImGui::Render(), but you can now call this directly from your main loop) void ImGui_ImplVulkan_RenderDrawData(ImDrawData* draw_data, VkCommandBuffer command_buffer) { // Avoid rendering when minimized, scale coordinates for retina displays (screen coordinates != framebuffer coordinates) int fb_width = (int)(draw_data->DisplaySize.x * draw_data->FramebufferScale.x); int fb_height = (int)(draw_data->DisplaySize.y * draw_data->FramebufferScale.y); if (fb_width <= 0 || fb_height <= 0 || draw_data->TotalVtxCount == 0) return; VkResult err; FrameDataForRender* fd = &g_FramesDataBuffers[g_FrameIndex]; g_FrameIndex = (g_FrameIndex + 1) % IM_ARRAYSIZE(g_FramesDataBuffers); // Create the Vertex and Index buffers: size_t vertex_size = draw_data->TotalVtxCount * sizeof(ImDrawVert); size_t index_size = draw_data->TotalIdxCount * sizeof(ImDrawIdx); if (fd->VertexBuffer == VK_NULL_HANDLE || fd->VertexBufferSize < vertex_size) CreateOrResizeBuffer(fd->VertexBuffer, fd->VertexBufferMemory, fd->VertexBufferSize, vertex_size, VK_BUFFER_USAGE_VERTEX_BUFFER_BIT); if (fd->IndexBuffer == VK_NULL_HANDLE || fd->IndexBufferSize < index_size) CreateOrResizeBuffer(fd->IndexBuffer, fd->IndexBufferMemory, fd->IndexBufferSize, index_size, VK_BUFFER_USAGE_INDEX_BUFFER_BIT); // Upload vertex/index data into a single contiguous GPU buffer { ImDrawVert* vtx_dst = NULL; ImDrawIdx* idx_dst = NULL; err = vkMapMemory(g_Device, fd->VertexBufferMemory, 0, vertex_size, 0, (void**)(&vtx_dst)); check_vk_result(err); err = vkMapMemory(g_Device, fd->IndexBufferMemory, 0, index_size, 0, (void**)(&idx_dst)); check_vk_result(err); for (int n = 0; n < draw_data->CmdListsCount; n++) { const ImDrawList* cmd_list = draw_data->CmdLists[n]; memcpy(vtx_dst, cmd_list->VtxBuffer.Data, cmd_list->VtxBuffer.Size * sizeof(ImDrawVert)); memcpy(idx_dst, cmd_list->IdxBuffer.Data, cmd_list->IdxBuffer.Size * sizeof(ImDrawIdx)); vtx_dst += cmd_list->VtxBuffer.Size; idx_dst += cmd_list->IdxBuffer.Size; } VkMappedMemoryRange range[2] = {}; range[0].sType = VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE; range[0].memory = fd->VertexBufferMemory; range[0].size = VK_WHOLE_SIZE; range[1].sType = VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE; range[1].memory = fd->IndexBufferMemory; range[1].size = VK_WHOLE_SIZE; err = vkFlushMappedMemoryRanges(g_Device, 2, range); check_vk_result(err); vkUnmapMemory(g_Device, fd->VertexBufferMemory); vkUnmapMemory(g_Device, fd->IndexBufferMemory); } // Bind pipeline and descriptor sets: { vkCmdBindPipeline(command_buffer, VK_PIPELINE_BIND_POINT_GRAPHICS, g_Pipeline); VkDescriptorSet desc_set[1] = { g_DescriptorSet }; vkCmdBindDescriptorSets(command_buffer, VK_PIPELINE_BIND_POINT_GRAPHICS, g_PipelineLayout, 0, 1, desc_set, 0, NULL); } // Bind Vertex And Index Buffer: { VkBuffer vertex_buffers[1] = { fd->VertexBuffer }; VkDeviceSize vertex_offset[1] = { 0 }; vkCmdBindVertexBuffers(command_buffer, 0, 1, vertex_buffers, vertex_offset); vkCmdBindIndexBuffer(command_buffer, fd->IndexBuffer, 0, sizeof(ImDrawIdx) == 2 ? VK_INDEX_TYPE_UINT16 : VK_INDEX_TYPE_UINT32); } // Setup viewport: { VkViewport viewport; viewport.x = 0; viewport.y = 0; viewport.width = (float)fb_width; viewport.height = (float)fb_height; viewport.minDepth = 0.0f; viewport.maxDepth = 1.0f; vkCmdSetViewport(command_buffer, 0, 1, &viewport); } // Setup scale and translation: // Our visible imgui space lies from draw_data->DisplayPos (top left) to draw_data->DisplayPos+data_data->DisplaySize (bottom right). DisplayMin is typically (0,0) for single viewport apps. { float scale[2]; scale[0] = 2.0f / draw_data->DisplaySize.x; scale[1] = 2.0f / draw_data->DisplaySize.y; float translate[2]; translate[0] = -1.0f - draw_data->DisplayPos.x * scale[0]; translate[1] = -1.0f - draw_data->DisplayPos.y * scale[1]; vkCmdPushConstants(command_buffer, g_PipelineLayout, VK_SHADER_STAGE_VERTEX_BIT, sizeof(float) * 0, sizeof(float) * 2, scale); vkCmdPushConstants(command_buffer, g_PipelineLayout, VK_SHADER_STAGE_VERTEX_BIT, sizeof(float) * 2, sizeof(float) * 2, translate); } // Will project scissor/clipping rectangles into framebuffer space ImVec2 clip_off = draw_data->DisplayPos; // (0,0) unless using multi-viewports ImVec2 clip_scale = draw_data->FramebufferScale; // (1,1) unless using retina display which are often (2,2) // Render command lists int vtx_offset = 0; int idx_offset = 0; for (int n = 0; n < draw_data->CmdListsCount; n++) { const ImDrawList* cmd_list = draw_data->CmdLists[n]; for (int cmd_i = 0; cmd_i < cmd_list->CmdBuffer.Size; cmd_i++) { const ImDrawCmd* pcmd = &cmd_list->CmdBuffer[cmd_i]; if (pcmd->UserCallback) { // User callback (registered via ImDrawList::AddCallback) pcmd->UserCallback(cmd_list, pcmd); } else { // Project scissor/clipping rectangles into framebuffer space ImVec4 clip_rect; clip_rect.x = (pcmd->ClipRect.x - clip_off.x) * clip_scale.x; clip_rect.y = (pcmd->ClipRect.y - clip_off.y) * clip_scale.y; clip_rect.z = (pcmd->ClipRect.z - clip_off.x) * clip_scale.x; clip_rect.w = (pcmd->ClipRect.w - clip_off.y) * clip_scale.y; if (clip_rect.x < fb_width && clip_rect.y < fb_height && clip_rect.z >= 0.0f && clip_rect.w >= 0.0f) { // Negative offsets are illegal for vkCmdSetScissor if (clip_rect.x < 0.0f) clip_rect.x = 0.0f; if (clip_rect.y < 0.0f) clip_rect.y = 0.0f; // Apply scissor/clipping rectangle VkRect2D scissor; scissor.offset.x = (int32_t)(clip_rect.x); scissor.offset.y = (int32_t)(clip_rect.y); scissor.extent.width = (uint32_t)(clip_rect.z - clip_rect.x); scissor.extent.height = (uint32_t)(clip_rect.w - clip_rect.y); vkCmdSetScissor(command_buffer, 0, 1, &scissor); // Draw vkCmdDrawIndexed(command_buffer, pcmd->ElemCount, 1, idx_offset, vtx_offset, 0); } } idx_offset += pcmd->ElemCount; } vtx_offset += cmd_list->VtxBuffer.Size; } } bool ImGui_ImplVulkan_CreateFontsTexture(VkCommandBuffer command_buffer) { ImGuiIO& io = ImGui::GetIO(); unsigned char* pixels; int width, height; io.Fonts->GetTexDataAsRGBA32(&pixels, &width, &height); size_t upload_size = width*height*4*sizeof(char); VkResult err; // Create the Image: { VkImageCreateInfo info = {}; info.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO; info.imageType = VK_IMAGE_TYPE_2D; info.format = VK_FORMAT_R8G8B8A8_UNORM; info.extent.width = width; info.extent.height = height; info.extent.depth = 1; info.mipLevels = 1; info.arrayLayers = 1; info.samples = VK_SAMPLE_COUNT_1_BIT; info.tiling = VK_IMAGE_TILING_OPTIMAL; info.usage = VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT; info.sharingMode = VK_SHARING_MODE_EXCLUSIVE; info.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; err = vkCreateImage(g_Device, &info, g_Allocator, &g_FontImage); check_vk_result(err); VkMemoryRequirements req; vkGetImageMemoryRequirements(g_Device, g_FontImage, &req); VkMemoryAllocateInfo alloc_info = {}; alloc_info.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO; alloc_info.allocationSize = req.size; alloc_info.memoryTypeIndex = ImGui_ImplVulkan_MemoryType(VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, req.memoryTypeBits); err = vkAllocateMemory(g_Device, &alloc_info, g_Allocator, &g_FontMemory); check_vk_result(err); err = vkBindImageMemory(g_Device, g_FontImage, g_FontMemory, 0); check_vk_result(err); } // Create the Image View: { VkImageViewCreateInfo info = {}; info.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO; info.image = g_FontImage; info.viewType = VK_IMAGE_VIEW_TYPE_2D; info.format = VK_FORMAT_R8G8B8A8_UNORM; info.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; info.subresourceRange.levelCount = 1; info.subresourceRange.layerCount = 1; err = vkCreateImageView(g_Device, &info, g_Allocator, &g_FontView); check_vk_result(err); } // Update the Descriptor Set: { VkDescriptorImageInfo desc_image[1] = {}; desc_image[0].sampler = g_FontSampler; desc_image[0].imageView = g_FontView; desc_image[0].imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; VkWriteDescriptorSet write_desc[1] = {}; write_desc[0].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET; write_desc[0].dstSet = g_DescriptorSet; write_desc[0].descriptorCount = 1; write_desc[0].descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER; write_desc[0].pImageInfo = desc_image; vkUpdateDescriptorSets(g_Device, 1, write_desc, 0, NULL); } // Create the Upload Buffer: { VkBufferCreateInfo buffer_info = {}; buffer_info.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO; buffer_info.size = upload_size; buffer_info.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT; buffer_info.sharingMode = VK_SHARING_MODE_EXCLUSIVE; err = vkCreateBuffer(g_Device, &buffer_info, g_Allocator, &g_UploadBuffer); check_vk_result(err); VkMemoryRequirements req; vkGetBufferMemoryRequirements(g_Device, g_UploadBuffer, &req); g_BufferMemoryAlignment = (g_BufferMemoryAlignment > req.alignment) ? g_BufferMemoryAlignment : req.alignment; VkMemoryAllocateInfo alloc_info = {}; alloc_info.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO; alloc_info.allocationSize = req.size; alloc_info.memoryTypeIndex = ImGui_ImplVulkan_MemoryType(VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, req.memoryTypeBits); err = vkAllocateMemory(g_Device, &alloc_info, g_Allocator, &g_UploadBufferMemory); check_vk_result(err); err = vkBindBufferMemory(g_Device, g_UploadBuffer, g_UploadBufferMemory, 0); check_vk_result(err); } // Upload to Buffer: { char* map = NULL; err = vkMapMemory(g_Device, g_UploadBufferMemory, 0, upload_size, 0, (void**)(&map)); check_vk_result(err); memcpy(map, pixels, upload_size); VkMappedMemoryRange range[1] = {}; range[0].sType = VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE; range[0].memory = g_UploadBufferMemory; range[0].size = upload_size; err = vkFlushMappedMemoryRanges(g_Device, 1, range); check_vk_result(err); vkUnmapMemory(g_Device, g_UploadBufferMemory); } // Copy to Image: { VkImageMemoryBarrier copy_barrier[1] = {}; copy_barrier[0].sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER; copy_barrier[0].dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT; copy_barrier[0].oldLayout = VK_IMAGE_LAYOUT_UNDEFINED; copy_barrier[0].newLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL; copy_barrier[0].srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; copy_barrier[0].dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; copy_barrier[0].image = g_FontImage; copy_barrier[0].subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; copy_barrier[0].subresourceRange.levelCount = 1; copy_barrier[0].subresourceRange.layerCount = 1; vkCmdPipelineBarrier(command_buffer, VK_PIPELINE_STAGE_HOST_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, 0, 0, NULL, 0, NULL, 1, copy_barrier); VkBufferImageCopy region = {}; region.imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; region.imageSubresource.layerCount = 1; region.imageExtent.width = width; region.imageExtent.height = height; region.imageExtent.depth = 1; vkCmdCopyBufferToImage(command_buffer, g_UploadBuffer, g_FontImage, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, ®ion); VkImageMemoryBarrier use_barrier[1] = {}; use_barrier[0].sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER; use_barrier[0].srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT; use_barrier[0].dstAccessMask = VK_ACCESS_SHADER_READ_BIT; use_barrier[0].oldLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL; use_barrier[0].newLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; use_barrier[0].srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; use_barrier[0].dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; use_barrier[0].image = g_FontImage; use_barrier[0].subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; use_barrier[0].subresourceRange.levelCount = 1; use_barrier[0].subresourceRange.layerCount = 1; vkCmdPipelineBarrier(command_buffer, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT, 0, 0, NULL, 0, NULL, 1, use_barrier); } // Store our identifier io.Fonts->TexID = (ImTextureID)(intptr_t)g_FontImage; return true; } bool ImGui_ImplVulkan_CreateDeviceObjects() { VkResult err; VkShaderModule vert_module; VkShaderModule frag_module; // Create The Shader Modules: { VkShaderModuleCreateInfo vert_info = {}; vert_info.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO; vert_info.codeSize = sizeof(__glsl_shader_vert_spv); vert_info.pCode = (uint32_t*)__glsl_shader_vert_spv; err = vkCreateShaderModule(g_Device, &vert_info, g_Allocator, &vert_module); check_vk_result(err); VkShaderModuleCreateInfo frag_info = {}; frag_info.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO; frag_info.codeSize = sizeof(__glsl_shader_frag_spv); frag_info.pCode = (uint32_t*)__glsl_shader_frag_spv; err = vkCreateShaderModule(g_Device, &frag_info, g_Allocator, &frag_module); check_vk_result(err); } if (!g_FontSampler) { VkSamplerCreateInfo info = {}; info.sType = VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO; info.magFilter = VK_FILTER_LINEAR; info.minFilter = VK_FILTER_LINEAR; info.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR; info.addressModeU = VK_SAMPLER_ADDRESS_MODE_REPEAT; info.addressModeV = VK_SAMPLER_ADDRESS_MODE_REPEAT; info.addressModeW = VK_SAMPLER_ADDRESS_MODE_REPEAT; info.minLod = -1000; info.maxLod = 1000; info.maxAnisotropy = 1.0f; err = vkCreateSampler(g_Device, &info, g_Allocator, &g_FontSampler); check_vk_result(err); } if (!g_DescriptorSetLayout) { VkSampler sampler[1] = {g_FontSampler}; VkDescriptorSetLayoutBinding binding[1] = {}; binding[0].descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER; binding[0].descriptorCount = 1; binding[0].stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT; binding[0].pImmutableSamplers = sampler; VkDescriptorSetLayoutCreateInfo info = {}; info.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO; info.bindingCount = 1; info.pBindings = binding; err = vkCreateDescriptorSetLayout(g_Device, &info, g_Allocator, &g_DescriptorSetLayout); check_vk_result(err); } // Create Descriptor Set: { VkDescriptorSetAllocateInfo alloc_info = {}; alloc_info.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO; alloc_info.descriptorPool = g_DescriptorPool; alloc_info.descriptorSetCount = 1; alloc_info.pSetLayouts = &g_DescriptorSetLayout; err = vkAllocateDescriptorSets(g_Device, &alloc_info, &g_DescriptorSet); check_vk_result(err); } if (!g_PipelineLayout) { // Constants: we are using 'vec2 offset' and 'vec2 scale' instead of a full 3d projection matrix VkPushConstantRange push_constants[1] = {}; push_constants[0].stageFlags = VK_SHADER_STAGE_VERTEX_BIT; push_constants[0].offset = sizeof(float) * 0; push_constants[0].size = sizeof(float) * 4; VkDescriptorSetLayout set_layout[1] = { g_DescriptorSetLayout }; VkPipelineLayoutCreateInfo layout_info = {}; layout_info.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO; layout_info.setLayoutCount = 1; layout_info.pSetLayouts = set_layout; layout_info.pushConstantRangeCount = 1; layout_info.pPushConstantRanges = push_constants; err = vkCreatePipelineLayout(g_Device, &layout_info, g_Allocator, &g_PipelineLayout); check_vk_result(err); } VkPipelineShaderStageCreateInfo stage[2] = {}; stage[0].sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO; stage[0].stage = VK_SHADER_STAGE_VERTEX_BIT; stage[0].module = vert_module; stage[0].pName = "main"; stage[1].sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO; stage[1].stage = VK_SHADER_STAGE_FRAGMENT_BIT; stage[1].module = frag_module; stage[1].pName = "main"; VkVertexInputBindingDescription binding_desc[1] = {}; binding_desc[0].stride = sizeof(ImDrawVert); binding_desc[0].inputRate = VK_VERTEX_INPUT_RATE_VERTEX; VkVertexInputAttributeDescription attribute_desc[3] = {}; attribute_desc[0].location = 0; attribute_desc[0].binding = binding_desc[0].binding; attribute_desc[0].format = VK_FORMAT_R32G32_SFLOAT; attribute_desc[0].offset = IM_OFFSETOF(ImDrawVert, pos); attribute_desc[1].location = 1; attribute_desc[1].binding = binding_desc[0].binding; attribute_desc[1].format = VK_FORMAT_R32G32_SFLOAT; attribute_desc[1].offset = IM_OFFSETOF(ImDrawVert, uv); attribute_desc[2].location = 2; attribute_desc[2].binding = binding_desc[0].binding; attribute_desc[2].format = VK_FORMAT_R8G8B8A8_UNORM; attribute_desc[2].offset = IM_OFFSETOF(ImDrawVert, col); VkPipelineVertexInputStateCreateInfo vertex_info = {}; vertex_info.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO; vertex_info.vertexBindingDescriptionCount = 1; vertex_info.pVertexBindingDescriptions = binding_desc; vertex_info.vertexAttributeDescriptionCount = 3; vertex_info.pVertexAttributeDescriptions = attribute_desc; VkPipelineInputAssemblyStateCreateInfo ia_info = {}; ia_info.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO; ia_info.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST; VkPipelineViewportStateCreateInfo viewport_info = {}; viewport_info.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO; viewport_info.viewportCount = 1; viewport_info.scissorCount = 1; VkPipelineRasterizationStateCreateInfo raster_info = {}; raster_info.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO; raster_info.polygonMode = VK_POLYGON_MODE_FILL; raster_info.cullMode = VK_CULL_MODE_NONE; raster_info.frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE; raster_info.lineWidth = 1.0f; VkPipelineMultisampleStateCreateInfo ms_info = {}; ms_info.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO; ms_info.rasterizationSamples = VK_SAMPLE_COUNT_1_BIT; VkPipelineColorBlendAttachmentState color_attachment[1] = {}; color_attachment[0].blendEnable = VK_TRUE; color_attachment[0].srcColorBlendFactor = VK_BLEND_FACTOR_SRC_ALPHA; color_attachment[0].dstColorBlendFactor = VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA; color_attachment[0].colorBlendOp = VK_BLEND_OP_ADD; color_attachment[0].srcAlphaBlendFactor = VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA; color_attachment[0].dstAlphaBlendFactor = VK_BLEND_FACTOR_ZERO; color_attachment[0].alphaBlendOp = VK_BLEND_OP_ADD; color_attachment[0].colorWriteMask = VK_COLOR_COMPONENT_R_BIT | VK_COLOR_COMPONENT_G_BIT | VK_COLOR_COMPONENT_B_BIT | VK_COLOR_COMPONENT_A_BIT; VkPipelineDepthStencilStateCreateInfo depth_info = {}; depth_info.sType = VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO; VkPipelineColorBlendStateCreateInfo blend_info = {}; blend_info.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO; blend_info.attachmentCount = 1; blend_info.pAttachments = color_attachment; VkDynamicState dynamic_states[2] = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR }; VkPipelineDynamicStateCreateInfo dynamic_state = {}; dynamic_state.sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO; dynamic_state.dynamicStateCount = (uint32_t)IM_ARRAYSIZE(dynamic_states); dynamic_state.pDynamicStates = dynamic_states; VkGraphicsPipelineCreateInfo info = {}; info.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO; info.flags = g_PipelineCreateFlags; info.stageCount = 2; info.pStages = stage; info.pVertexInputState = &vertex_info; info.pInputAssemblyState = &ia_info; info.pViewportState = &viewport_info; info.pRasterizationState = &raster_info; info.pMultisampleState = &ms_info; info.pDepthStencilState = &depth_info; info.pColorBlendState = &blend_info; info.pDynamicState = &dynamic_state; info.layout = g_PipelineLayout; info.renderPass = g_RenderPass; err = vkCreateGraphicsPipelines(g_Device, g_PipelineCache, 1, &info, g_Allocator, &g_Pipeline); check_vk_result(err); vkDestroyShaderModule(g_Device, vert_module, g_Allocator); vkDestroyShaderModule(g_Device, frag_module, g_Allocator); return true; } void ImGui_ImplVulkan_InvalidateFontUploadObjects() { if (g_UploadBuffer) { vkDestroyBuffer(g_Device, g_UploadBuffer, g_Allocator); g_UploadBuffer = VK_NULL_HANDLE; } if (g_UploadBufferMemory) { vkFreeMemory(g_Device, g_UploadBufferMemory, g_Allocator); g_UploadBufferMemory = VK_NULL_HANDLE; } } void ImGui_ImplVulkan_InvalidateDeviceObjects() { ImGui_ImplVulkan_InvalidateFontUploadObjects(); for (int i = 0; i < IM_ARRAYSIZE(g_FramesDataBuffers); i++) { FrameDataForRender* fd = &g_FramesDataBuffers[i]; if (fd->VertexBuffer) { vkDestroyBuffer (g_Device, fd->VertexBuffer, g_Allocator); fd->VertexBuffer = VK_NULL_HANDLE; } if (fd->VertexBufferMemory) { vkFreeMemory (g_Device, fd->VertexBufferMemory, g_Allocator); fd->VertexBufferMemory = VK_NULL_HANDLE; } if (fd->IndexBuffer) { vkDestroyBuffer (g_Device, fd->IndexBuffer, g_Allocator); fd->IndexBuffer = VK_NULL_HANDLE; } if (fd->IndexBufferMemory) { vkFreeMemory (g_Device, fd->IndexBufferMemory, g_Allocator); fd->IndexBufferMemory = VK_NULL_HANDLE; } } if (g_FontView) { vkDestroyImageView(g_Device, g_FontView, g_Allocator); g_FontView = VK_NULL_HANDLE; } if (g_FontImage) { vkDestroyImage(g_Device, g_FontImage, g_Allocator); g_FontImage = VK_NULL_HANDLE; } if (g_FontMemory) { vkFreeMemory(g_Device, g_FontMemory, g_Allocator); g_FontMemory = VK_NULL_HANDLE; } if (g_FontSampler) { vkDestroySampler(g_Device, g_FontSampler, g_Allocator); g_FontSampler = VK_NULL_HANDLE; } if (g_DescriptorSetLayout) { vkDestroyDescriptorSetLayout(g_Device, g_DescriptorSetLayout, g_Allocator); g_DescriptorSetLayout = VK_NULL_HANDLE; } if (g_PipelineLayout) { vkDestroyPipelineLayout(g_Device, g_PipelineLayout, g_Allocator); g_PipelineLayout = VK_NULL_HANDLE; } if (g_Pipeline) { vkDestroyPipeline(g_Device, g_Pipeline, g_Allocator); g_Pipeline = VK_NULL_HANDLE; } } bool ImGui_ImplVulkan_Init(ImGui_ImplVulkan_InitInfo* info, VkRenderPass render_pass) { ImGuiIO& io = ImGui::GetIO(); io.BackendRendererName = "imgui_impl_vulkan"; IM_ASSERT(info->Instance != VK_NULL_HANDLE); IM_ASSERT(info->PhysicalDevice != VK_NULL_HANDLE); IM_ASSERT(info->Device != VK_NULL_HANDLE); IM_ASSERT(info->Queue != VK_NULL_HANDLE); IM_ASSERT(info->DescriptorPool != VK_NULL_HANDLE); IM_ASSERT(render_pass != VK_NULL_HANDLE); g_Instance = info->Instance; g_PhysicalDevice = info->PhysicalDevice; g_Device = info->Device; g_QueueFamily = info->QueueFamily; g_Queue = info->Queue; g_RenderPass = render_pass; g_PipelineCache = info->PipelineCache; g_DescriptorPool = info->DescriptorPool; g_Allocator = info->Allocator; g_CheckVkResultFn = info->CheckVkResultFn; ImGui_ImplVulkan_CreateDeviceObjects(); return true; } void ImGui_ImplVulkan_Shutdown() { ImGui_ImplVulkan_InvalidateDeviceObjects(); } void ImGui_ImplVulkan_NewFrame() { } //------------------------------------------------------------------------- // Internal / Miscellaneous Vulkan Helpers //------------------------------------------------------------------------- // You probably do NOT need to use or care about those functions. // Those functions only exist because: // 1) they facilitate the readability and maintenance of the multiple main.cpp examples files. // 2) the upcoming multi-viewport feature will need them internally. // Generally we avoid exposing any kind of superfluous high-level helpers in the bindings, // but it is too much code to duplicate everywhere so we exceptionally expose them. // Your application/engine will likely already have code to setup all that stuff (swap chain, render pass, frame buffers, etc.). // You may read this code to learn about Vulkan, but it is recommended you use you own custom tailored code to do equivalent work. // (those functions do not interact with any of the state used by the regular ImGui_ImplVulkan_XXX functions) //------------------------------------------------------------------------- #include // malloc ImGui_ImplVulkanH_FrameData::ImGui_ImplVulkanH_FrameData() { BackbufferIndex = 0; CommandPool = VK_NULL_HANDLE; CommandBuffer = VK_NULL_HANDLE; Fence = VK_NULL_HANDLE; ImageAcquiredSemaphore = VK_NULL_HANDLE; RenderCompleteSemaphore = VK_NULL_HANDLE; } ImGui_ImplVulkanH_WindowData::ImGui_ImplVulkanH_WindowData() { Width = Height = 0; Swapchain = VK_NULL_HANDLE; Surface = VK_NULL_HANDLE; memset(&SurfaceFormat, 0, sizeof(SurfaceFormat)); PresentMode = VK_PRESENT_MODE_MAX_ENUM_KHR; RenderPass = VK_NULL_HANDLE; ClearEnable = true; memset(&ClearValue, 0, sizeof(ClearValue)); BackBufferCount = 0; memset(&BackBuffer, 0, sizeof(BackBuffer)); memset(&BackBufferView, 0, sizeof(BackBufferView)); memset(&Framebuffer, 0, sizeof(Framebuffer)); FrameIndex = 0; } VkSurfaceFormatKHR ImGui_ImplVulkanH_SelectSurfaceFormat(VkPhysicalDevice physical_device, VkSurfaceKHR surface, const VkFormat* request_formats, int request_formats_count, VkColorSpaceKHR request_color_space) { IM_ASSERT(request_formats != NULL); IM_ASSERT(request_formats_count > 0); // Per Spec Format and View Format are expected to be the same unless VK_IMAGE_CREATE_MUTABLE_BIT was set at image creation // Assuming that the default behavior is without setting this bit, there is no need for separate Swapchain image and image view format // Additionally several new color spaces were introduced with Vulkan Spec v1.0.40, // hence we must make sure that a format with the mostly available color space, VK_COLOR_SPACE_SRGB_NONLINEAR_KHR, is found and used. uint32_t avail_count; vkGetPhysicalDeviceSurfaceFormatsKHR(physical_device, surface, &avail_count, NULL); ImVector avail_format; avail_format.resize((int)avail_count); vkGetPhysicalDeviceSurfaceFormatsKHR(physical_device, surface, &avail_count, avail_format.Data); // First check if only one format, VK_FORMAT_UNDEFINED, is available, which would imply that any format is available if (avail_count == 1) { if (avail_format[0].format == VK_FORMAT_UNDEFINED) { VkSurfaceFormatKHR ret; ret.format = request_formats[0]; ret.colorSpace = request_color_space; return ret; } else { // No point in searching another format return avail_format[0]; } } else { // Request several formats, the first found will be used for (int request_i = 0; request_i < request_formats_count; request_i++) for (uint32_t avail_i = 0; avail_i < avail_count; avail_i++) if (avail_format[avail_i].format == request_formats[request_i] && avail_format[avail_i].colorSpace == request_color_space) return avail_format[avail_i]; // If none of the requested image formats could be found, use the first available return avail_format[0]; } } VkPresentModeKHR ImGui_ImplVulkanH_SelectPresentMode(VkPhysicalDevice physical_device, VkSurfaceKHR surface, const VkPresentModeKHR* request_modes, int request_modes_count) { IM_ASSERT(request_modes != NULL); IM_ASSERT(request_modes_count > 0); // Request a certain mode and confirm that it is available. If not use VK_PRESENT_MODE_FIFO_KHR which is mandatory uint32_t avail_count = 0; vkGetPhysicalDeviceSurfacePresentModesKHR(physical_device, surface, &avail_count, NULL); ImVector avail_modes; avail_modes.resize((int)avail_count); vkGetPhysicalDeviceSurfacePresentModesKHR(physical_device, surface, &avail_count, avail_modes.Data); //for (uint32_t avail_i = 0; avail_i < avail_count; avail_i++) // printf("[vulkan] avail_modes[%d] = %d\n", avail_i, avail_modes[avail_i]); for (int request_i = 0; request_i < request_modes_count; request_i++) for (uint32_t avail_i = 0; avail_i < avail_count; avail_i++) if (request_modes[request_i] == avail_modes[avail_i]) return request_modes[request_i]; return VK_PRESENT_MODE_FIFO_KHR; // Always available } void ImGui_ImplVulkanH_CreateWindowDataCommandBuffers(VkPhysicalDevice physical_device, VkDevice device, uint32_t queue_family, ImGui_ImplVulkanH_WindowData* wd, const VkAllocationCallbacks* allocator) { IM_ASSERT(physical_device != VK_NULL_HANDLE && device != VK_NULL_HANDLE); (void)physical_device; (void)allocator; // Create Command Buffers VkResult err; for (int i = 0; i < IM_ARRAYSIZE(wd->Frames); i++) { ImGui_ImplVulkanH_FrameData* fd = &wd->Frames[i]; { VkCommandPoolCreateInfo info = {}; info.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO; info.flags = VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT; info.queueFamilyIndex = queue_family; err = vkCreateCommandPool(device, &info, allocator, &fd->CommandPool); check_vk_result(err); } { VkCommandBufferAllocateInfo info = {}; info.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO; info.commandPool = fd->CommandPool; info.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY; info.commandBufferCount = 1; err = vkAllocateCommandBuffers(device, &info, &fd->CommandBuffer); check_vk_result(err); } { VkFenceCreateInfo info = {}; info.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO; info.flags = VK_FENCE_CREATE_SIGNALED_BIT; err = vkCreateFence(device, &info, allocator, &fd->Fence); check_vk_result(err); } { VkSemaphoreCreateInfo info = {}; info.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO; err = vkCreateSemaphore(device, &info, allocator, &fd->ImageAcquiredSemaphore); check_vk_result(err); err = vkCreateSemaphore(device, &info, allocator, &fd->RenderCompleteSemaphore); check_vk_result(err); } } } int ImGui_ImplVulkanH_GetMinImageCountFromPresentMode(VkPresentModeKHR present_mode) { if (present_mode == VK_PRESENT_MODE_MAILBOX_KHR) return 3; if (present_mode == VK_PRESENT_MODE_FIFO_KHR || present_mode == VK_PRESENT_MODE_FIFO_RELAXED_KHR) return 2; if (present_mode == VK_PRESENT_MODE_IMMEDIATE_KHR) return 1; IM_ASSERT(0); return 1; } void ImGui_ImplVulkanH_CreateWindowDataSwapChainAndFramebuffer(VkPhysicalDevice physical_device, VkDevice device, ImGui_ImplVulkanH_WindowData* wd, const VkAllocationCallbacks* allocator, int w, int h) { uint32_t min_image_count = 2; // FIXME: this should become a function parameter VkResult err; VkSwapchainKHR old_swapchain = wd->Swapchain; err = vkDeviceWaitIdle(device); check_vk_result(err); // Destroy old Framebuffer for (uint32_t i = 0; i < wd->BackBufferCount; i++) { if (wd->BackBufferView[i]) vkDestroyImageView(device, wd->BackBufferView[i], allocator); if (wd->Framebuffer[i]) vkDestroyFramebuffer(device, wd->Framebuffer[i], allocator); } wd->BackBufferCount = 0; if (wd->RenderPass) vkDestroyRenderPass(device, wd->RenderPass, allocator); // If min image count was not specified, request different count of images dependent on selected present mode if (min_image_count == 0) min_image_count = ImGui_ImplVulkanH_GetMinImageCountFromPresentMode(wd->PresentMode); // Create Swapchain { VkSwapchainCreateInfoKHR info = {}; info.sType = VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR; info.surface = wd->Surface; info.minImageCount = min_image_count; info.imageFormat = wd->SurfaceFormat.format; info.imageColorSpace = wd->SurfaceFormat.colorSpace; info.imageArrayLayers = 1; info.imageUsage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT; info.imageSharingMode = VK_SHARING_MODE_EXCLUSIVE; // Assume that graphics family == present family info.preTransform = VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR; info.compositeAlpha = VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR; info.presentMode = wd->PresentMode; info.clipped = VK_TRUE; info.oldSwapchain = old_swapchain; VkSurfaceCapabilitiesKHR cap; err = vkGetPhysicalDeviceSurfaceCapabilitiesKHR(physical_device, wd->Surface, &cap); check_vk_result(err); if (info.minImageCount < cap.minImageCount) info.minImageCount = cap.minImageCount; else if (cap.maxImageCount != 0 && info.minImageCount > cap.maxImageCount) info.minImageCount = cap.maxImageCount; if (cap.currentExtent.width == 0xffffffff) { info.imageExtent.width = wd->Width = w; info.imageExtent.height = wd->Height = h; } else { info.imageExtent.width = wd->Width = cap.currentExtent.width; info.imageExtent.height = wd->Height = cap.currentExtent.height; } err = vkCreateSwapchainKHR(device, &info, allocator, &wd->Swapchain); check_vk_result(err); err = vkGetSwapchainImagesKHR(device, wd->Swapchain, &wd->BackBufferCount, NULL); check_vk_result(err); err = vkGetSwapchainImagesKHR(device, wd->Swapchain, &wd->BackBufferCount, wd->BackBuffer); check_vk_result(err); } if (old_swapchain) vkDestroySwapchainKHR(device, old_swapchain, allocator); // Create the Render Pass { VkAttachmentDescription attachment = {}; attachment.format = wd->SurfaceFormat.format; attachment.samples = VK_SAMPLE_COUNT_1_BIT; attachment.loadOp = wd->ClearEnable ? VK_ATTACHMENT_LOAD_OP_CLEAR : VK_ATTACHMENT_LOAD_OP_DONT_CARE; attachment.storeOp = VK_ATTACHMENT_STORE_OP_STORE; attachment.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE; attachment.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; attachment.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; attachment.finalLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR; VkAttachmentReference color_attachment = {}; color_attachment.attachment = 0; color_attachment.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; VkSubpassDescription subpass = {}; subpass.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS; subpass.colorAttachmentCount = 1; subpass.pColorAttachments = &color_attachment; VkSubpassDependency dependency = {}; dependency.srcSubpass = VK_SUBPASS_EXTERNAL; dependency.dstSubpass = 0; dependency.srcStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT; dependency.dstStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT; dependency.srcAccessMask = 0; dependency.dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT; VkRenderPassCreateInfo info = {}; info.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO; info.attachmentCount = 1; info.pAttachments = &attachment; info.subpassCount = 1; info.pSubpasses = &subpass; info.dependencyCount = 1; info.pDependencies = &dependency; err = vkCreateRenderPass(device, &info, allocator, &wd->RenderPass); check_vk_result(err); } // Create The Image Views { VkImageViewCreateInfo info = {}; info.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO; info.viewType = VK_IMAGE_VIEW_TYPE_2D; info.format = wd->SurfaceFormat.format; info.components.r = VK_COMPONENT_SWIZZLE_R; info.components.g = VK_COMPONENT_SWIZZLE_G; info.components.b = VK_COMPONENT_SWIZZLE_B; info.components.a = VK_COMPONENT_SWIZZLE_A; VkImageSubresourceRange image_range = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 }; info.subresourceRange = image_range; for (uint32_t i = 0; i < wd->BackBufferCount; i++) { info.image = wd->BackBuffer[i]; err = vkCreateImageView(device, &info, allocator, &wd->BackBufferView[i]); check_vk_result(err); } } // Create Framebuffer { VkImageView attachment[1]; VkFramebufferCreateInfo info = {}; info.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO; info.renderPass = wd->RenderPass; info.attachmentCount = 1; info.pAttachments = attachment; info.width = wd->Width; info.height = wd->Height; info.layers = 1; for (uint32_t i = 0; i < wd->BackBufferCount; i++) { attachment[0] = wd->BackBufferView[i]; err = vkCreateFramebuffer(device, &info, allocator, &wd->Framebuffer[i]); check_vk_result(err); } } } void ImGui_ImplVulkanH_DestroyWindowData(VkInstance instance, VkDevice device, ImGui_ImplVulkanH_WindowData* wd, const VkAllocationCallbacks* allocator) { vkDeviceWaitIdle(device); // FIXME: We could wait on the Queue if we had the queue in wd-> (otherwise VulkanH functions can't use globals) //vkQueueWaitIdle(g_Queue); for (int i = 0; i < IM_ARRAYSIZE(wd->Frames); i++) { ImGui_ImplVulkanH_FrameData* fd = &wd->Frames[i]; vkDestroyFence(device, fd->Fence, allocator); vkFreeCommandBuffers(device, fd->CommandPool, 1, &fd->CommandBuffer); vkDestroyCommandPool(device, fd->CommandPool, allocator); vkDestroySemaphore(device, fd->ImageAcquiredSemaphore, allocator); vkDestroySemaphore(device, fd->RenderCompleteSemaphore, allocator); } for (uint32_t i = 0; i < wd->BackBufferCount; i++) { vkDestroyImageView(device, wd->BackBufferView[i], allocator); vkDestroyFramebuffer(device, wd->Framebuffer[i], allocator); } vkDestroyRenderPass(device, wd->RenderPass, allocator); vkDestroySwapchainKHR(device, wd->Swapchain, allocator); vkDestroySurfaceKHR(instance, wd->Surface, allocator); *wd = ImGui_ImplVulkanH_WindowData(); }